
Knowledge-Based Systems 23 (2010) 132–143
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Agent service matchmaking algorithm for autonomic element with semantic
and QoS constraints

Zhang Kun a,b,*, Xu Manwu b, Zhang Hong a, Xu Jian a

a School of Computer Science and Technology, Nanjing University of Science and Technology, Nanjing 210094, China
b State Key Laboratory for Novel Software, Nanjing University, Nanjing 210093, China

a r t i c l e i n f o
Article history:
Received 17 October 2008
Accepted 10 July 2009
Available online 30 October 2009

Keywords:
Agent service matchmaking
Service description model
Semantic similar
QoS constraints
Autonomic element
Autonomic computing
0950-7051/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.knosys.2009.07.011

* Corresponding author. Address: State Key Lab
Nanjing University, Nanjing 210093, PR China. Tel.: +
84315960.

E-mail address: zhangkun@mail.njust.edu.cn (Z. K
a b s t r a c t

Agent service description and matchmaking problem for autonomic element has been taken as one of the
most important issue in the field of autonomic computing based on agent and multi-agent system.
Considering the semantic and QoS for capability description of agent service are two important issues
during matchmaking, the factors of semantic and QoS during matchmaking are considered together,
and an agent service description model named ASDM_SQ is proposed. On basis of this model, a match-
making algorithm with semantic and QoS constraints named ASMA_SQ is presented to find the agent ser-
vice satisfied both the given semantic similarity threshold and optimal QoS performance. The proposed
algorithm lies over two fundamental processes: semantic similarity matchmaking and QoS matchmaking.
During QoS matchmaking, evaluation mechanism of confidence of individual QoS attributes, i.e. fidelity
factor is introduced to overcome drawbacks such as subjectiveness and unfairness and improve the
self-configuration capability for agent element. Simulation experiments demonstrate the effective and
correction of our algorithm for agent service matchmaking, and perform better QoS performance than
other existing algorithm, which can further show that our algorithm has better compromise between
attribute quality and users’ evaluation when selecting agent service.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Advances in networking and computing technology and soft-
ware tools have resulted in an explosive growth in networked
applications and information services that cover all aspects of our
life. These sophisticated applications and services are extremely
complex, heterogeneous and dynamic. As a result, this complexity
has increased the cost and errors of managing IT infrastructures.
The skilled persons who manage these systems are expensive and
cannot manage them in configuration, healing, optimization, pro-
tection, and maintenance. Moreover, IT managers look for ways to
improve the return on investment (ROI) by reducing total cost of
ownership (TCO), improving quality-of-services (QoS), and reduc-
ing the cost for managing of IT complexity. All these issues have
motivated researchers to investigate a new idea to cope with the
management of complexity in IT industry and self-management
systems have been introduced. In mid-October 2001, IBM released
a manifesto observing that the main obstacle to further progress in
the IT industry is a looming software complexity crisis. Aimed at
ll rights reserved.

oratory for Novel Software,
86 25 84315982; fax: +86 25

un).
this problem, IBM Company innovatively proposed autonomic
computing (AC) technology – computing systems that can manage
themselves given high-level objectives from administrators. The
goal of autonomic computing initiative is to help customers build
more automated IT infrastructures to reduce costs, improve up-
time, and make the most efficient use of increasingly scarce support
skills. The essence of autonomic computing systems is self-manage-
ment, composed of self-configuration, self-optimization, self-heal-
ing, and self-protection [1,2].

With the advent of agent and multi-agent system (MAS) tech-
nologies, autonomic computing based on agent has become re-
search hotspot [3,4]. In these researches, authors aimed to
achieve self-management of a distributed computing system via
interactions amongst a population of autonomous agents called
autonomic elements, i.e., the agent was regarded as autonomic ele-
ment. Those researchers focused on how to utilize agent and multi-
agent system to provide variously effective and efficient services
for users, in order to make autonomic computing realize self-man-
agement capability by self-configuration. The most important issue
in this field is description and matchmaking of agent services (i.e.,
service description and service matchmaking), that is, how to
achieve the agent service matchmaking for autonomic element in
self-configuration.

Many algorithms have been proposed for agent or agent service
description and matchmaking [5–14]. However, there are three

http://dx.doi.org/10.1016/j.knosys.2009.07.011
mailto:zhangkun@mail.njust.edu.cn
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 133
major difficulties in deployment and application of the existing
algorithms to matchmaking of agent services.

Firstly, most of the existing algorithms are only concerned with
functional matchmaking on agent service, and are used syntax or
semantic matchmaking to obtain agent services satisfying with
functional demands. Whereas, few of these algorithms focused
on non-functional factors, such as service cost, time, reliability, sat-
isfaction, i.e. quality-of-service (QoS) of agent service. Therefore,
when more agents than one can provide a functional service, these
algorithms just selected randomly one from these agents. The
agent service requesters could not obtain optimal agent service
with high QoS performance.

