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Asymmetric Threat Modeling Using HMMs:
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Abstract—There is good reason to model an asymmetric threat
(a structured action such as a terrorist attack) as an HMM whose
observations are cluttered. Within this context this paper presents
two important contributions. The first is a Bernoulli filter that can
process cluttered observations and is capable of detecting if there
is an HMM present, and if so, estimate the state of the HMM. The
second is an analysis of the problem that, for a given HMM model,
is able to make statements regarding the minimum complexity
that an HMM would need to involve in order that it be detectable
with reasonable fidelity, as well as upper bounds on the level of
clutter (expected number of false measurements) and probability
of miss of a relevant observation. In a simulation study the
Bernoulli filter is shown to give good performance provided that
the probability of observation is larger than the probability of
an irrelevant clutter observation. Further, the results show that
the longer the delays are between the HMM state transitions, the
larger the probability margin must be. The feasibility prediction
shows that it is possible to predict the boundary between poor
performance and good performance for the Bernoulli filter, i.e.,
it is possible to predict when the Bernoulli filter will be useful,
and when it will not be.

I. INTRODUCTION

The term asymmetric threat refers to tactics employed
by, e.g., terrorist groups to carry out attacks on a superior
opponent, while trying to avoid direct confrontation. Terrorist
groups are elusive, secretive, amorphously structured decen-
tralized entities that often appear unconnected. Analysis of
prior terrorist attacks suggests that a high magnitude terrorist
attack requires certain enabling events to take place.

In this paper terrorist activites are modeled using Hidden
Markov Models (HMMs). In previous work HMMs have been
shown to provide powerful statistical techniques, and they have
been applied to various problems such as speech recognition,
DNA sequence analysis, robot control, fault diagnosis, and
signal detection, to name a few. Excellent tutorials on HMMs
can be found in [16], [17]. The applicability of HMMs for
terrorist activity modeling and other national security problem
situations has been illustrated in previous work, see e.g. [5],
[21], [23]–[25], [27]. For example, [5] uses HMMs to identify
groups with suspicious behaviour, and [21] uses HMMs for
pattern recognition of international crises.
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Fig. 1. Markov chain network modeling the planning of a truck bombing.
S1: Selection of targets and reconnaissance. S2: Set up A1 cell. S3: Set up
A cell. S4: Acquire money for operation. S5: Gather resources. S6: Expert
arrives to assemble bombs. S7: Target reconnaissance. S8: Communications
and final setup. S9: Attack. The HMM is taken from [24]

A number of different terrorist plan HMMs are proposed
in [23]–[25], [27], including models for a truck bombing, a
plane hijacking, and production of weapons grade material.
A relatively simple HMM that models a truck bombing is
shown in Figure 1. These HMMs include multiple paths from
plan initiation to plan completion, following the intuition that
there are multiple ways to, e.g., hijack a plane. An empirical
HMM can be constructed using available prior information,
or with the help from experienced intelligence analysts [24].
For example, the HMM for development of a nuclear weapons
program (DNWP) in [23] is gleaned using the open sources
[3], [14], [22], [26], [28].

The basic motivation for modeling terrorist activities via
HMMs is twofold. Firstly, carrying out a terrorist activity
requires planning and preparations, following steps that form
a pattern. This pattern of actions can be modeled using a
Markov chain. Secondly, the terrorists leave detectable clues
about these enabling events in the observation space. The clues
are not direct observations of the planning and preparations,
but are rather related to them, meaning that the states in the
Markov model are hidden. For example, an observation of
a purchase of chemicals could be indicative of intentions to
produce a chemical weapon. However, a purchase of chemicals
could very well be a benign event, which motivates inclusion
of a model of observations that are unrelated to the HMM.
Following the target tracking literature, see e.g. [2], such
observations are here designated as clutter observations.

Ultimately the task is to find out if there is an activity being
planned, and if so, find what stage the planning is in. To this
end, in this paper we present a simple and efficient filter that
estimates simultaneously the probability of HMM existence
and the probability mass function for the HMM state, and
we also analyze the detectability of the problem. In doing so
we draw upon both signal detection theory, see e.g. [15], and
target tracking theory, see e.g. [2]. Note that in [23]–[25], [27]
(especially [25]) a CUSUM test was used to declare existence
of an ongoing activity. This is reasonable, but does not scale
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well when multiple activities (perhaps some of them benign)
are extant. In fact, that situation is reminiscent of multiple-
target tracking (MTT), and the detection problem suggestive of
track-before-detect (TBD). As such, in this paper we are more
interested in MTT that uses TBD: the approach we proffer is
scalable to multiple-HMM adjudication.

In the next section we give a problem formulation and list
the contributions. The rest of the paper is organized as follows:
Asymmetric threat modeling using HMMs is presented in
Section III. A Bernoulli filter (for MTT with TBD) is presented
in Section IV, and a detectability analysis is presented in
Section V. The results from a simulation study are presented
in Section VIII. The paper is concluded in Section IX.

II. PROBLEM FORMULATION AND CONTRIBUTIONS

Consider a sequence of time steps t1 to tN . For some of the
time steps there are observations (at most one per time step),
for others there are not (denoted ∅), e.g.:

Time: . . . tk−2 tk−1 tk tk+1 tk+2 . . .
Obs.: . . . zk−2 ∅ ∅ zk+1 ∅ . . .

(1)

The observations z are intelligence data; specifically they are
intelligence reports that belong to a set of a priori known
categories. These categories can, e.g., correspond to statements
such as the following:

1) Persons seen repeatedly around sensitive location; possi-
ble reconnaissance of area/object of interest

2) Transfer of funds from country X to country Y
3) A person has signed a lease for an appartment or house

in city X in country Y
4) Purchase of material that can be used to assemble

bomb(s)
5) Arrival of Improvised Explosive Device (IED) expert
6) Collect information on design of bombs
7) Recruitment/training of new members
8) Setup base/cell in location X in country Y
9) Forged documents arranged for entry to country Y

The specific form (1) of the observation sequence is motivated
further in Section III-B3.

We consider the following two hypotheses
H0: The observations were generated by a clutter process.

This means that there is no structure in the sequence of
observations, it is random.

H1: The observations were generated by an HMM-in-clutter
process. This means that among the random clutter ob-
servations, there are observations caused by the HMM that
has some degree of structure.

The problem is to decide between the two hypotheses, and, if
an HMM exists (H1), to estimate the HMM state probability
mass function (pmf). To this end the paper contains the
following two main contributions:

1) A Bernoulli filter that can process a sequence of observa-
tions and detect if there is an activity being planned and
organized, and if so, what stage of planning the activity
is in. An early version of this work is presented in [7].

2) A detectability analysis that is used to make “back-of-the-
envelope” predictions about when the problem is feasible
at all. An early version of this work is presented in [8].

The scope of the paper is limited by the assumption that the
transition function and observation function of the HMM are
known. Note however that no assumptions are made regarding
the HMM’s existence, nor regarding measurement origin (HMM
or clutter). Work regarding the modeling of the HMM transition
and observation functions can be found in, e.g., [5], [21], [23]–
[25], [27].

III. ASYMMETRIC THREAT MODELING

We cast detection and estimation of an HMM using cluttered
observations as a single target detection and tracking problem.
Single target detection and state estimation using cluttered
observations is well studied in the target tracking literature. In
this work we will use Finite Set Statistics (FISST) and Random
Finite Set (RFS) theory to model the problem, specifically the
so called Bernoulli RFSs. Tutorials of random set methods are
given in [9], [12], [29], with in-depth descriptions of FISST and
RFS found in [11], [13]. A tutorial introduction to Bernoulli
filters is given in [18]. In previous work these methods have
typically been applied to problems where both the state and
the observations are continuous random variables, in contrast
to the work here where the states and observations are discrete.

