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Geophysical and geotechnical field investigations have introduced several techniques to measure

in-situ shear wave velocity of soils. However, there are some difficulties for the easy and economical

use of these techniques in the routine geotechnical engineering works. For the soil deposits, researchers

have developed correlations between shear wave velocity and SPT-N values. In the present study, a new

database containing the measured shear wave velocity of soil deposits have been compiled from the

previously published studies. Using polynomial neural network (PNN), a new correlation has been

subsequently developed for the prediction of shear wave velocity. The developed relationship shows an

acceptable performance compared with the available relationships. Three examples are then presented

to confirm accuracy and applicability of the proposed equation in the field of liquefaction potential

assessment.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Small strain shear modulus (Gmax) and shear wave velocity (Vs)
are essential parameters for the dynamic analysis of soil systems.
Shear wave velocity can be directly used for some geotechnical
problems such as evaluating liquefaction potential (e.g., Dobry
et al., 1981; Seed et al., 1983; Tokimatsu and Uchida, 1990;
Andrus and Stokoe, 2000), soil classification (e.g., Dobry et al.,
2000), site response analysis (e.g., Choi and Stewart, 2005), and
earthquake-induced ground motions (e.g., Jafarian et al., 2010).

These parameters may be determined via small strain labora-
tory tests on undisturbed soil samples. Resonant column and
bender element tests are the most common devices to estimate
small-strain parameters in laboratory; however, cyclic triaxial
apparatus with the precise measurement of axial strain has been
also used for this purpose. The effect of sample disturbance on
small-strain stiffness is significant in laboratory-based measure-
ments since the weak bonds between the soil particles are broken
during sampling process. Furthermore, undisturbed sampling in
granular deposits is not possible without expensive freezing
techniques. Therefore, small-strain shear modulus (Gmax) is more
rational to be estimated from shear wave velocity (Vs). In-situ
shear wave velocitycan be measured by a number of geophysical
ll rights reserved.

i).
techniques such as cross-hole test (CHT), down-hole test (DHT),
seismic cone penetration tests (SCPTs), refraction micro-tremor
(ReMi), multi-station analysis of surface waves (MASW), and
spectral analysis of surface waves (SASW). The accuracy of these
techniques depends on implementation details, soil conditions,
and interpretation methods (Andrus and Stokoe, 1997). Moreover,
field measurement techniques involve clear advantages compared
with laboratory methods since they examine the soil in its natural
condition with minimum disturbance. On the other hand,
although in-situ geophysical measurements are the most appro-
priate methods for this purpose, several limitations such as space
constraints, cost considerations, and high noise levels arising from
some of these tests, especially in urban areas, make them
impractical or restricted in many situations. Hence, empirical
equations are essential tools for preliminary assessment of shear
wave velocity based on the relevant geotechnical parameters.

Researchers have carried out several studies during the last
four decades to develop relationships between shear wave velo-
city and geotechnical parameters of soils. Majority of these
studies have tried to correlate Vsð Þ with SPT blow count, SPT-N,
and a few studies have employed other parameters such as
effective overburden stress, fine content, depth, cone penetration
tip resistance (Kanai et al., 1966; Hamilton, 1976; Ohsaki and
Iwasaki, 1973; Campbell and Duke, 1976; Ohta and Goto, 1978;
Seed and Idriss, 1981; Jinan, 1987; Lee, 1990; Lodge, 1994;
Athanasopoulos, 1995; Sisman, 1995; Iyisan, 1996; Jafari et al.,
1997; Kiku et al., 2001; Hanumantharao and Ramana, 2008;
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Hasancebi and Ulusay, 2006; Dikmen, 2009; Brandenberg et al.,
2010; Akin et al., 2011).