Secondly, only a few existing algorithms are considered QoS
factors during agent service matchmaking. However, these algo-
rithms were paid regard to QoS level as a whole, ignoring confi-
dence of individual QoS attributes. Due to QoS data was often
advertised by agent service providers, it suffered from the draw-
backs such as subjectiveness and unfairness. Further, they took
the attribute matchmaking level of agent service itself as the only
target for measuring effect of agent service matchmaking, and did
not consider the user’s feeling and satisfaction. As a result, such
subjectiveness and unfairness may restrain improvement of self-
configuration capability for agent element to a certain extent.

The final difficulty is that, in recent years, semantic-based agent
service matchmaking has become the focal point of agent service
due to improvement of recall ratio and precision ratio in the
matchmaking method based on syntax. Several semantic-based
agent matchmaking algorithms were proposed. To the best of our
knowledge, little work has been done on efficient combining with
semantic matchmaking and QoS matchmaking. These authors fo-
cused on either semantic functional matchmaking [6,7,9,12], or
QoS matchmaking [13,14]. As we know, the semantic and QoS for
capability description of agent service are two important issues
during matchmaking.

Aimed at overcoming the above difficulties, we consider to-
gether the matchmaking influenced by semantic and quality-of-
service in this paper, and propose an agent service description
model (ASDM_SQ) for autonomic element. On basis of this model,
we put forward to a matchmaking algorithm named ASMA_SQ con-
sisting of two phases, i.e. semantic matchmaking phase and QoS
matchmaking phase, in order to find the agent service satisfying
both the given semantic similarity threshold and optimal QoS per-
formance. The fidelity factor for each QoS attribute is introduced
into agent service matchmaking algorithm, which will improve
the facility and fairness concerned with QoS attributes, and select
optimal agent service with QoS performance objectively.

The rest of the paper is organized as follows. Section 2 briefly
introduces concept of autonomic computing based on agent. Some
of the existing work that is related to this paper is described in Sec-
tion 3. Section 4 presents agent service description model named
ASDM_SQ. Section 5 gives our proposed agent service matchmak-
ing algorithm in detail. Simulation results are presented in Section
6. Section 7 concludes the paper.
2. Autonomic computing based on agent

The autonomic computing has been inspired by the human
autonomic nervous system. Its overarching goal is to realize com-
puter and software systems and applications that can manage
themselves in accordance with high-level guidance from humans.
Autonomic systems will be interactive collections of autonomic
elements (AEs) – individual system constituents that contain re-
sources and deliver services to humans and other autonomic ele-
ments. Autonomic elements will manage their internal behavior
and their relationships with other autonomic elements in accor-
dance with policies that humans or other elements have estab-
lished. So, we can know that autonomic elements are the basic
building blocks of autonomic systems and their interactions pro-
duce self-managing behavior.

Autonomic elements will have complex life cycles, continually
carrying on multiple threads of activity, and continually sensing
and responding to the environment in which they are situated.
Autonomy, proactivity, and goal-directed interactivity with their
environment are distinguishing characteristics of software agents.
Viewing autonomic elements as agents (agent services) and auto-
nomic systems as multi-agent systems makes it clear that agent-
oriented architectural concepts will be critically important [2,15].

On the basis of above assertion, we give the autonomic comput-
ing system architecture based on agent (or agent service), shown in
Fig. 1.

The whole autonomic computing system (ACS) based on agent
consists of three kinds of autonomic elements, i.e., agent service
provider, agent service requester, and agent service broker (or mid-
dle agent service). These agent services communicate and cooper-
ate with each other in order to implement the ACS’s capability,
which can show the characteristic of self-management for ACS.
Agent service providers describe their capabilities, and publish
these advertisements to requesters or brokers. Agent service
requesters try to find their required agent service provider(s)
according to their requests and published advertisements. Finally,
a specific kind of AE is agent service broker (or called middle agent
service). They support to cooperation between agent service pro-
viders and requesters, such as agent service negotiation, agent ser-
vice composition, agent service collaboration, and agent service
monitoring and so on.

Based on the above architecture, in order to efficiently accom-
plish the self-configuration and self-management between auto-
nomic element agent services, the most important issue is how
to describe agent services, and design efficient agent service
matchmaking algorithm to find appropriate provider(s) for a re-
quester according to the providers’ agent service advertising
description.
3. Related work of matchmaking in agents

In recent years, much research has been devoted to the develop-
ment of service matchmaking algorithms for agent or autonomic
element [5–14]. Wickler [5] addressed the problem of capability
brokering agent, and proposed a new capability description lan-
guage (CDL) for the representation of agent capabilities. CDL was
a decoupled action representation into which arbitrary state repre-
sentations can be plugged, resulting in the expressiveness and flex-
ibility needed for capability brokering. However, description for
CDL was based on syntax rather than semantic. Sycara [6] defined
a language called LARKS for agent advertisements and requests,
and presented a flexible and efficient matchmaking process that
used LARKS. LARKS performed both syntactic and semantic match-
ing, and in addition allowed the specification of concepts (local
ontologies) via ITL, a concept language. The establishment for
semantic distance consumed much workload, so that their match-
ing algorithm had limitations on practicability and reliability.
Arisha et al. [9] brought forward to a simple agent service descrip-
tion language named SDL, and provided approximate service
matchmaking by using semantic distance. Whereas, the algorithm
could not support definition of data type and descript services effi-
ciently. The authors in Refs. [11] and [12] focused on agent service
matchmaking based on semantic. Shi et al [11] presented a
description logic-based service matchmaking algorithm for multi-
agent systems by using model-theoretic semantics and concept
hierarchy of description logic. The authors proposed five kinds of

Fig. 1. Autonomic computing system architecture based on agent.