A. State, transitions, observations

Let sk ∈ S denote the HMM state at time tk, where S is
a discrete state space with Ns states, S = {S1, S2, . . . , SNs

}.
Further, let tk ∈ T = {0, 1} denote the transition state,
defined as tk = 1 if sk 6= sk−1 and tk = 0 otherwise. The
state transitions are important because in the variant of HMMs
used here the observations become available only upon state
transitions. The auxiliary transition variable t is used because
the authors found that it simplifies mathematical analysis and
implementation. Let ζk = (sk, tk) denote the joint variable.

For the joint transition probability π(ζk|ζk−1) =
π(sk, tk|sk−1, tk−1) the following holds

π(ζk|ζk−1) = π(tk|sk, sk−1, tk−1)π(sk|sk−1) (2)

The HMM state transitions follow a first order Markov chain
with transition probability π(sk|sk−1). For the transition state
tk the transition matrix is

Π =

[
0 1
0 1

]
if sk 6= sk−1; Π =

[
1 0
1 0

]
otherwise. (3)

The observations zk ∈ Z are discrete random variables,
where Z is a discrete measurement space with Nz mea-
surements, Z = {Z1, Z2, . . . , ZNz}. The observations Zi
correspond to the different intelligence data categories; a list
of examples was given in Section II. With a state dependent
probability of detection

pD(ζk) =

{
p0

D ∈ (0, 1) if tk = 1,
0 otherwise, (4)

the HMM generates an observation zk. The observation process
is defined by the likelihood

h(zk|ζk) = gs(zk|sk) (5)
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There are also clutter observations (false alarms) super-
imposed on the true HMM observations. In each time-step, with
probability 0 < pFA < 1 a clutter observation is generated as a
random sample from a process with probability mass function
(pmf) gFA(zk).

B. Random finite set modeling

An RFS is a random variable whose realizations are sets
with a finite cardinality (number of elements). The cardinality,
and each element, are all random variables. Specifically, a
Bernoulli RFS X is either an empty set, with probability
1 − q, or has a single element, with probability q. In case
there is an element x, it is distributed over the state space X
according to the probability mass function (pmf) P (x). The
FISST probability density function (pdf) of X is

f(X) =

 1− q if X = ∅
q · P (x) if X = {x}
0 if |X| ≥ 2

(6)

The state space for X is ∅ ∪ σ(X ), where σ(X ) is the set of
all singletons {x} such that x ∈ X . A singleton is a set with
cardinality one. For a Bernoulli pdf a set integral is defined
as follows [11],∫

f(X)δX =f(∅) +

∫
f({x})dx (7a)

=1− q +

∫
qP (x)dx = 1, (7b)

and it follows that f(X) as defined in (6) is indeed a proper
pdf. Note that integrals over the discrete random variable x
are sums, e.g.∫

m(x)P (x)dx =
∑
X∈X

m(x = X)P (x = X) (8)

for a function m(x), however for brevity we will use the
integral notation rather than the sum notation.

1) HMM state model: The joint HMM state ζk at time tk is
modeled as a Bernoulli RFS Sk. The state space is ∅∪σ(S×T ),
where σ(S × T ) is the set of all singletons {s, t} such that
s ∈ S and t ∈ T . Let εk ∈ {0, 1} denote the existence of the
HMM: if εk = 1 the HMM exists at time tk, i.e., Sk 6= ∅, and
if εk = 0 the HMM does not exists at time tk, i.e., Sk = ∅.
Note that εk = 0 corresponds to H0 being true, and εk = 1
corresponds to H1 being true.

The posterior FISST pdf at time step tk for the Bernoulli
RFS Sk, denoted as

fk|k(Sk|Zk) =

 1− qk|k if Sk = ∅
qk|k · Pk|k(ζ) if Sk = {ζ}
0 if |Sk| ≥ 2

(9)

is specified by the posterior probability of HMM existence and
the posterior pmf of the joint HMM state of ζk,

qk|k =P (|Sk| = 1|Zk), (10a)

Pk|k(ζ) =P (ζk|Zk). (10b)

2) Dynamics model: The dynamics of HMM existence εk
are modeled as a first order Markov chain with transition
probability matrix

P εk|k−1 =

[
(1− pb) pb
(1− ps) ps

]
. (11)

The probability of HMM birth

pb = P (εk = 1|εk−1 = 0) (12)

models the probability that at time tk a plan is initiated. The
probability of HMM survival

ps = P (εk = 1|εk−1 = 1) (13)

models the probability that an initiated plan is not cancelled.
If an HMM is intiated at time tk the initial pmf is denoted
P bk|k−1(ζ).

The dynamic model of the RFS S is a Markov process with
transition density PS

k|k−1(Sk|Sk−1),

PS
k|k−1(Sk|∅) =


1− pb if Sk = ∅
pb · P bk|k−1(ζk) if Sk = {ζk}
0 if |Sk| ≥ 2

(14a)

PS
k|k−1(Sk|{ζk−1}) =

 1− ps if Sk = ∅
ps · π(ζk|ζk−1) if Sk = {ζk}
0 if |Sk| ≥ 2

(14b)

PS
k|k−1(Sk|Sk−1) is undefined if |Sk−1| ≥ 2 (14c)

where the joint transition probability π(ζk|ζk−1) was defined
in (2). The transition density (14) can be understood as
follows:

a) If at time k − 1 there is no HMM (Sk−1 = ∅), then
• with probability 1 − pb there will not be any HMM at

time k (Sk =); this is the first alternative in (14a)
• with probability pb an HMM will come into existence

(Sk = {ζk}), and the pmf will be the birth pmf
P bk|k−1(ζk); this is the second alternative in (14a)

• the probability of more than one HMM is zero; this is
the third alternative in (14a). This means that if no HMM
exists, at most one new HMM can appear.

b) If at time k − 1 there is an HMM (Sk−1 = {ζk−1}), then
• with probability 1−ps the HMM will cease to exist (Sk =
∅); this is the first alternative in (14b).

• with probability ps the HMM will remain in existence
(Sk = {ζk}), and the state evolution from ζk−1 to ζk is
described by the joint transition probability; this is the
second alternative in (14b).

• the probability of more than one HMM is zero; this is the
third alternative in (14b). This means that a new target
cannot appear if the HMM persists into the next time
step.

c) There cannot be more than one HMM at the same time, so
the RFS transition density PS

k|k−1(Sk|Sk−1) is undefined
for the case |Sk−1| ≥ 2, see (14c).
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3) Observations: We model the sequence of observations
as a sequence of RFS observations Zk, where k refers to time
tk. For the example in (1) we then have

Zk−2 = {zk−2}
Zk+1 = {zk+1} (15)
Zk−1 = Zk = Zk+2 = ∅

Let Zk denote all such observations from time t1 to tk, Zk =
{Z1,Z2, . . . ,Zk}. If εk = 0 then Zk = Ck and if εk = 1
then Zk is modeled as the union of two independent RFS,

Zk = Wk ∪Ck, (16)

where Wk is HMM generated observations and Ck is clutter
observations. The model (16) allows both Wk and Ck to be
non-empty simultaneously, which goes against the assumption
in (1) that there is at most one observation per time step. We
comment on this modeling choice in the remark at the end of
this section.