As discussed above, numerous data were measured in the field
condition during the previous studies. These data provide possi-
bility for the development of a predictive correlation for the in-
situ shear wave velocity of soils. It is clear that a precise
correlation is easier to be used in the routine geotechnical
projects compared with the mechanics-based measurement tech-
niques. The current study aims to present such correlation using a
large database containing soil parameters and the corresponding
values of shear wave velocity. Available correlations of shear
wave velocity are reviewed first. Performance of the reviewed
correlations is subsequently examined through a comprehensive
database of measured shear wave velocity, which was gathered
herein. Then, a new correlation is developed via an advanced
polynomial neural network algorithm. Reasonable precision and
applications of the developed correlation are demonstrated in the
final part of the paper.
2. Review of available relationships

The most frequent functional form of the previous equations is
Vs ¼ AUNB, where the constants A and B are calculated using
statistical regression of a given data set. A summary of the
available equations are given in Table 1.

Kanai et al. (1966) presented an equation based on 70 field
case histories gathered from Japan for all soil types. Campbell and
Duke (1976) employed 63 field measurements and proposed two
equations which only depend on the depth of soil layer (D) for
two types of recent and older alluvium sediments. Seed and Idriss
(1981) developed another equation to correlate shear wave
velocity to the values of SPT blow counts which were corrected
for depth (i.e., N1,60). Using statistical analysis Lee (1990), exam-
ined different combinations of the multiple regression models
and introduced equations for predicting shear wave velocity in
SM, CL, and ML soils. For a seismic region located in the eastern
Turkey Iyisan (1996), proposed several equations and evaluated
Table 1
Some empirical relations for predicting shear wave velocity based on SPT blow count.

References Soil type

All San

1 Kanai et al., (1966) Vs ¼ 19N0:6 �

2 Hamilton (1976) Vs ¼ 128D0:28 �

3 Ohsaki and Iwasaki (1973) Vs ¼ 81:4N0:39 �

4 Campbell and Duke (1976) Vs ¼ 319D0:386 �

5 Ohta and Goto (1978) Vs ¼ 85:3N0:3481 �

Vs ¼ 92:1D0:339 �

6 Seed and Idriss (1981) Vs ¼ 61:4N0:5 �

7 Jinan (1987) Vs ¼ 116ðNþ0:318Þ0:202 �

Vs ¼ 90:9ðDþ0:62Þ0:212 �

8 Lee (1990) � Vs ¼

Vs ¼

9 Athanasopoulos (1995) Vs ¼ 107:6N0:36 �

10 Sisman (1995) Vs ¼ 32:8N0:51 �

11 Iyisan (1996) Vs ¼ 51:5N0:516 �

12 Jafari et al. (1997) Vs ¼ 22N0:85 �

13 Kiku et al. (2001) Vs ¼ 68:3N0:292 �

14 Hasancebi and Ulusay (2006) Vs ¼ 90N0:309 Vs ¼

15 Imai et al. (1975) Vs ¼ 89:9N0:341

16 Brandenberg et al. (2010)

a b coefficients were presented by Brandenberg et al. (2010) for any type of soils.
effects of various parameters on the values of shear wave velocity
such as SPT blow counts (N), vertical overburden stress (sv), rains
mean diameter (D50), corrected SPT-N valueðN1,60Þ, tip resistance
of cone penetration test (qc), and depth of the sediment (H).
Furthermore Jafari et al. (1997), used numerous field data gath-
ered from southwest of Tehran and developed some relationships
predicting shear wave velocity of all soil types. Hasancebi and
Ulusay (2006) studied correlations using 97 case histories col-
lected from an area in the north-western part of Turkey and
proposed their equations for sands, clays, and for all soils.
Recently Brandenberg et al. (2010), employed regression analysis
and proposed a predictive equation of shear wave velocity for
Caltrans bridges sites. They used a total data of 79 boring logs
from 21 bridges and predicted lnðVsÞ for sands, silts, and clays as a
function of SPT resistance and effective overburden pressure.
3. Database development and influential parameters

Majority of the previous studies, which are cited in Table 1,
employed limited number of data from one particular site. There-
fore, these models cannot guarantee reasonable performance for
various site conditions. In this study, a large database was compiled
from 10 different sites, which can potentially lead to a generalized
equation. The compiled database contains 80 boreholes with totally
394 data measurements as summarized in Table 2.