134 Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143
algorithms of agent service matchmaking, i.e., agent service match-
making algorithm, strong service matchmaking algorithm, k-near-
est service matchmaking algorithm, k-approximate service
matchmaking algorithm, m-nearest and n-approximate service
matchmaking algorithm. The proposed mechanism of service hier-
archy could overcome the shortcoming of the method based on
semantic distance. Hu et al. [12] defined domain concept language
(DCL) to describe domain concepts and concept-taxonomy, and
introduced the service semantic compatible degree to match agent
service. The author proposed ontology based on compatible match-
making mechanism for services request and services provider,
which can rapidly find appropriate services provider for services
request. From classifying matching to parameter matching filtra-
tion, till to the precise constraint matching at last, the matchmak-
ing process had clear hierarchy and well matching efficiency.
However, neither of the above algorithms considered the factors
of quality-of-service attribution, such as service cost, time, and
reliability. Zhang [13] and Jiang [14] analyzed the drawbacks in
previous papers, i.e., the matchmaking was only based on the
advertised capabilities of provider agents. They considered the
matchmaking influenced by QoS of agent service, and individually
presented agent service matchmaking algorithm based on QoS. In
Ref. [13], it was argued that the practical performance of service
provider agents had a significant impact on the matchmaking out-
comes of middle agents. The authors’ proposed algorithm can pick
up the provider agents based on the history information in accom-
plishing similar tasks in the past rather than choosing randomly. At
the launching of an agent system, the proposed algorithm can pro-
vide initial values of the track records. With agents’ history infor-
mation and the initial values of the track records, the quality of
matchmaking algorithms can be improved significantly, and the
returned results was more accurate and reasonable. Jiang [14]
pointed out that there were two drawbacks using the track records
in Ref. [13], i.e., the value of track records was too subjective, and
track record model is too simple to judge agent services’ perfor-
mance more accurately. So, the authors in Ref. [14] presented mod-
el of agent service and QoS-driven matchmaking algorithm, which
aimed at matching the best satisfying agent for user. It is pity for
the above two algorithms that the authors did not considered
semantic match issue, which could not represent the semantic cor-
relation among agent services.
4. Autonomic element agent service description model

The first task is to realize service capability description during
agent service matchmaking. In this paper, we give an agent service
description model with semantic and QoS named ASDM_SQ as
follows:

Definition 1. Agent service description model for autonomic
element is a 3-tuple as follows:
AS ¼ ðgeneral desc; functional desc; qos descÞ ð1Þ

where general_desc denotes general description of agent service, i.e.,
elementary attributes, such as agent service name, agent service do-
main taxonomy, text description and so on. functional_desc repre-
sents functional description, including interface type and input/
output parameters list. qos_desc denotes quality-of-service attribute
for agent service, divided into two categories: one represents com-
mon QoS parameters, which are independent of domain specialty of
agent service, such as execution time, execution cost, reliability,
maintainability, and satisfaction; the other includes some quality
parameters of domain specialty, for example business contents
and business context. In general, domain specialty is given by
domanial specialist or designer depended on their experience, or
obtained through learning from domain ontology. For convenience,
we do not consider the domain specialty of autonomic element
agent service in this paper.

Definition 2. Agent service QoS model for autonomic element is a
6-tuple as follows:

qos desc ¼ ðtime; cost; reliability;maintainability; reputation; fidelityÞ
ð2Þ

where time is agent service response time from sending service re-
quest to receiving result, including service process time and service
transmission delay time, i.e., qtime(as) = Tprocess(as) + Ttrans(as); cost is
agent service cost, and represents the expenses paid by users to
agent service provider; reliability is a metric of reliability, denoting
the probability of agent service providing its registered services;
reliability is a technical measure related to hardware and/or soft-
ware configuration of agent services and the network connections
between the agent service requesters and providers; maintainability
denotes the probability of accurate maintenance when an exception
occurs for an agent service; reputation is a measure of agent ser-
vices’ trustworthiness or satisfaction degree, and denotes users’
(or requesters’) satisfaction to agent service; reputation mainly de-
pends on end user’s experiences of using the agent service. Different
end users may have different opinions or satisfaction degree on the
same service. Usually, the end users or requesters are given a range
to rank or score agent services, for example, in Amazon.com, the
range is [0,5]. In this paper, the range is [0,1].