The clutter observations are modeled as a Bernoulli RFS
with FISST pdf

κ(Z) =

 1− pFA if Z = ∅
pFA · gFA(z) if Z = {z}
0 if |Z| ≥ 2

(17)

At timesteps for which an HMM exists (εk = 1, Sk = {ζk}),
the HMM generated observations are modeled as a Bernoulli
RFS with FISST pdf

η(Z|{ζ}) =

 1− pD(ζ) if Z = ∅
pD(ζ) · gs(z|ζ) if Z = {z}
0 if |Z| ≥ 2

(18)

The observation likelihood function is denoted ϕ(Z|S) and
has two forms: one for S = ∅ and one for S = {ζ}. In the
former case we have the FISST pdf

ϕ(Z|∅) = κ(Z) (19)

and in the latter case, for a union of independent RFS as in
(16), the FISST pdf is

ϕ(Z|{ζ}) =
∑
W⊆Z

η(W|{ζ})κ(Z\W) (20)

where \ denotes set difference. For both the clutter observa-
tions and the HMM observations the set can be either empty
or singletons, and thus the union (16) can have zero, one or
two elements. The summation then has three different cases

ϕ(Z|{ζ}) = (21) η(∅|{ζ})κ(∅) if Z = ∅,
η(∅|{ζ})κ(z) + η(z|{ζ})κ(∅) if Z = {z},
η(z1|{ζ})κ(z2) + η(z2|{ζ})κ(z1) if Z = {z1, z2}

Remark: The observation sequence in (1) allows at most one
observation per time step; this implies that the HMM observa-
tion set Wk and clutter set Ck are correlated. However, the
observation model (16) allows the two sets to be simultane-
ously non-empty; this implies sets that are independent, which
is a slightly inaccurate representation of (1). The model (16)
is adopted because it allows statistical independence between

Wk and Ck to be assumed. If the modeling is restricted
to observation set cardinality |Z| ≤ 1, then the observation
probabilities have to fulfill p0

D+pFA ≤ 1. By allowing |Z| = 2
the observation probabilities p0

D and pFA can be chosen freely
in the interval (0, 1), and the modeling becomes more general.
Further, the model (16) subsumes (1) as a special case.

Our justification for the “single-observation-per-time-step”
assumption is that typical surveillance systems have obser-
vations that are entered one after the other, i.e., time has
been discretized in such a way that in each “time-bin” there
is at most one observations. However, the Bernoulli filter
formulation would seem to be amenable to relaxation of this
(perhaps even to be receptive to it) and exploration of a system
where observations are taken (say) once per minute will be
explored later. The time step must, however, be chosen such
that only single HMM transitions are feasible. �

IV. BERNOULLI FILTER

In this section, using the models defined above, we propose
a filter within the RFS framework such that a joint estimate
of the probability of HMM existence and of the HMM state
distribution (pmf) are obtained.

Assume that the predicted FISST pdf fk|k−1(Sk|Zk−1) is
known. The predicted FISST pdf at time step tk for the
Bernoulli RFS Sk is specified by the posterior probability of
HMM existence and the posterior pmf of the joint HMM state
of ζk,

qk|k−1 =P (|Sk| = 1|Zk−1), (22a)

Pk|k−1(ζ) =P (ζk|Zk−1). (22b)

The Bernoulli filter (BF) propagates both quantities over time
using an update equation

fk|k(Sk|Zk) =
ϕ(Zk|Sk)fk|k−1(Sk|Zk−1)

f(Zk|Zk−1)
, (23)

and a prediction equation

fk+1|k(Sk+1|Zk)

=

∫
PS
k+1|k(Sk+1|S)fk|k(S|Zk)δS (24a)

=PS
k+1|k(Sk+1|∅)(1− qk|k)

+ qk|k

∫
PS
k+1|k(Sk+1|{ζ ′})Pk|k(ζ ′)dζ ′ (24b)

The likelihood f(Zk|Zk−1) in the update (23) is defined as

f(Zk|Zk−1) =

∫
ϕ(Zk|S)fk|k−1(S|Zk−1)δS (25a)

=κ(Zk)(1− qk|k−1) (25b)

+ qk|k−1

∫
ϕ(Zk|{ζ})Pk|k−1(ζ)dζ
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A. Update

If the observation is an empty set Zk = ∅ we have

qk|k =
1−∆1

k|k−1

1− qk|k−1∆1
k|k−1

qk|k−1 (26a)

Pk|k(ζ) =
1− pD(ζ)

1−∆1
k|k−1

Pk|k−1(ζ) (26b)

where ∆1
k|k−1 is defined in Appendix A. If the observation is

a singleton Zk = {z} we have

qk|k =
1−∆k|k−1

1− qk|k−1∆k|k−1
qk|k−1 (26c)

Pk|k(ζ) =
1− pD(ζ)

1−∆k|k−1
Pk|k−1(ζ) (26d)

+
1− pFA

pFAgFA(z)

pD(ζ)gs(z|ζ)

1−∆k|k−1
Pk|k−1(ζ)

where ∆k|k−1 is defined in Appendix A. For the sake of
completeness, if the observation is Zk =

{
z1, z2

}
we have

qk|k =1 (26e)

Pk|k(ζ) =
gFA(z1)pD(ζ)gs(z

2|ζ)Pk|k−1(ζ)

gFA(z1)Gsk|k−1(z2) + gFA(z2)Gsk|k−1(z1)
(26f)

+
gFA(z2)pD(ζ)gs(z

1|ζ)Pk|k−1(ζ)

gFA(z1)Gsk|k−1(z2) + gFA(z2)Gsk|k−1(z1)

where Gsk|k−1(z) is defined in Appendix A. Derivation details
are given in Appendix B

B. Prediction

The predicted probability of HMM existence and the pre-
dicted joint HMM state pmf are

qk+1|k =pb(1− qk|k) + psqk|k, (27a)

Pk+1|k(ζ) =
pb(1− qk|k)

qk+1|k
P bk+1|k(ζ) (27b)

+
psqk|k

qk+1|k

∫
π(ζ|ζ ′)Pk|k(ζ ′)dζ ′

Derivation details are given in Appendix C.

V. DETECTABILITY ANALYSIS

Given the above Bernoulli filter, an important question
to consider is: When is it even a good idea to use this
filter? Or, more generally put, when is the HMM-in-clutter
problem even feasible? In this section we will perform a
detectability analysis of the problem, with the aim of being
able to make statements about maximum levels of clutter
allowable; maximum intervals between relevant observations;
and a minimum level of complexity.

To decide between the hypotheses H0 and H1 we employ
a decision rule

δ̃` =

 1 >
γ if ` = τ
0 <

(28)

where ` is the natural logarithm of the likelihood ratio L,
` = log(L). To analyze the detectability we will focus on the
two conditional error probabilities PF (probability of threat
false alarm) and PM (probability of threat miss) defined by

PF (δ̃) = P0(δ̃ chooses H1) (29a)

PM (δ̃) = P1(δ̃ chooses H0) (29b)

Given probability density functions (pdfs) p(`(Zk)|H0) and
p(`(Zk)|H1) it is easy to compute the errors for given model
parameters and a given threshold τ . However, expressing the
pdfs p(`(Zk)|Hi) analytically is prohibitively difficult and
complex in the general case.

We will solve this problem by first making some simplifica-
tions and approximations such that the pdf p(`(Zk)|H1) can
be approximated by a Gaussian density. Using this Gaussian
approximation the probability of threat miss PM (δ̃) can be
computed exactly, and for the probability of threat false alarm
PF (δ̃) an upper bound can be found.

In the following subsections we will first give expressions
for the likelihood ratio. We then present some model sim-
plifications and likelihood approximations that are necessary
to model the log-likelihood pdf under H1. Finally, we give
expressions for the conditional error probabilities: an exact
probability of miss and an upper bound for the probability of
false alarm.