The database includes some geotechnical parameters such as
number of standard penetration blow counts, SPT-N, vertical
overburden stress, svð Þ, effective overburden stress, s0v

� �
, and

the corresponding values of shear wave velocity. The values of
shear wave velocity were measured using seismic cone penetra-
tion test (SCPT) and spectral analysis of surface waves test
(SASW). Table 3 shows that input variables as well as the output
vary in a wide range. Accordingly, N1,60, svð Þ, s0v

� �
and Vsð Þ are

distributed within 0–75, 12.1–408.9 (kPa), 7.5–233.7 (kPa), and
66–363 (m/s) ranges, respectively.

Fig. 1 is demonstrated to evaluate performance of the previous
models (cited in Table 1) for the new compiled database. The figure
Remark

d Silt Clay

� �

� �

� �

� � D in feet

� �

� �

� �

� � D in feet ; Vs in m/s

� �

57:4N0:49 Vs ¼ 105:6D0:32 Vs ¼ 114:4D0:31

57:4D0:46

� �

� �

� �

� �

� �

90:82N0:319 � Vs ¼ 97:89N0:269

lnðVsÞij ¼ b0þb1lnðN60Þijþb2lnðs0vÞij
a
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illustrates the measured values of shear wave velocity versus SPT-
N values as well as the curves associated with the previous
equations. According to Table 1, it should be noted that some of
the previous models are independent of SPT-N values and, thus
were not plotted in Fig. 1. The figure confirms that the measured
data show a considerable scattering because their associated spots
are widely distributed in the plot. Nevertheless, a single curve is
resulted in for any model because they are only dependent to SPT-
N value. In fact, majority of the equations reported in the literature
(Table 1) has utilized only one parameter (often SPT-N value) to
evaluate the values of shear wave velocity. The current study
employs two input parameters for a more accurate prediction of
the shear wave velocity.

Majority of the previous studies investigated the effect of the
SPT-N on the shear wave velocity. A few researchers, however,
studied the influence of other parameters like soil type on Vs
Table 2
Summary of case histories used in this study.

Site location Reference Number
of
boring

Number
of cases

1 Argentina Cetin (2000) 5 5

2 Guatemala Cetin (2000) 3 3

3 Hyogoken-Nambu Cetin (2000) 24 56

4 Imperial Valley Cetin (2000) 1 1

5 Loma Prieta Cetin (2000) 1 1

6 Nihonkai-Chubu Cetin (2000) 2 8

7 Niigata Cetin (2000) 2 11

8 Northridge Cetin (2000) 2 2

9 San Fernando Cetin (2000) 2 2

10 Turkey PEER (2000) 38 305

Sum¼ 80 394

Table 3
Ranges of parameters in new database.

Statistical properties Parameters

N1,60 rv (kPa) r0v(kPa) Vs(m/s)

Min 0 12.1 7.5 66

Max 75 408.9 233.7 363

Mean 15.35 135.06 78.36 169.49

Fig. 1. Performance of the previous equations of she
values. Iyisan (1996) used Turkey data and investigated how soil
type affects the correlation between SPT-N value and shear
wave velocity. The results showed that the equations developed
for all soils, sands and clays obtain similar Vsð Þ values excepting
gravels for which SPT results are questionable. Furthermore,
Iyisan (1996) examined influence of the effective vertical stress
on shear wave velocity and concluded that the correlation
between Vsð Þ and N1 would be more accurate provided the
effective overburden pressure (s0v) is taken into account. Rollins
et al. (1998) also noted that an improvement in shear wave
velocity prediction can be achieved if the effective stress is
considered in the regression equation. Importance of effective
overburden pressure in the estimation of shear wave velocity was
also highlighted in the recent study conducted by Brandenberg
et al. (2010).
4. Modeling using polynomial neural networks (PNN)

Conventional explicit modeling of complex systems requires
recognition of a reasonable mathematical relationship between
the inputs and outputs. This prejudgment on the model structure
may introduce undesirable errors into the problem. Instead, soft
computing methods are less affected by such drawbacks and, thus
have received considerable attentions in the recent years (e.g.,
Baziar and Ghorbani, 2005; Baziar and Jafarian, 2007; Atashkari
et al., 2007; Jafarian et al., 2010).