The first four QoS attributes are often published by agent ser-
vice providers themselves, and describe the basic QoS performance
of an agent service, so most of the authors take them as quality cri-
teria for an agent service. However, such criterion is too subjective
to reflect actual quality of agent service. In this paper, we introduce
attribute ‘‘reputation” to measure users’ satisfaction degree. On the
other hand, fidelity vector is added to the QoS model to improve the
impartiality and objectivity. Fidelity is treated as a vector com-
posed of fidelity attributes. Each fidelity attribute refers to the con-
fidence or fidelity of above first four QoS attributes, i.e.,

ASDM_SQ

general_desc

attributes

agent_service_name

domain_taxonomy

text_desc

functional_desc

type
1 ∞..

inputs
1 ∞..

outputs
1 ∞..

qos_desc
1 ∞..

attributes

time

cost

reliability

maintainability

reputation

Fidelity
1 4..

Fig. 2. The description schema of ASDM_SQ.

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 135
fidelity ¼ fidtime; fidcost; fidreliability; fidmaintainability

� �
ð3Þ

The Fig. 2 shows agent service description schema for autonomic
element based on ASDM_SQ, followed by XML Schema.

Based on ASDM_SQ, we consider an example for an agent ser-
vice description of Booking Airplane Ticket as shown in Fig. 3.

5. Our proposed matchmaking algorithm

5.1. Definitions and basic ideas

Definition 3 (Agent service matchmaking type). Given an agent
service provider pas and an agent service requester ras, if pas and
ras are equivalent in terms of semantic, i.e., ras � pas, this type of
matching is called exact match, which is the most restrictive one; if
ras # pas, that is, the agent whose capability description matches
a given request can be ‘‘plugged into the place” where that request
was raised, called plug-in match. The least accurate but most useful
match is the so-called relaxed match. A relaxed match has a much
weaker semantic interpretation than an exact match and plug-in
match, and it determines how close the two descriptions are by
returning just a numerical distance value. In this paper, only
relaxed match is considered.

Definition 4 (Agent service matchmaking problem). Given the set of
providers PAS = {pas1,pas2,. . .,pasn}, an agent service requester ras,
and semantic similarity threshold D. Agent service matchmaking
problem is to find agent service provider(s) such as the semantic
similarity is satisfied D and that the QoS level is maximized.

Definition 5 (Semantic similarity of agent services). Semantic simi-
larity of agent services is the likeness of meaning (or semantic con-
tent) of concepts (or terms, or words) appear in agent services’
description. The higher semantic similarity between agent ser-
vices, the higher semantic matchmaking of them.

Aiming at the above problem in definition 4, an agent service
matchmaking algorithm for autonomic element with both seman-
tic and QoS constraints named ASMA_SQ is proposed in this paper.
There are two phases in ASMA_SQ. In phase I, we will attempt to
get the semantic similarity of general description and functional
description for agent services through semantic similarity match-
making algorithms (in Section 5.2). If the total semantic similarity
is greater than or equal to given threshold D, then those agent
services satisfying condition will be selected as candidates. The
second phase is QoS matchmaking phase (in Section 5.3), in
which we generate an agent service whose total QoS value is
maximal among all candidates. During QoS matchmaking, the
fidelity factor is introduced to improve the impartiality and
objectivity of quality performance. The pseudo code for ASMA_SQ
is shown in Fig. 4.
5.2. Semantic similarity matchmaking phase

In semantic similarity matchmaking phase, the semantic simi-
larity of general description and functional description for agent
services are calculated through the following Algorithms 1 and 2,
respectively. Then, the agent services whose total semantic simi-
larity satisfies formula (4) are selected as candidate ones.

sim ¼ n1 � simg þ n2 � simf P D ð4Þ

where, sim is total semantic similarity of agent services. simg and
simf denote semantic similarity of general description and func-
tional description for agent service, obtained by the Algorithms 1
and 2, respectively. n1 and n2 are the weight value of general and
functional description, respectively, decided by users. In general,
n1 + n2 = 1,0 < n1,n2 < 1. D denotes given semantic similarity
threshold.

Algorithm 1 (Semantic similarity matchmaking algorithm for gen-
eral description). The similarity value is calculated through getting
concept semantic similarity of each general description in an
ontology concept tree concerned with agent service. For conve-
nience, we take ontology concept similarity of agent service name
as whole semantic similarity of general description in this paper,
and omit other attributes, such as domain taxonomy, text descrip-
tion and so on.

Now, the methods for calculating ontology concept similarity
include geometrical distance-based, description logic-based, and
information content-based. Considering drawbacks of inaccurate
matchmaking in method based on description logic, complexity,
and poor universality in method based on information content, we
use simple distance-based method [16] to get concept semantic
similarity in this paper. The authors in Ref. [16] combined the
shortest path length as well as the depth of the subsumer, and
proposed the following method to calculate semantic similarity
between two concepts c1 and c2, that is,

simðc1; c2Þ ¼ e�a�l � e
b�h � e�b�h

eb�h þ e�b�h ð5Þ

where l is the shortest path length between c1 and c2, h is the depth
of subsumer in the hierarchy ontology semantic tree, a P 0 and
b P 0 are parameters scaling the contribution of shortest path
length and depth, respectively. Based on their experiments, the
optimal parameters for the method are: a = 0.2, b = 0.6.