A. Likelihood ratio

The log-likelihood ratio (LLR) is denoted

`(Zk) =
k∑
j=1

`(Zj) =
k∑
j=1

(`1(Zj)− `0(Zj)) (30)

where `j(·) is the log-likelihood function under hypothesis j.
Let Lj(·) = exp(`j(·)) denote the likelihood of hypothesis
j, defined in (25). For H0 (an HMM does not exist) at time
step tj we have probability of HMM existence qj|j−1 = 0 and
observation FISST pdf (19), and it follows that the likelihood
(25) is

L0(Zj) = ϕ(Zj |∅) = κ(Zj) (31)

For H1 (an HMM exists) at time step tj we have probability
of HMM existence qj|j−1 = 1 and observation FISST pdf (20),
and it follows that the likelihood (25) is

L1(Zj) =

∫
ϕ(Zj |ζ)Pj|j−1(ζ)dζ (32)

For the likelihood ratio

L(Zj) =
L1(Zj)

L0(Zj)
=

∫
ϕ(Zj |ζ)Pj|j−1(ζ)dζ

κ(Zj)
(33)

we have two cases. If the detection set is an empty set Zj = ∅
we have

L∅j =

∫
η(∅|{ζ})κ(∅)Pj|j−1(ζ)dζ

κ(∅)
(34a)

=1− p0
DPj|j−1(t = 1) (34b)
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where L∅j = L(Zj = ∅). If the detection set is a singleton
Zj = {z} we have

Lz
j =

∫
[η(∅|{ζ})κ(z) + η(z|{ζ})κ(∅)]Pj|j−1(ζ)dζ

κ(z)
(35a)

=1− p0
DPj|j−1(t = 1)

+
1− pFA

pFAgFA(z)
p0

D

∫
gs(z|s)Pj|j−1(s, t = 1)ds (35b)

where Lz
j = L(Zj = {z}).

B. Model simplifications and likelihood approximations

1) Daisy-chain HMM: The HMM is in the form of a “daisy-
chain”, i.e. the HMM state s can only transition to the next
state or remain in the same state. Expressed in terms of the
transition probability π(sk|sk−1), if sk = Si, 1 ≤ i < Ns then

π(sk = Sj |sk−1 = Si) =

 1− PT j = i
PT j = i+ 1
0 otherwise

(36)

and if sk = SNs
then

π(sk = Sj |sk−1 = Si) =

{
1 if j = i
0 otherwise (37)

2) Diagonal HMM observation pmf: The size of the obser-
vation space is equal to the HMM state space, i.e. Nz = Ns.
The observation pmf is

gs(z = Zj |sk = Si) =

{
Pobs if j = i

1−Pobs

Nz−1 otherwise (38)

where 0� Pobs . 1 (i.e. Pobs is close to one).
Remark: This simplification means that each state has its

own unique type of detection, and it is very unlikely that
– given that there is a detection – a state would give the
“wrong” type of detection. For example, let there be two states
representing 1) that an apartment has been rented, and 2) that a
large quantity of fertilizer has been bought. Given that the state
is detected, we assume that it is unlikely that apartment rental
will produce a true detection that fertilizer was bought, or vice
versa. However, note that we do not make any assumptions
regarding the probability that a state is detected. �

3) Uniform clutter: The clutter is uniformly distributed

gFA(z) = Nz
−1 = Ns

−1 (39)

i.e. it is equiprobable for all the Nz possibilities.
4) Probability of state transition: Under the assumption

that the HMM is a daisy-chain, the predicted marginal proba-
bility of state transition is

Pj|j−1(t = 1) = PT
(
1− Pj|j−1(s = SNs

)
)

(40)

We approximate this as

Pj|j−1(t = 1) ≈ PT . (41)

i.e. the approximation is Pj|j−1(s = SNs) ≈ 0. Under this
approximation it follows that the likelihood ratio at time steps
for which there is no detection (34) is approximated as

L∅j ≈ 1− p0
DPT (42)

Remark: The approximation Pj|j−1(s = SNs) ≈ 0 is
typically valid when the true state is not close to the last state
SNs

. In general the approximation is more accurate the more
states the HMM has, i.e. the larger Ns is. �

5) Observation likelihood: Assume that at time step tm
there is a detection zm = Zi. For the observation likelihood
function (38) the integral in the likelihood ratio (35) is∫

gs(z = Zi|s)Pm|m−1(s, t = 1)ds

=PobsPm|m−1(s = Si, t = 1)

+
1− Pobs
Nz − 1

(
1− Pm|m−1(s = Si, t = 1)

)
(43)

We approximate
1− Pobs
Nz − 1

≈ 0 (44)

and it follows that the likelihood ratio is approximated

Lz
m ≈1− p0

DPT (45)

+
1− pFA

pFAN
−1
s

p0
DPobsPm|m−1(s = Si, t = 1)

Remark: The approximation used here is valid under the
model simplification above that Pobs is almost one. Further,
in general the approximation is more accurate the larger Ns
is, i.e. the more states there are in the HMM. �

C. Approximation of log-likelihood pdf under H1

When H1 is true, an HMM exists and the detections Zk are
generated by both the HMM and the clutter process. For either
type of detection, the likelihood ratio can be further simplified.

1) Clutter detection: Empirically it was found that if the
detection is a clutter detection, the typical case is that sm = Si
has low predicted probability (Pm|m−1(s = Si, t = 1) ≈ 0).
In this case the likelihood ratio (45) can be further approxi-
mated as

Lz
m ≈1− p0

DPT (46)

Remark: The approximation Pm|m−1(s = Si, t = 1) ≈ 0 is
more accurate the more states there are, i.e. the larger Ns is.
Note that (1−pFA)/pFA in (45) increases for decreasing pFA,
and this (together with an increaseing number of states Ns)
will make the approximation less accurate. However, a very
low pFA (< 1%) is of little practical interest, because in most
realistic scenarios the probability of a clutter detection will
not be close to zero. �

2) HMM detection: Empirically it was found that if the
detection zm = Zi was caused by the HMM, the approximation
Pm|m−1(sk = Si, tk = 1) ≈ 0 typically does not hold. For
this case the predicted probability is simplified as follows.

Assume that at time step n < m there was a detection
zn = Zi−1 such that the posterior pmf Pn|n(ζ) indicates a
high probability that the HMM is in state sn = Si−1. Further,
assume that in between time steps n and m there were no
detections. Given the pmf Pn|n(sn, tn) the sought after pre-
dicted probability Pm|m−1(sm = Si, tm = 1) is then given by
first iterating prediction and no-detection-measurement update
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for N = m − n time steps, and then evaluating for s = Si
and t = 1.

By approximating Pn|n(·) as follows,

Pn|n(s = Ss, t = t) ≈


0.9 if s = i− 1, t = 1
0.09 if s = i− 2, t = 0
0.01 if s = i− 3, t = 0

0 otherwise

(47)

the probability Pm|m−1(sm = Si, tm = 1) can be approxi-
mately expressed as a function of the number of time steps N
since the last measurement update. We denote this probability
as P̄ (N). Thus, the likelihood ratio (45) is approximated by

Lz
m ≈ 1− p0

DPT +
1− pFA

pFAN
−1
s

p0
DPobsP̄ (N) (48)

Remark: The specific numerical values in (47) are motivated
as follows: the majority of the probability mass is concentrated
in the same state as the detection indicates. Some probability
mass is contained in the two previous states — a reflection
of the probability that the detection was a false alarm and the
state s has not transitioned to Si−1 after all. Empirically we
have found that these values are accurate for pFA > 10%.
For pFA ≈ 1% almost all probability is concentrated in the
state Si−1, however such low pFA are probably of little to no
practical interest. Further, empirically we have found that the
values are accurate for all p0