Many researchers have attempted to use such methods as
effective tools for system identification. Polynomial Neural Network
(PNN) is a hybrid self-organizing approach by which complicated
models are generated based on the evaluation of their perfor-
mances for a set of multi-input single-output data pairs (Onwubolu,
2009). PNN was initially developed by Ivakhnenko (1971) and
applied to various problems such as data mining and knowledge
discovery, forecasting and system modeling, optimization and
pattern recognition. It provides possibility to find interrelations of
data, to select optimal structure of model or network, and to
increase the accuracy of existing algorithms. The main concept of
this approach is to produce an analytical function in a feed forward
neural network based on a quadratic node transfer function whose
coefficients are obtained using regression technique.

In general, polynomial neural network involves some advan-
tages over the other types of neural networks. First, it is capable
to select the most suitable input variables in a set of applicants.
By sorting different solutions, such networks aim to minimize
Dikmen (2009)   N 
Hanumantharao  (2008) M 
Hasancebi and Ulsay (2006)I 
Jafari et al. (1997)  B 
Iysan (1996)  E 
Seed and Idriss (1981)  D 
Imai et al. (1975)  G 
Ohta and Goto (1987)  H 
Kanai et al. (1966)  A 
Kiku et al. (2001)  L 
Athanaaspoulos (1995)  C 
Jinan (1987)  J 
Sisman (1995)  K 
Ohsaki and Iwasaki (1973)F 

ar wave velocity against the compiled database.
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influence of the developer on the results of modeling. Computer
automatically finds the optimal structure of the model and the
laws acting on the system. This could be an important feature of
PNN knowing that design of the conventional neural networks
includes difficulties such as finding the most appropriate topology
and initial coefficients (weights). Therefore, their performance
may be noticeably impacted by the model developer (Onwubolu,
2009).

PNN represents an ANN in which different pairs of neurons in
each layer are connected through a quadratic polynomial, and
thus they produce new neurons for the next layer. The formal
definition of the identification problem is to find a function f̂ that
approximates an actual function, f, so that predicts output ŷ for a
given input vector X¼(x1, x2, x3, y, xn) as close as possible to
actual output y (Sanchez et al., 1997). More details about the
mathematical basis of polynomial neural networks and optimiz-
ing its structure and parameters is beyond the scope of this paper
and can be found in the relevant references (e.g., Nariman-Zadeh
et al., 2003).
4.1. Data division

In the soft computing applications, the database is commonly
divided into two parts including training and testing subsets. The
testing data set tries to obtain a more generalized model while it
is not incorporated in the training procedure. According to an
accepted rule, training and testing data sets must be similar in
terms of their statistical properties such as mean and standard
deviation (Tokar and Johnson, 1999). Data division can be carried
out using genetic algorithm, fuzzy clustering, and random select-
ing techniques.

In the present study, training and testing sets with similar
statistical properties were achieved using the random selecting
technique. A sensitivity analysis was then performed to examine
how the developed model is affected by the different combina-
tions of training and testing sets.
4.2. Optimized model architecture

Determination of the optimized network architecture is an
important and difficult step in neural network modeling.
It involves selection of the number of nodes and hidden layers.
Since the PNN method is a self-organizing approach, optimized
model architecture is achieved properly easier than the ANN
method, thereby saving much time in this stage.
4.3. Weight optimization (training)

The procedure of optimizing the connection weight is known
as training or learning process. Back-propagation algorithm is
commonly used in the conventional neural networks for finding
the optimum weights. In contrast, PNN uses stochastic technique
that is better than traditional gradient based techniques.
4.4. Model validation