For example, we consider a tourism service industry ontology as
shown in Fig. 5, including several services concerned with Tourism
Reception, such as Accommodation Reception, Restaurant Recep-
tion, and Ticket Service. According to (5),

sim(Hotel Reservation Service, Motel Reservation Service) = 0.360
(l = 2, h = 1);
sim(Selling Subway Ticket Service, Booking Ticket Service) = 0.295
(l = 3, h = 1);

PROCEDURE ASMA_SQ (PAS = {pas1, pas2, … , pasn}, ras, Δ)

1. 'PAS = ∅ ; //agent provider candidates satisfying semantic similarity threshold

2. qosmax = 0; index = 0;

3. for (each agent service provider pasi ∈ PAS) {

4. simg = simMatchgerneral_desc(ras, pasi); //semantic similarity matchmaking of general description

5. simf = simMatchfunctional_desc(ras, pasi); // semantic similarity matchmaking of functional description

6. if 1 2()g fsim simξ ξ+ ≥ Δ then //weight value 1 2 1 2, [0,1], 1.ξ ξ ξ ξ∈ + =

7. ' ' iPAS PAS pas= ;

8. }

9. if 'PAS ≠ ∅ then {

10. for (each agent service provider ' 'jpas PAS∈) {

11. qoscurrent = qosMatch(ras, ' jpas) //get whole qos value of current agent

12. if qoscurrent ≥ qosmax then {

13. qosmax = qoscurrent; index = j;

14. }

15. }

16. return 'indexpas ;

17. }

18. else return FAILED; //agent service provider satisfying request does not exist

Fig. 4. The pseudo code for ASMA_SQ.

<ASDM_SQ>
 <general_desc>
 <agent_service_name = “Booking Airplane Ticket Service”>
 <domain_taxonomy = “Tourism Services Industry”>
 <text_desc = “Booking airplane ticket from airlines”>
 </general_desc>
 <functional_desc>
 <typename = “Date”, type = “{year, month, day}”>
 <typename = “Money”, type = “double”>
 <typename = “Ticket”, type = “string”>
 <input = “Your ID card number”, type = “string”>
 <input = “Booking date”, type = “Date”>
 <input = “Your destination”, type = “string”>
 <input = “Your money”, type = “Money”>
 <output = “Change money”, type = “Money”>
 <output = “Your ticket”, type = “Ticket”>
 </functional_desc>
 <qos_desc>
 <time = “37.56”, unite = “ms”>
 <cost = “25.00”, unite = “$”>
 <reliability = “0.875”>
 <maintainability = “0.568”>
 <reputation = “0.95”>
 <fidtime = “0.75”, fidcost = “0.64”, fidreliability = “0.89”, fidmaintainability = “0.95”>
 </qos_desc>
</ASDM_SQ>

Fig. 3. An example for an agent service description.

136 Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143
sim(Booking Airplane Ticket Service, Booking Train Ticket Ser-
vice) = 0.559 (l = 2, h = 2).
Algorithm 2 (Semantic similarity matchmaking algorithm for func-
tional description). We computing semantic similarity of typename
set, input set and output set in functional description, respectively.
Then the following formula is used to compute the overall
semantic similarity simf for functional description:
simf ¼ k1 � simf typename þ k2 � simf input þ k3 � simf output ð6Þ
where k1, k2, k3 denote the weight value of each kind of functional
description, and k1, k2, k3 2 [0,1], k1 + k2 + k3 = 1. Considering that
functional description typename, input and output are all description
sets, we use a semantic similarity method among entity classes
from different ontologies [17] to determine similarity of each
description set. The matching method in Ref. [17] was based on

Fig. 5. An example of tourism services industry ontology.

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 137
the normalization of Tversky’s model [18] and set-theory, and was
used a process over synonym sets, semantic neighborhoods, and
distinguishing features. The similarity model is as follows:
simða; bÞ ¼ jA \ Bj
jA \ Bj þ d � jA=Bj þ ð1� dÞ � jB=Aj ; for 0 6 d 6 1 ð7Þ

where, a and b are entity classes needed to match (i.e., typename, in-
put or output); A and B corresponds to description sets of a and b
(i.e., synonym sets, set of distinguishing features, of set of entity
classes in the semantic neighborhood). In this paper, A and B denote
specific description items in each functional description set. j j is the
cardinality of a set; jA \ Bj and jA/Bj is intersection and difference of
a set, respectively; and d is a parameter that defines the relative
importance of the non-common characteristics, and is set to 0.45.

For instance, given two agent services as1 and as2, if input list set
of as1 is {ID_number, Date, Destination, Money} and input list set of
as2 is {Destination, Money}, then their semantic similarity of input
description is:
Table 2
The semantic similarity matchmaking result among example agent services.

No. (as1, as2) simMatchg

l h

1 (Booking Airplane Ticket Service, Selling Subway Ticket Service) 4 1
2 (Booking Airplane Ticket Service, Booking Train Ticket Service) 2 2
3 (Booking Airplane Ticket Service, Booking Ticket Service) 1 2

Table 1
Brief general_desc and functional_desc of three example agent services.