D. �
3) Log-likelihood pdf approximation: Let Nt be the total

number of time steps that it takes for the HMM to transition
from the first to the last state. The HMM has to pass through
each state in the daisy chain, meaning that Nt ≥ Ns. The
number of time steps the HMM state will remain in a specific
state Si (i.e. no state transition) is well known to be a random
variable that is geometrically distributed with parameter PT.
The total number of time steps the HMM state will remain in
the same state (i.e. no state transition) is therefore the sum
of Ns − 1 geometrically distributed random variables, each
with parameter PT. A sum of Ns−1 identically geometrically
distributed random variables is well known to be negative
binomial distributed with parameters Ns − 1 and PT. Thus,
for Nt we have the following pmf

P (Nt) =

{
0 Nt < Ns
NBIN (Nt −Ns;Ns − 1, PT) otherwise

(49)

where

NBIN (k; r, p) =

(
k + r − 1

k

)
(1− p)rpk (50)

Given Nt, let Nd ∈ {0, . . . , Nt} be the number of “true”
detections (if the state just transitioned to Si, the “true”
detection is Zi). The probability of a true detection is p0

DPobs.
The detections are assumed to be independent of each other,
and Nd given Nt is binomial distributed

P (Nd|Nt) = BIN (Nd;Nt, p
0
DPobs) (51)

=

(
Nt
Nd

)(
p0

DPobs
)Nd

(
1− p0

DPobs
)Nt−Nd (52)

For a given Nt and Nd we assume that the Nd detections
are uniformly distributed over the Nt time steps, i.e. there are

Nt/Nd time steps between each of the “true” detections. This
is a reasonable model of the average number of time steps
between the detections. Under this assumption, and using the
approximations above, the LLR ` is approximated by

ˆ̀(Nt, Nd) = (Nt −Nd) log(1− p0
DPT) (53)

+Nd log(1− p0
DPT +

1− pFA

pFAN
−1
s

PobsP̄ (Nt/Nd))

For a given measurement sequence Zk, the resulting LLR
`(Zk) is deterministic. The probability density of `, condi-
tioned on Nt and Nd is approximated as

p(`|Nt, Nd) ≈ δ(` = ˆ̀(Nt, Nd)) (54)

where δ(·) is the Dirac delta function. The cth moment of the
LLR is approximated as follows

E [`c|H1] =

∫
`cp(`)d` (55a)

≈
∫ ∑

Nt

∑
Nd

`cp(`|Nt, Nd)P (Nd|Nt)P (Nt)d` (55b)

≈
∑
Nt

∑
Nd

(
ˆ̀(Nt, Nd)

)c
P (Nd|Nt)P (Nt) (55c)

We approximate the true pdf over ` with a Gaussian pdf

p(`|H1) ≈ N (` ; µ̂1, σ̂1) (56)

where the mean and standard deviation are given as

µ̂1 =E [`|H1] (57a)

σ̂1 =E
[
`2|H1

]
− E [`|H1]

2 (57b)

D. Conditional error probabilities

Assume that we have a Gaussian density (or an approxima-
tion (56)) for the log-likelihood under H1. The probability of
threat miss PM (δ̃) for a given threshold τ is then given by

PM (δ̃) = P(` < τ) = F`(τ) (58)

where F`(·) is the Gaussian cumulative distribution function
(cdf).

Empirically it was found to be difficult to approximate
p(`|H0) analogously to (56). When the pdf for the log-
likelihood under H0 is unknown the probability of threat false
alarm cannot be directly computed. However, using the pdf
under H1 we can derive the Chernoff bound for the probability
of threat false alarm.

We can write, see e.g. [15, Section III.C.2],

PF (δ̃`) ≤ exp (µ`,0(s)− sτ) (59)

for all s > 0, where µ`,i is the cumulant generating function1

of ` under Hi defined as

µ`,0(s) = log
(
E
[
es`
∣∣H0

])
(60a)

µ`,1(t) = log
(
E
[
et`
∣∣H1

])
(60b)

for s > 0 and t < 0. The bound (59) can be minimized over
s > 0 to find the tightest bound.

1The natural logarithm of the moment generating function.
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We assume that Pj has density pj for j = 0 and 1, and we
have ` = log(L), where L = p1/p0. In this case we have

µ`,1(t) = log

(∫
Γ

et logLp1dµ

)
= log

(∫
Γ

Ltp1dµ

)
(61a)

µ`,0(s) = log

(∫
Γ

Lsp0dµ

)
= log

(∫
Γ

Ls−1p1dµ

)
(61b)

= µ`,1(s− 1) (61c)

We can now rewrite the bound (59) as

PF (δ̃`) ≤ exp (µ`,1(s− 1)− sτ) (62)

and with a variable substitution t = s− 1 we get

PF (δ̃`) ≤ exp (µ`,1(t)− (t+ 1)τ) (63)

for all t > −1.
For the Gaussian density (56) the moment generating func-

tion is

E
[
et`
∣∣H1

]
= exp

(
tµ̂1 +

1

2
t2σ̂2

1

)
(64)

and it follows that the cumulant generating function is

µ`,1 = tµ̂1 +
1

2
t2σ̂2

1 (65)

The error bound (59) becomes

PF (δ̃`) ≤ exp

(
tµ̂1 +

1

2
t2σ̂2

1 − (t+ 1)τ

)
(66)

and achieves its minimum at value tF

tF = max

{
−1 ,

τ − µ̂1

σ̂2
1

}
(67)

The minimum error bound is

PF (δ̃T ) ≤ exp

(
tF µ̂1 +

1

2
t2F σ̂

2
1 − (tF + 1)τ

)
(68)

Note that a property of the Chernoff bound, see [15], is that
it may be trivial, i.e. for some µ̂1, σ and τ the error bound is
larger than one.

VI. PREDICTING THE DETECTABILITY PERFORMANCE

In general HMMs designed for asymmetric threats are not
daisy chains, nor do they have equal transition probability for
all states. However, the detectability analysis can still be used,
as will be shown here. In this section we explain how a general
HMM can be approximated by a daisy chain, such that the
above detectability analysis is applicable, and we also show
how to find a prediction of the probability of detection given
an upper bound on the probability of false alarm.

A. Daisy chain approximation of complex HMM

The detectability analysis above is derived for the special
case of daisy chain HMM, however it is still applicable to more
complex HMMs.

If the HMM of interest is not a daisy chain, there is no direct
correspondence between the number of states of the HMM, and
the length of the daisy chain. Empirically we have found that
in the detectability analysis NS should be set to the expected
value of the number of states that the HMM passes through
from first to last state. The reason for this is that, in order
to pass from the first to the last state, it is not necessary to
pass through each state. For example, in Figure 1 there are
four different ways to go from state 1 to state 9. The expected
value of the number of states that are passed is 6.5, which can
be rounded.

Additionally, the HMM of interest may not have uniform
transition probabilities, which is an assumption in the de-
tectability analysis. Note that if PT is uniform, then so is
the probability of remaining in the same state 1− PT. If this
is the case, the transition probability used in the detectability
analysis can be set as follows

PT = 1− 1

NS

∑
S∈S

π (sk = S|sk−1 = S) (69)

In other words, 1−PT is set equal to the average probability
of remaining in the same state.

B. Detection at desired false alarm level

Using the upper bound (68) for the probability of threat
false alarm it is possible to find a likelihood threshold τα that
gives a probability of threat false alarm less than or equal to
α. Letting tF = (τ− µ̂)/σ̂2, setting the right hand side of (68)
equal to α, and solving for τ we get

τα =
(
µ̂− σ̂2 +

√
σ̂4 − 2µ̂σ̂2 − 2σ̂2 log(α)

)
(70)

For some values of α, µ̂ and σ̂ the solution will be an
imaginary number. This will happen when (τ− µ̂1)/σ̂1 < −1.
In this case τ is trivially given by setting (τ − µ̂1)/σ̂1 = −1,
which gives τ = µ̂ − σ̂2. The corresponding probability of
miss is F`(τα), and the probability of detection is 1−F`(τα).