After obtaining the optimal model architecture, performance of
the trained model is validated to ensure its ability for the predic-
tion of unseen cases, which have not participated in the training
procedure. The validation process is carried out using some
controlling measures like the coefficient of determination (R2),
root mean squared error (RMSE), and mean absolute error (MAE).
The coefficient of determination (R2) determines the relative
correlation between two sets of variables and is defined as:

R2
¼

P
jðojÞ

2
�
P

jðtj�ojÞ
2P

jðojÞ
2

ð1Þ

where t and o stand for target and output values, respectively.
The RMSE is a popular error measure and has the advantage

that large errors receive greater than smaller ones. In contrast, the
MAE eliminates the emphasis given the large errors. However,
both RMSE and MAE are desired when the evaluated data are
smooth or continuous. These two coefficients are defined as
follows:

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
jðtj�ojÞ

2

p

s
ð2Þ

MAE¼

P
p9tj�oj9

p
ð3Þ

where p is the patterns number.
5. Results and discussion

5.1. The proposed equation

Out of 394 case histories 307 cases (78% of all data) were
used for training stage and the rest (22%) were considered as
testing set. The optimum structure was obtained using PNN.
Corrected SPT blow counts ðN1,60Þ, and effective vertical over-
burden pressure (s0v) were recognized by PNN to be more
effective than the other parameter (i.e., svð Þ), and thus they were
selected as input variables. This is in accord with the findings of
the recent researches that developed equations for Vs

(Brandenberg et al., 2010). In addition, the experimental studies
conducted by resonant column tests on the samples of soils have
frequently reported strong dependency of small strain shear
modulus on soil density and effective confining pressure
(Towhata, 2008).

The optimum network which includes two hidden layers and
three nodes obtained the following empirical equation for pre-
diction of shear wave velocity:

Vs ¼ 3:02þ1:8839Y2�0:9307Y3þ0:33683Y2
2þ0:35324Y2

3�0:68995Y2Y3

ð4Þ

where:

Y3 ¼�157:27�1:184s0vþ3:3944Y1�0:00198s02v �0:00891Y2
1þ0:0086s0vY1

Y2 ¼ 1:62þ :935Y1þ0:551N1,60�0:00036Y2
1þ0:00372N2

1,60�0:00396Y1N1,60

Y1 ¼ 106:27þ2:34N1,60þ0:48s0v�0:021N2
1,60þ0:00052s02v �0:00204N1,60s0v

In Eq. (4), N1,60 is the SPT blow counts corrected for effective
overburden pressure and hammer energy, s0v

� �
is the effective

overburden stress in kPa, and Vsð Þ is the predicted shear wave
velocity in m/s.

Performance of the proposed model for training and testing sets
was examined using two criteria: (1) the statistical parameters
mentioned through Eqs. (1–3) the residual plots shown in Fig. 2(a)
and (b). For the training set coefficient of determination, root mean
squared error, and mean absolute error were obtained as R2

¼

0:96, RMSE¼ 35 m=s, and MAE¼ 26 m=s, respectively. Further-
more, for the testing set the mentioned values were obtained
as R2

¼ 0:95, RMSE¼ 37:2 m=s, and MAE¼ 28:2 m=s, which are
very close to the values belong to the training set. Residuals are
defined as the difference between the observed and predicted
values as illustrated in Fig. 2(a) and (b) versus the input para-
meters i.e., N1,60 and s0v

� �
, respectively. The plots include both



Fig. 2. Residuals of training and testing sets versus (a) corrected SPT blow counts, and (b) effective overburden pressure.

Fig. 3. Parametric study of the developed equation (curves) and measured values

(data points).
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training and testing datasets. In addition, a linear trend line was
plotted throughout each figure in order to emphasize the negli-
gible bias of the predicted values versus the input variables.

Both shear wave velocity (Vs) and standard penetration resis-
tant (N60) are commonly corrected for effective overburden stress.
To consider this effect, these parameters are commonly modified
with the following equations:

ðN1Þ60 ¼N60
Pa

s0v

� �n

ð5Þ

Vs1 ¼ Vs
Pa

s0v

� �m

ð6Þ

where s0v
� �

is effective overburden pressure and n and m

exponents vary based on soil type, cementation, and plasticity
index. Typical values of n change from 0.5 for sand and 1 for clay.
Also, the value of m can be considered 0.25 for clean sands and a
maximum value of 0.5 for cohesive soils (Robertson et al., 1992;
Yamada et al., 2008; Brandenberg et al., 2010).