No. Agent service name general_desc

1 Selling Subway Ticket Service Selling Subway Ticket Service

2 Booking Train Ticket Service Booking Train Ticket Service

3 Booking Ticket Service Booking Ticket Service
simf inputðas1; as2Þ

¼ fDestination;Moneyg
fDestination;Moneyg þ 0:45� fID number;Dateg þ ð1� 0:45Þ � fg

¼ 2
2þ 0:45� 2þ 0:55� 0

¼ 2
2:9
¼ 0:690 ð8Þ

For case of understanding overall semantic similarity match-
making phase, we consider an example in which exists following
three agent service providers coming from tourism reception
ontologies in Fig. 5. They are Selling Subway Ticket Service, Booking
Train Ticket Service, and Booking Ticket Service, and their descrip-
tions are shown in Table 1.

Suppose that Booking Airplane Ticket Service shown in Fig. 3 is an
agent service requester, the semantic similarity calculation result
through Algorithms 1 and 2 between requester and the above three
agent service provides is shown in Table 2, where a = 0.2, b = 0.6,
d = 0.45, k1 = 0.2, k2 = 0.4, k3 = 0.4, n1 = 0.5, n2 = 0.5.

It is easy to see from Table 2 that Booking Ticket Service has high-
est similarity (0.815) with agent service requester, and Selling Sub-
eneration_desc simMatchfunctional_desc sim

simg simf_type simf_input simf_output simf

0.241 0.816 0.690 1.000 0.839 0.540
0.559 1.000 0.870 1.000 0.948 0.753
0.683 1.000 0.870 1.000 0.948 0.815

functional_desc

Typename Input Output

Money Your destination Change money
Ticket Your money Your ticket

Date Booking date Change money
Money Your destination Your ticket
Ticket Your money

Date Booking date Change money
Money Your destination Your ticket
Ticket Your money

138 Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143
way Ticket Service has lowest similarity (0.540) with agent service
requester. This result is correct and reasonable, which can be easily
observed from Fig. 5 and Table 1. The example shows the correct-
ness and effectiveness of our proposed semantic similarity match-
making algorithm.

5.3. QoS matchmaking phase

The traditional agent service matchmaking algorithms were of-
ten paid attention to functional matchmaking while neglecting
non-functional QoS factors. Therefore, when more agents than
one can provide a functional service, these algorithms just selected
randomly one from these agents. In this paper, we consider QoS
attributes matchmaking of agent service after finishing semantic
similarity matchmaking, which aims at obtaining optimal agent
service with high QoS performance as Refs. [13] and [14]. More-
over, during QoS matchmaking phase, the drawbacks in Refs. [13]
and [14] such as subjectiveness and unfairness are overcame
through introducing evaluation mechanism of confidence of indi-
vidual QoS attributes, i.e., fidelity factor for each attribute, which
will improve the self-configuration capability for agent element.

The basic idea of QoS matchmaking phase is as follows: firstly,
normalizing each attribute in QoS description to range [0,1] for
each agent service in candidate set (i.e., agent services satisfying
semantic threshold); then fidelity of each attribute is considered
to evaluate QoS overall performance for every agent service com-
prehensively and objectively; finally, an agent service whose total
QoS value is maximal is picked out from all candidates.

Concretely, suppose that there is a set of candidate agent ser-
vices providing a certain service PAS = {pas1, pas2,. . .pasn}. By merg-
ing the quality vectors of all these candidates, a matrix
Q = (Qi,j,1 6 i 6 n, 1 6 j 6 5) is built according with ASDM_SQ in
Section 4, in which each row Qj corresponds to an agent service pasi

while each column corresponds to a QoS attribute value. Let a ma-
trix F = (fidi,j, 1 6 i 6 n, 1 6 j 6 4) denote confidence fidelity of the
first four QoS attributes for agent service pasi.

(1) Scaling phase.Some of the QoS attributes could be negative,
i.e., the higher the value, the lower the quality, such as time,
cost. Other QoS attributes are positive, i.e., the higher the
value, the higher the quality, such as reliability, maintainabil-
ity, and reputation. For negative attributes, values are scaled
according to (9). For positive criteria, values are scaled
according to (10).

max8

Mi;j ¼

Qj �Qi;j

Qmax
j �Qmin

j
if Q max

j � Q min
j –0;

1 if Q max
j � Q min

j ¼ 0;

<
: for j ¼ 1;2 ð9Þ

Mi;j ¼
Qi;j�Qmin

j

Qmax
j �Qmin

j
if Q max

j � Q min
j –0;

1 if Q max
j � Q min

j ¼ 0;

8><
>:

for j ¼ 3;4;5 ð10Þ

In the above equations, Qmax
j and Qmin

j are the maximal and
minimal value of the jth QoS attribute, respectively. Let
M = (Mi,j, 1 6 i 6 n, 1 6 j 6 5) be normalizing matrix accord-
ing to Q, where Mi,j denotes normalizing value of the jth
QoS attribute for agent service provider pasi.
(2) Weighting phase. The following formula is used to calculate
the overall quality score of agent service provider pasi.
qos scoreðpasiÞ ¼
X4

j¼1

ðwj �Mi;j � fidi;jÞ þw5 �Mi;5 ð11Þ

where wj is the weight value of the jth QoS attribute,
0 6 wj 6 1;

P5
j¼1wj ¼ 1. End users express their preferences

regarding QoS by providing values for the weight wj.
A case study of QoS matchmaking phase will be given for
explaining the effect of our proposed algorithm. The following
experiment method will be used to select the most satisfactory
agent service. Suppose the returned candidate providers through
Algorithms 1 and 2 have 10 agent services, i.e., PAS = {pas1,
pas2, . . . ,pas10}. That means these ten agent services can provide
the same or closely similar capabilities.