This means that for a given combination of the parameters
NS , PT, p0

D and pFA, we can compute a prediction of the
detectors properties, i.e. for a given upper bound for the
probability of threat false alarm we can predict what the
probability of threat detection will be.

VII. SIMULATION SETUP

Intelligence observation data of the kind considered here is
inherently secret, and for this reason results for real observa-
tion data records are unavailable, and could not be published
if they were. Instead we present results for simulated data.

In this section we present the simulated models and the
performance measures, in the next section we give the results.
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Fig. 2. Example observations. Left: Time on vertical axis, observation
category on horizontal axis, observations illustrated by orange circles. Right:
zoom of part of time line. Note that some time steps are empty (NUL),
while others contain a single observation. Example categories shown here
are abbreviations of examples given in Section II.

A. Simulated HMMs
We have simulated both daisy chain HMMs and more com-

plex HMMs. For all the simulated models the HMM observation
pmf (38) and clutter pmf (39) were used. To generate a
sequence of observations, a threat birth time is first randomly
sampled, and then the Markov transition model is then sim-
ulated to obtain a state sequence. For each state transition
the HMM observation model is simulated, and to the full
time sequence (i.e., also before threat birth) clutter is added
by simulating the clutter model. Note that to simulate the
observation process it is not necessary to simulate intelligence
reports, such as the examples given in Section II. Instead the
observation category is simulated by, e.g., generating integers
that correspond to the observation category. An example of
the simulated observation process is given in Figure 2.

Different probabilities of HMM observation and probabilities
of clutter observation were simulated with Pobs = 0.99. Em-
pirically we have found that it is not necessary to also simulate
multiple values for Pobs because it is the product Pobsp0

D that
is important, i.e. it is sufficient to simulate different values of
pD.

1) Daisy chain HMMs: Daisy chain results are primarily
used to evaluate the density approximation (56), and for
detectability performance prediction. We generated “daisy-
chain” HMMs with parameters

Ns ∈ {30, 40, 50} p0
D ∈ {0.1, 0, 2, . . . , 0.9}

PT ∈ {0.05, 0.1, 0.30} pFA ∈ {0.1, 0, 2, . . . , 0.9} (71)

which gives 729 different HMMs. Each daisy chain HMM was
simulated 100 times.

2) More complex HMMs: The Bernoulli filter, Section IV,
and the detectability performance prediction, Section VI, were
evaluated using the following five models:

1 2

3

4 5

6

7

8

18

19

20

21 22

9 10 11

12

13

23 24

14 15 16

17

25 26

27

Fig. 3. Markov chain network modeling the production of weapons grade
material, taken from [25, Fig. 6].

1) Planning of a truck bombing. This model has Ns = 9
states and uniform transition probabilities, see Figure 1
and [24] for details.

2) Production of weapons grade material, which is necessary
for a country or group that wishes to develop nuclear
weapons. This model has Ns = 27 states and uniform
transition probabilities, see Figure 3 and [25] for details.

3) Planning and strategy. This model has Ns = 9 states and
non-uniform transition probabilities, see [27] for details.

4) Collect resources. This model has Ns = 8 states and
non-uniform transition probabilities, see [27] for details.

5) Preparations for a hijacking. This model has Ns = 9
states and non-uniform transition probabilities, see [27]
for details.

The last three models are sub-parts of a larger model of the
hijacking of IA Flight IC-814, flying from Kathmandu to New
Delhi, on December 24, 1999. In the remainder of this paper
we will refer to the models as HMM 1, HMM 2, and so on.
None of the models is a simple daisy chain; on the contrary
all five have more complex structure, as shown for HMM 1 in
Figure 1, and for HMM 2 in Figure 3. Because of page length
constraints, illustrations of remaining three HMMs are omitted.

HMM 1 and HMM 2 have uniform transition probabilities.
The last three models do not have this property, instead the
transition probabilities are specified in the models, see [27].
For the HMM state transitions in models 1 and 2, three different
probabilities of transition were simulated

PT ∈ {0.10, 0.20, 0.30}

Different probabilities of HMM observation and probabilities
of clutter observation were simulated

p0
D ∈ {0.05, 0.10 . . . 0.95}, pFA ∈ {0.05, 0.10 . . . 0.95}

B. Performance evaluation

1) Bernoulli filtering: In each time step tk, if qk|k > τε
a maximum a posteriori (MAP) HMM state estimate was
computed,

ŝk|k = arg max
s∈S

Pk|k(s), (72)

where Pk|k(s) =
∫
Pk|k(s, t)dt is the marginal posterior

distribution. We did not evaluate estimates of the transition
state tk, because knowing the HMM state sk is more important
than knowing whether or not the HMM just transitioned to that
state.

The HMM state estimation is evaluated using the following
performance measures:
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• Threat estimation rate: for εk = 1 and qk|k > τε, the %
time steps for which ŝk|k = sk.

• Average estimated pmf: assuming the true state is sk =
Si, then ideally the estimated pmf is Pk|k(s) has a “peak”
around s = Si. For each state Si, we compute the Monte
Carlo average estimated pmf.

The HMM detection is evaluated using the following perfor-
mance measures:
• Threat false alarm rate: for εk = 0 the % time steps tk

for which qk|k > τε.
• Threat detection rate: for εk = 1 the % time steps tk for

which qk|k > τε.
2) Log-likelihood pdf approximation: Each of the 729 daisy

chains were simulated 100 times, and the empirical data was
used to construct an empirical distribution of p(`|H1). The
density approximation (56) is compared to a Gaussian fitted
to the empirical data N (`; λ, ν)2 using the Kullback-Leibler
divergence (KL-div) [10]. Defined for two pdfs p(`) and q(`)
as

KL (p(`)||q(`)) =

∫
p(`) log (p(`)/q(`)) d` (73)

the KL-div is a measure of the information lost when the
distribution q(`) is used to approximate p(`)3, see e.g. [4].
When it comes to approximating distributions in a maximum
likelihood sense, the KL-div is often considered the optimal
difference measure, see e.g. [1], [6], [19], [20], [30]. For the
Gaussian fit N (`; λ, ν) to the empirical distribution and the
approximation N (` ; µ̂1, σ̂1) the KL-div is

KL (N (`; λ, ν)||N (` ; µ̂1, σ̂1))

= log

(
σ̂1

ν

)
+
ν2 + (λ− µ̂1)2

2σ̂2
1

− 1

2
(74)

The proof of (74) is straightforward: input p(`) = N (`; λ, ν)
and q(`) = N (` ; µ̂1, σ̂1) into (73) and calculate the integral.

3) Detectability prediction: Ideally, for a given threshold,
the threat false alarm rate is low and the threat detection rate is
high. However these two objectives are often difficult to obtain
simultaneously, and a tradeoff is necessary. The receiver oper-
ating characteristic (ROC) curve shows the trade off between
the threat false alarm rate and the threat detection rate, and
it can be used to find the threat detection rate at a specific
threat false alarm rate. The detectability analysis/prediction is
evaluated using the following performance measure:
• ROC area: the area under the ROC curve computed using

the threat false alarm rate and threat detection rate,
compared to the area under the ROC curve computed
using the detectability analysis/prediction.

Note that a perfect detector has ROC area equal to 1, and a
random-guess-detector has ROC area equal to 0.5.