Because there are different normalized equations for SPT and
Vs (as mentioned above), it is required to include effective stress
as a variable for any equation which correlates corrected values of
SPT resistance and shear wave velocity. Although this important
parameter has not been considered in majority of the previous
studies, effective stress was included as an important variable in
the proposed PNN-based model.
5.2. Parametric study

Variations of the shear wave velocity against N1,60 and
s0v
� �

parameters cannot be directly explained from the equation
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due to multivariate form of the proposed equation. Thus, shear
wave velocity was considered as a function of the N1,60 in the
different levels of effective overburden stress (s0v). Accordingly,
effective overburden pressure (s0v) was assumed equal to 10, 50,
100, 200, and 300 kPa and the resulted values of shear wave
velocity were plotted against corrected N value as depicted in
Fig. 3. As seen, values of shear wave velocity increase versus N1,60

for a given constant effective overburden stress, while the incre-
mental trend is more pronounced for higher levels of stress. It is
also obvious from Fig. 3 that deeper soil strata possess larger
values of shear wave velocity. The measured values of Vsð Þ were
also superimposed in the figure as individual data points in order
to demonstrate that the entire range of the measured points can
be covered by the proposed equation and various combinations of
N1,60 and s0v

� �
.

Table 4
Comparison between the accuracy of Brandenberg et al. (2010)’s equation and the

current study.

Soil type Brandenberg et al. (2010) This study

R2 RMSE (m/s) MAE (m/s) R2 RMSE (m/s) MAE (m/s)

Sand 0.93 46.82 37.95 – – –

Silt 0.94 42.17 34.05 – – –

Clay 0.92 50.36 39.94 – – –

All soilsa 0.93 45.60 36.62 0.95 37.75 32.14

a For Brandenberg et al. (2010), ‘‘All soils’’ is an average given for the predicted

values of the soil types.
6. Comparison with the previous models

Variations of the model prediction along the ground depth are
investigated through the recorded data belong to some randomly
selected boring logs. The results of this evaluation have been
shown in Fig. 4(a)–(e). For comparison, predictions of some
previously published equations which are only dependent on
depth are also shown in the figures. This comparison confirms
that the values predicted by PNN can reasonably trace the field
measurements, while the previous depth-based equations gen-
erally over-predicted or under-predicted the measured values of
shear wave velocity along the depth.

In Table 4, accuracy of the developed model (i.e., Eq. (4)) is
compared with the most recent equation which was developed by
Fig. 4. Evaluating of the developed model in depth for some sites including (a) N
Brandenberg et al. (2010). As seen in this table, Brandenberg et al.
(2010) fitted their equation (see Table 1) to the shear wave
velocity data of Caltrans bridge sites for three types of soils
(i.e., sands, silts, and clays). Since, in reality, natural soils commonly
exist in mixed texture, the authors have proposed a single equation
for all types of soils. Furthermore, broad scattering of the available
field data might not allow for such a precise categorization of the soil
types. Table 4 confirms that the proposed equation has more
accuracy than Brandenberg et al. (2010)’s relationships for the
database compiled in the current study.
7. Application of the proposed model in liquefaction analysis