The QoS values of 10 agent services are generated through the
following simulation. Assume there are 50 similar tasks (or agent
service requests). For each request, we randomly delegate it to
an agent service, pasi, from PAS, and randomly generate QoS attri-
bute values and their fidelity values, denoting QoS value of pasi in
this request. In these attributes, time is randomly distributed be-
tween 70 and 100 ms; cost is uniformly distributed [10,100] $; reli-
ability, maintainability, reputation is randomly generated in [0,1].
The fidelity for the first four attributes is in [0,1]. The QoS values
of 10 agent services for 50 requests is shown in Table 3, where
pn denotes provided service number of pasi for all requests.

The QoS values in matrix Q and the confidence fidelity matrix of
the first four QoS attributes for agent service pasi are the mean va-
lue of the results produced by its provided service number, respec-
tively. The QoS values matrix Q, confidence fidelity matrix F, and
normalizing matrix M are as follows.

Q ¼

81:44;68:27;0:40; 0:31;0:36

84:19;60:16; 0:56; 0:49;0:59

93:58;67:80; 0:60;0:54; 0:68

76:41;45:65;0:64;0:62;0:58

86:27;49:76;0:47;0:54;0:43

84:70;43:44; 0:62; 0:50; 0:16

89:57;35:88;0:48;0:50;0:46

84:47;59:18;0:46;0:50;0:58

81:34;54:97;0:51;0:40;0:58

79:47;40:63; 0:64; 0:59;0:56

2
666666666666666666664

3
777777777777777777775

;

F ¼

0:34; 0:15;0:41;0:40

0:68; 0:47;0:81;0:36

0:54; 0:53;0:41;0:62

0:41; 0:76;0:38;0:26

0:51; 0:69;0:43;0:65

0:35; 0:30;0:46; 0:48

0:60;0:18;0:66; 0:67

0:51; 0:42;0:37;0:46

0:42; 0:65;0:50; 0:47

0:51; 0:65;0:45;0:47

2
666666666666666666664

3
777777777777777777775

;

M ¼

0:71;0:00;0:00; 0:00;0:37

0:55;0:25;0:65;0:55; 0:83

0:00;0:01;0:83;0:72;1:00

1:00; 0:70;0:99;1:00;0:81

0:43;0:57;0:31;0:73; 0:51

0:52;0:77;0:90;0:60; 0:00

0:23;1:00; 0:34;0:60; 0:56

0:53;0:28;0:26;0:61; 0:81

0:71;0:41;0:46;0:29; 0:79

0:82;0:85;1:00;0:89;0:77

2
666666666666666666664

3
777777777777777777775

ð12Þ

Suppose that weight value of each QoS attribute defined by
users is 0.15, 0.2, 0.2, 0.15 and 0.3, respectively. The overall quality
scores of each agent service provider by using formula (11) are:

Table 3
The QoS values of 10 agent services for 50 request.

pas pn QoS attribute value. (time, cost, reliability, maintainability, reputation)

pas1 4 (81.364, 94.46, 0.069, 0.614, 0.575), (73.451, 35.37, 0.838, 0.042, 0.187),
(71.636, 99.96, 0.304, 0.106, 0.656), (99.294, 43.29, 0.384, 0.493, 0.011)

pas2 5 (84.663, 23.28, 0.740, 0.456, 0.716), (79.636, 70.50, 0.746, 0.767, 0.616),
(91.45, 26.392, 0.427, 0.235, 0.245), (91.586, 92.89, 0.124, 0.888, 0.587),
(73.615, 87.73, 0.738, 0.082, 0.804)

pas3 3 (99.547, 94.69, 0.690, 0.593, 0.930), (90.360, 86.49, 0.422, 0.235, 0.356),
(90.825, 22.23, 0.678, 0.784, 0.763)

pas4 4 (77.087, 90.03, 0.947, 0.393, 0.697), (74.888, 44.23, 0.978, 0.834, 0.624),
(80.114, 12.45, 0.502, 0.948, 0.990), (73.533, 35.89, 0.114, 0.325, 0.026)

pas5 9 (82.862, 32.69, 0.708, 0.043, 0.986), (73.595, 59.18, 0.611, 0.816, 0.219),
(97.835, 69.63, 0.150, 0.017, 0.724), (91.110, 11.66, 0.540, 0.945, 0.221),
(97.034, 54.32, 0.205, 0.832, 0.493), (93.738, 58.43, 0.659, 0.478, 0.182),
(70.386, 36.56, 0.674, 0.919, 0.364), (70.894, 60.31, 0.288, 0.810, 0.637),
(98.963, 65.05, 0.412, 0.013, 0.052)