VIII. SIMULATION RESULTS

A. Bernoulli filtering
Here we will highlight results from HMM 2, which has 27

states and models the production of weapons grade material

2λ is the sample mean, and ν is the sample variance.
3Here q(·) is the Gaussian approximation (56) and p(·) is the empirical

distribution.
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Fig. 4. Bernoulli filtering results for HMM 2, which models production of
weapons grade material, see Figure 3. Shown from left to right are the threat
false alarm rate, threat detection rate, and threat estimation rate. The colormap
is shown beneath each respective plot.
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Fig. 5. Bernoulli filtering results showing estimated pmf Pk|k(s) for different
values of the true state. Probability of detection p0D ∈ {0.65, 0.80, 0.95}
and pFA ∈ {0.05, 0.25, 0.45}. The colormap, shown at the bottom, has a
logarithmic scale to increase clarity.

(PWGM) [25, Fig. 6], see Figure 3. The BF’s birth and survival
probabilities were set to pb = 0.01 and ps = 0.99, and the
transition probability was PT = 0.2. As noted above different
probabilities of HMM observation p0

D and probabilities of
clutter observation pFAwere tested.

For each pD, pFA pair, the BF was evaluated as follows.
First we simulated 105 clutter observations and determined
which existence probability thresholds τε ∈ [0, 1] that gave
1% empirical false alarm rates. Next the PWGM-HMM was
simulated 1000 times; in each simulation HMM birth time,
state transitions, HMM observations, and clutter observations
were all randomly simulated.

The threat detection rate, threat false alarm rate, and threat
estimation rate, are summarized in Figure 4. Average estimated
pmfs for nine selected combinations of p0

D and pFA are shown
Figure 5.
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Fig. 6. Empirical distributions (solid orange) compared to Gaussians fitted
to the data (dashed green) and Gaussian approximations (dashed blue).

The results confirm that the existence probability threshold
indeed can be computed using sequences of clutter observa-
tions. It is more difficult to estimate the existence of an HMM
when p0

D is lower and pFA is higher. A comparison shows that
the threat estimation rates are lower than the threat detection
rates. This is mostly a result of missed HMM observations: a
missed HMM observation makes it more difficult for the BF to
estimate the state transition, and subsequently the estimated
state ŝk|k is incorrect for a couple of time steps following the
missed HMM observation. As expected, the estimated pmf is
“peakier” around the true state when p0

D is higher and pFA is
lower, see Figure 5.

In a MATLAB implementation run on a desktop computer
with two 2.66 GHz processors and 4 GB RAM, the median
time for a single iteration (prediction and update) is 0.1ms,
indicating that the proposed BF is capable of real-time perfor-
mance.

B. Log-likelihood pdf approximation

In Figure 6 we show a comparison of the empirical distri-
bution, the Gaussian fitted to the empirical data N (`; λ, ν),
and the Gaussian approximation N (` ; µ̂1, σ̂1), for a selection
of eight parameter combinations out of the 729 combinations
(71). From these results we see that the Gaussian approxima-
tion is more accurate for larger number of states NS and/or
higher transition probability PT.

In Figure 7 we show the KL-div (74) for all 729 parameter
combinations. The results show that the approximation (56) is
most accurate when p0

D > pFA and for higher Ns and/or higher
PT. Importantly, the results show that the approximation de-
rived in Section V is least accurate for parameter combinations
that are of little practical interest (low p0

D and low pFA).
These results indicate that it is reasonable to predict the

detectability performance (as outlined in Section VI) based
on the Gaussian approximation (56).
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Fig. 7. Results showing the KL-div (74). Each of the nine subfigures show
a heatmap of the KL-div, the colormap is given at the bottom. Note that the
colormap has logarithmic scale.

C. Detectability prediction

Empirically we found that the detectability analysis is not
accurate enough to make reliable predictions of what the
threat detection rate will be at a given threat false alarm rate
α. However, the detectability analysis is accurate enough to
make predictions about the overall performance of the HMM
detection, as measured by the ROC area.

Example results for HMM 1 are given in Figure 8. Because
the Chernoff bound (68) is used in the detectability analysis,
when pD is low enough and pFA is high enough the predicted
ROC area is zero. This causes the two heat maps in Figure 8
to look quite different:

• The empirical ROC area transitions from 0.5 (lower right
corner of the heat map) to 1 (upper left).

• The predicted ROC area transitions from 0 (lower right)
to 1 (upper left).

However, if we compare the boundary along which the heat
map transitions from low to high ROC area (0.75 for the
empirical heat map, 0.5 for the predicted heat map), we
see that the detectability prediction is quite accurate. This is
illustrated in the right subfigure in Figure 8.

In Figure 9 the empirical ROC area is shown for all
five simulated HMMs. The lines that separate poor detector
performance from good detector performance are shown as
a white solid line (empirical) and a red dashed line (pre-
diction). Considering all results, we see that the detectability
analysis/prediction is fairly accurate at predicting the boundary
between low ROC area and high ROC area. This implies that we
can predict the boundary between poor detector performance
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Fig. 8. Example results for HMM 1. Left: empirical ROC area. Middle:
predicted ROC area. Right: comparison of the boundary along which the heat
maps transition from low to high. The colormap is given at the bottom.

and good detector performance.
Obtaining the empirical data took almost 10 hours while the

corresponding detectability prediction took about one minute
to compute. This result is important, as it allows us to predict
the detectability performance quickly, and determine if the
Bernoulli filter would yield good results or not.

Furthermore, it shows that the detectability analysis can be
used to answer general questions such as
• Given PT, p0

D and pFA, what is the lowest Ns that gives
good performance, i.e., what is the minimum level of
model complexity?

• Given Ns, PT and p0
D, what is the maximum pFA that

gives good performance, i.e., what is the maximum level
of clutter observations allowable?

• Given Ns, p0
D and pFA, what is the lowest PT that gives

good performance, i.e., what is the maximum expected
interval between relevant HMM observations?

Example results are shown in Figure 10. We see that a higher
model complexity (as measured by the number of states Ns)
implies better detection performance, see the top plot. Further,
a higher model complexity implies a higher tolerance to clutter
observations, see the middle plot. Lastly, a higher model
complexity also implies that the detection process can handle
longer intervals between the relevant HMM observations, see
the bottom plot.

IX. CONCLUSIONS AND FUTURE WORK

In previous work the “Adaptive Safety and Monitoring”
(ASAM) framework was introduced as a means to model
asymmetric threats such as terrorist attacks. The modeling
recognizes both the sequential nature of the activity – for
example, a planning step must precede a surveillance step
which often is followed by (but may be in parallel to) a
funding step – and also incorporates statistical uncertainty.
The natural framework is a hidden Markov model (HMM).
This paper presented two major contributions.

Previous work applied a Page approach to detection of
an HMM; but for scalability this is not appropriate. On the
other hand, the “tracking” concepts of MTT and TBD are
strongly suggested: they are how multiple traditional threats
are estimated and counted. Hence the first contribution is
the derivation of a Bernoulli filter for joint detection and
estimation of HMMs. The Bernoulli filter is shown to give
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Fig. 9. The heat maps show empirical ROC area for different combinations of
the parameters pD and pFA; the title of each plot indicates the HMM and the
probability of transition. The white lines indicate the transition boundary from
low to high empirical ROC area; the red dotted lines indicate the corresponding
predicted performance. The colormap is given at the bottom.

good results except in adverse conditions (low probability of
detection and high probability of false alarm). Importantly this
confirms the prior analysis of the problem.