Shear wave velocity of soils has many applications in the
geotechnical problems. This parameter has been recommended
as an index to evaluate the liquefaction resistance of sands
iigata, (b) Nihonaki-Chubu, (c) Hyogoken-Nanbu, (d) Taiwan, and (e) Turkey.
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(Kayen et al., 1992;Tokimatsu and Uchida, 1990; Andrus and
Stokoe, 2000; Youd et al., 2001). Liquefaction phenomenon has
been widely observed in loose to medium non-cohesive soils
during the past earthquakes (e.g., Alaska 1964 and Tohoku 2011
earthquakes) and produced tremendous failures in the ground
and civil engineering structures. Evaluation of liquefaction poten-
tial is commonly performed via the empirical criteria obtained
from the liquefaction/non-liquefaction case histories. Factor of
safety against liquefaction initiation is obtained by dividing the
cyclic resistance ratio (CRR) to cyclic stress ratio (CSR). CSR and
CRR, respectively stand for the driving and resisting shear
strengths normalized by the effective overburden pressure. Sev-
eral empirical relationships can be found in which cyclic resis-
tance ratio (CRR) is correlated to the shear wave velocity of the
soil. This part of the study aims to demonstrate how the devel-
oped PNN-based Vsð Þ model is in accord with the Vsð Þ-based
studies of liquefaction potential assessment. Hence, three prac-
tical examples are given in the subsequent parts.

7.1. Example 1

Participants of NCEER 2001 Workshop (Youd et al., 2001)
recommended the following equation for estimating cyclic resis-
tance ratio (CRR) of clean sands in terms of N1,60:

CRR7:5 ¼
1

34�N1,60
þ

N1,60

135
þ

50

½10N1,60þ45�2
�

1

200
ð7Þ

where CRR7:5 stands for cyclic resistance ratio at the earthquake
moment magnitude of 7.5.

The proposed Vs model (i.e., Eq. (4)) is employed and N1,60 in Eq.
(7) is substituted with shear wave velocity for a reference effective
overburden pressure, s0v

� �
, of 100 kPa. Hence, the magnitude-

scaled cyclic resistance ratio, CRR7:5, is obtained as a function of
equivalent shear wave velocity. The heavy solid curve (curve A) in
Fig. 5 illustrates variations of the equivalent Vs-based CRR7:5, which
was obtained from the mentioned procedure, versus the shear
wave velocity normalized by effective overburden pressure (Vsl). In
addition, the available Vsl-CRR correlations are also superimposed
in this figure in order to be compared by the equivalent Vs1-CRR
correlation, which was obtained by the proposed Vs model. As seen
in the figure, use of the proposed Vs�N1,60 correlation yields a
Fig. 5. Comparison of available Vsl-CRR correlations and correl
liquefaction state boundary curve which is in accord with the
previously published recommendations.

7.2. Example 2

The most common relationship used to evaluate the liquefac-
tion resistance of sands from shear wave velocity is the equation
proposed by Andrus and Stokoe (2000), which was developed
based on a database including 26 earthquakes and more than 70
measurement sites. Their relationship, which was also recom-
mended by the participants of NCEER workshop (Youd et al.,
2001), has the following form:

CRR¼ a
Vs1

100

� �2

þb
1

Vn

s1�Vs1
�

1

Vn

s1

� �( )
MSF ð8Þ

where Vn

s1 is the limiting upper value of Vsl for cyclic liquefaction
occurrence which depends on fines contents, Fc , (soil particles
smaller than 0.075 mm).

Also, a and b are curve fitting parameters and were considered
0.022 and 2.8, respectively (Andrus and Stokoe, 2000). MSF is the
magnitude scaling factor to account for the effect of earthquake
magnitude and can be calculated as below:

MSF¼
Mw

7:5

� �n

ð9Þ

where Mw is moment magnitude and n is equal to �2.56 (Andrus
and Stokoe, 2000).

Fig. 6(a) shows three liquefaction evaluation charts presented
by Andrus and Stokoe (1997) for different levels of fines content.
The data points shown in this figure were obtained from the
in-situ measurement of shear wave velocity using the techniques
such as SASW, crosshole, downhole, and SCPT. Cetin (2000)
re-analyzed a worldwide liquefaction catalog including 200
liquefaction case histories for which corrected SPT values, N1,60,
were measured. The Vs model proposed in the current study is
applied to the Cetin (2000)’s SPT database in order to convert the
measured N1,60 values of the whole 200 case histories to equiva-
lent Vs values with the reference s0v of 100 kPa. Fig. 6(b) illustrates
the converted Vs values of these case histories versus cyclic shear
stress ratio (CSR). The triple boundary curves of Andrus and
Stokoe (1997) were also superimposed in this figure. As seen
ation derived by new Vs equation developed in this study.



Fig. 6. CRR-Vsl curves for different fines content and evaluation of proposed Vs equation for conversion of SPT resistance to shear wave velocity, (a) Andrus and Stokoe

(2000)’s Vs database, (b) Cetin (2000)’s SPT database.
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in Fig. 6(b), the case histories have relatively categorized into
liquefied/non-liquefied conditions based the N1,60-to-Vs conver-
sion made by the new equation. Furthermore, the triple boundary
curves have relatively located between the liquefied and non-
liquefied points. Comparison between Fig. 6(a) and (b) confirms
that the equivalent Vs-based case histories together with the
boundary curves are comparable with the plot of original Vs-
based case histories, as shown in Fig. 6(a).

7.3. Example 3

The procedure described in Example 2 was applied to a special
‘‘small magnitude’’ catalog of liquefaction case histories, which
was compiled by Prof. T.L. Youd at Brigham Young University and
reported by Cetin (2000). These data are potentially valuable due
to the infrequency of small magnitude (Mwo6.2) liquefaction
case histories. The database includes 44 cases; majority of them
are non-liquefied events and involve the geotechnical parameters
that are required to apply the procedure described in Example 2.

The original SPT-based data points were converted to equiva-
lent Vs values and were plotted, as shown in Fig. 7. According to
this figure, almost all of the points have located in the right hand
side of the liquefaction curves; confirming that liquefaction was
not occurred. This is in accordance with the field observations for
these low magnitude liquefaction case histories.
Fig. 7. Evaluating performance of proposed Vs equation in liquefaction potential

for a ‘‘small magnitude’’ database compiled by Prof. T.L. Youd at Brigham Young

University and reported by Cetin (2000).
8. Summary and conclusions

A new correlation was presented for shear wave velocity, Vs, of
soil deposits as a function of corrected SPT blow counts, N1,60, and
effective overburden stress, s0v

� �
. The correlation was developed

using polynomial neural network (PNN) and a newly compiled
database of shear wave velocity measurement including 10
different sites, 80 boreholes, and totally 394 data pairs. Prior to
the model development, numerous existing equations, which
were previously proposed for specified site and soil conditions,
were examined via the compiled database. Significant scatter and
errors were observed for the previous models because majority of
them were just dependent to penetration resistance and ignore
effective overburden pressure. In addition, most of the previous
models were developed based on the measurements of shear
wave velocity in a specific site, and thus they might not be useful
for various sites.

The developed PNN model represents a good performance for both
training (R2

¼ 0:96, RMSE¼ 35 m=s, and MAE¼ 26 m=sÞ and test-
ing ðR2

¼ 0:95, RMSE¼ 37:2 m=s, and MAE¼ 28:2 m=sÞ data sets.
Parametric study was carried out and the effect of s0v

� �
on the shear

wave velocity of soils was shown. Moreover, the equation was
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validated in depth by the comparisons made between the model
predictions and measured shear wave velocity of some boring logs.

More precision of the PNN-based Vs model, compared with the
previous equations, comes from the facts that SPT-N value cannot
be sufficient to determine shear wave velocity and it should be
accompanied with effective overburden pressure to enhance
accuracy of the prediction. In fact, effective overburden pressure
was found to be an important parameter for the estimation of
shear wave velocity because the developed model, which con-
siders this parameter, yields superior performance compared with
the previously published equations. This finding is in accord with
the small strain laboratory tests that have shown significant
dependency of small strain shear modulus (Gmax) to effective
stress; considering the fact that Gmaxð Þand shear wave velocity are
rigorously dependent together.

Three applicable examples are demonstrated in the final part
of the paper in order to show applications of the shear wave
velocity model in the liquefaction potential assessment of soils.
Reasonable performance of the developed model is confirmed in
the examples since it agrees with the available Vs-based charts of
liquefaction potential assessment.
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