The second contribution is an answer to the natural question:
can these sorts of activities be detected at all? On an intuitive
level, for detectability there must be maximum levels of clutter
allowable; maximum intervals between relevant observations;
and a minimum level of complexity. In this paper we have
addressed the issue by approximating the detectability of such
a process, and using this approximation we analyzed the error
probabilities. The analysis suggested that the HMM can be
detected if the probability of HMM detection is larger than the
probability of a clutter detection. The lower the probability of
state transition is, i.e. the more time steps there are between
the state transition, the larger the margin must be between the
probability of HMM detection and the probability of clutter
detection.

In future work the presented framework can straightfor-
wardly be extended to HMMs that have observations also when
there is not a state transition. Other extensions would be to
consider multiple observations per time step – e.g., a Poisson
distributed number of clutter observations each time step –
and tracking of multiple HMM’s, using, e.g., a multi-Bernoulli
filter.

The presented work assumed that the model structure and
model parameters were known. Two different directions for
future work is 1) to consider online estimation of the model
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Fig. 10. Detectability prediction results. Top: minimum model complexity.
Middle: maximum clutter level. Bottom: maximum expected interval between
relevant HMM observations.

structure and the model parameters, and 2) to investigate how
model errors affects the performance of the Bernoulli filter.

APPENDIX A
LIKELIHOOD

Here we express the FISST likelihood f(Zk|Zk−1) defined
in (25). If Zk = ∅ then from (17), (21) and (25) we get

f(∅|Zk−1) =(1− pFA)(1− qk|k−1) (75a)

+ qk|k−1

∫
(1− pFA)(1− pD(ζ))Pk|k−1(ζ)dζ

=(1− pFA)(1− qk|k−1∆1
k|k−1) (75b)

where

∆1
k|k−1 =

∫
pD(ζ)Pk|k−1(ζ)dζ (76a)

=p0
DPk|k−1(t = 1) (76b)

If Zk = {zk} then from (17), (21) and (25) we get

f({z}|Zk−1) (77a)
=pFAgFA(z)(1− qk|k−1) + qk|k−1 (77b)

×
∫

[η(∅|{ζ})κ(z) + η(z|{ζ})κ(∅)]Pk|k−1(ζ)dζ

=pFAgFA(z)
(
1− qk|k−1∆k|k−1

)
(77c)

where

∆k|k−1 =∆1
k|k−1 −∆2

k|k−1 (78a)

∆2
k|k−1 =

1− pFA

pFAgFA(z)
Gsk|k−1(z) (78b)

Gsk|k−1(z) =p0
D

∫
gs(z|s)Pk|k−1(s, t = 1)ds (78c)

If Zk =
{
z1, z2

}
then from (17), (21) and (25) we get

f
({

z1, z2
}
|Zk−1

)
(79a)

=0 · (1− qk|k−1) + qk|k−1 (79b)

×
∫ [

η(z1|{ζ})κ(z2) + η(z2|{ζ})κ(z1)
]
Pk|k−1(ζ)dζ

=qk|k−1pFA

×
(
gFA(z2)Gsk|k−1(z1) + gFA(z1)Gsk|k−1(z2)

)
(79c)

APPENDIX B
BERNOULLI FILTER UPDATE

Let Sk = ∅. From (23) we get

1− qk|k =
ϕ(Zk|∅)(1− qk|k−1)

f(Zk|Zk−1)
=
κ(Zk)(1− qk|k−1)

f(Zk|Zk−1)
(80)

Rearranging the terms gives

qk|k = 1−
κ(Zk)(1− qk|k−1)

f(Zk|Zk−1)
(81)

If Zk = ∅ then from (17), (75) and (81) we get

qk|k =1−
(1− pFA)(1− qk|k−1)

(1− pFA)(1− qk|k−1∆1
k|k−1)

(82a)

=
(1−∆1

k|k−1)qk|k−1

1− qk|k−1∆1
k|k−1

(82b)

If Zk = {zk} then from (17), (77) and (81) we get

qk|k =1−
pFAgFA(z)(1− qk|k−1)

pFAgFA(z)
(
1− qk|k−1∆k|k−1

) (83a)

=
(1−∆k|k−1)qk|k−1

1− qk|k−1∆k|k−1
(83b)

If Zk =
{
z1, z2

}
then from (17), (79) and (81) we get

qk|k =1−
0 · (1− qk|k−1)

f(Zk|Zk−1)
= 1 (84)

Let Sk = {ζ}. From (23) we get

qk|kPk|k(ζ) =
ϕ(Zk|{ζ})qk|k−1Pk|k−1(ζ)

f(Zk|Zk−1)
(85)

Rearranging the terms gives

Pk|k(ζ) =
ϕ(Zk|{ζ})qk|k−1

f(Zk|Zk)qk|k
Pk|k−1(ζ) (86)
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If Zk = ∅ then from (17), (18), (21), (75) and (86) we get

Pk|k(ζ) =
(1− pFA)(1− pD(ζ))qk|k−1

(1− pFA)(1− qk|k−1∆1
k|k−1)qk|k

Pk|k−1(ζ)

(87a)

=
1− pD(ζ)

1−∆1
k|k−1

Pk|k−1(ζ) (87b)

If Zk = {z} then from (17), (18), (21), (77) and (86) we get

Pk|k(ζ) =
[η(∅|{ζ})κ(z) + η(z|{ζ})κ(∅)] qk|k−1

pFAgFA(z)
(
1− qk|k−1∆k|k−1

)
qk|k

Pk|k−1(ζ)

(88a)

=
1− pD(ζ)

1−∆k|k−1
Pk|k−1(ζ) (88b)

+
1− pFA

pFAgFA(z)

pD(ζ)h(z|ζ)

1−∆k|k−1
Pk|k−1(ζ)

If Zk =
{
z1, z2

}
then from (17), (18), (21), (79), (86) we get

Pk|k(ζ)

=
η(z1|{ζ})κ(z2)qk|k−1

f(Zk|Zk)qk|k
Pk|k−1(ζ) (89a)

+
η(z2|{ζ})κ(z1)qk|k−1

f(Zk|Zk)qk|k
Pk|k−1(ζ)

=
gFA(z2)pD(ζ)h(z1|ζ)Pk|k−1(ζ)

gFA(z2)Gsk|k−1(z1) + gFA(z1)Gsk|k−1(z2)
(89b)

+
gFA(z1)pD(ζ)h(z2|ζ)Pk|k−1(ζ)

gFA(z2)Gsk|k−1(z1) + gFA(z1)Gsk|k−1(z2)

APPENDIX C
BERNOULLI FILTER PREDICTION

Let Sk = ∅. From (14) and (24) we get

fk+1|k(∅|Zk−1) = 1− qk+1|k

=PS
k+1|k(∅|∅)(1− qk|k) (90a)

+ qk|k

∫
PS
k+1|k(∅|{ζ ′})Pk|k(ζ ′)dζ ′

=(1− pb)(1− qk|k) + (1− ps)qk|k. (90b)

Rearranging the terms gives the predicted existence probability

qk+1|k = pb(1− qk|k) + psqk|k. (91)

Let Sk = {ζ}. From (14) and (24) we get

fk+1|k({ζ}|Zk) = qk+1|kPk+1|k(ζ)

=PS
k+1|k({ζ}|∅)(1− qk|k)

+ qk|k

∫
PS
k+1|k({ζ}|{ζ ′})Pk|k(ζ ′)dζ ′ (92a)

=pbP
b
k+1|k(ζ)(1− qk|k)

+ qk|k

∫
psπk+1|k(ζ|ζ ′)Pk|k(ζ ′)dζ ′ (92b)

Rearranging the terms give the predicted HMM state pmf,

Pk+1|k(ζ) =
pb(1− qk|k)

qk+1|k
P bk+1|k(ζ) (93)

+
psqk|k

qk+1|k

∫
πk+1|k(ζ|ζ ′)Pk|k(ζ ′)dζ ′
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