pas6 4 (73.856, 41.60, 0.411, 0.647, 0.385), (89.247, 25.84, 0.409, 0.542, 0.114),
(87.707, 16.07, 0.649, 0.706, 0.112), (88.005, 90.24, 0.991, 0.102, 0.045)

pas7 5 (91.256, 34.28, 0.566, 0.295, 0.087), (91.973, 61.65, 0.708, 0.659, 0.263),
(89.541, 24.46, 0.096, 0.515, 0.247), (89.445, 27.47, 0.342, 0.484, 0.978),
(85.628, 31.53, 0.692, 0.551, 0.706)

pas8 8 (82.750, 60.07, 0.224, 0.790, 0.624), (97.355, 89.42, 0.283, 0.307, 0.567),
(71.577, 88.84, 0.643, 0.443, 0.804), (80.630, 51.27, 0.360, 0.116, 0.666),
(97.848, 46.98, 0.243, 0.958, 0.529), (82.601, 50.14, 0.681, 0.785, 0.296),
(75.847, 14.88, 0.266, 0.178, 0.547), (87.174, 71.81, 0.983, 0.453, 0.635)

pas9 4 (93.761, 60.72, 0.447, 0.177, 0.424), (75.342, 47.91, 0.730, 0.548, 0.783),
(77.398, 70.89, 0.231, 0.295, 0.638), (78.867, 40.35, 0.624, 0.599, 0.457)

pas10 4 (88.814, 56.19, 0.883, 0.563, 0.029), (80.738, 64.78, 0.728, 0.648, 0.872),
(75.470, 20.82, 0.637, 0.401, 0.752), (72.877, 20.72, 0.305, 0.750, 0.601)

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 139
qos scoreðpas1Þ ¼ 0:147; qos scoreðpas2Þ ¼ 0:463;
qos scoreðpas3Þ ¼ 0:437; qos scoreðpas4Þ ¼ 0:525;
qos scoreðpas5Þ ¼ 0:363; qos scoreðpas6Þ ¼ 0:200;
qos scoreðpas7Þ ¼ 0:332; qos scoreðpas8Þ ¼ 0:368;
qos scoreðpas9Þ ¼ 0:402; qos scoreðpas10Þ ¼ 0:558 ð13Þ

It is easy to see from (13) that pas10 has maximal QoS score
among all agent services, and this agent service will be selected
as optimal one with QoS performance.

In traditional agent service matchmaking algorithm, the first
agent service is usually selected as match result, i.e., pas1. In
Zhang’s algorithm [13], the track records concept is equivalent to
the fifth QoS attribute in our algorithm, i.e., reputation. So, the cor-
responding evaluation matrix in Ref. [13] by using Zhang’s algo-
rithm is as follows:

ð14Þ

where each row denotes numbers of different satisfactory degree
(strong satisfaction, satisfaction, etc.) for each agent. The result
QoS scores of each agent are: �1, 1.33, 1.33, 0.67, �1.33, �3.33,
�1, 1.33, 0.67, 1. As a result, pas2, or pas3, or pas8 with maximal va-
lue (1.33) will be selected. Finally, Jiang’s algorithm [14] will be
compared with our proposed algorithm, and fidelity factor is not
considered by Jiang’s algorithm. The overall QoS scores of each
agent service by using their algorithm are: 0.218, 0.594, 0.576,
0.880, 0.503, 0.501, 0.562, 0.521, 0.562, 0.858. Obviously, pas4 (score
is 0.880) is optimal agent service.

We can see from normalizing matrix M in formula (12), QoS
performance (0.82, 0.85, 1.00, 0.89, 0.77) of pas10 gives slightly
worse than performance (1.00, 0.70, 0.99, 1.00, 0.81) of pas4. But,
fidelity performance of QoS attributes of pas10 (0.51, 0.65, 0.45,
0.47) is evidently better than that of pas4 (0.41, 0.76, 0.38, 0.26).
This phenomenon shows that some service providers usually claim
their higher QoS attribute performance like pas4, but if the confi-
dence fidelity or users’ feeling degree is also considered when
selecting agent service, the overall quality or performance for these
services is not necessarily optimal. This point accords with the
practical situation on Internet, such as e-business, online shopping,
in which, people have always compromised selection need service
between quality and users’ evaluation. Therefore, our proposed
QoS matchmaking algorithm is effective and reasonable.
6. Simulation experiments on QoS matchmaking

Effectiveness of our proposed QoS matchmaking algorithm has
been shown in Section 5.3. Next, we will further evaluate QoS
matchmaking algorithm through simulation experiments.

6.1. Impact of fidelity factor on matchmaking

One of important characteristics in our proposed algorithm is
introducing of fidelity factor for QoS attributes. To evaluate the im-
pact of fidelity on the final matchmaking results, we conduct the
following simulations and compare the matchmaking results of
our algorithm with Jiang’s algorithm [14].

For the sake of simple, suppose that there are 10 agent services
satisfying semantic similarity constraint to be selected. At each
experiment, we randomly generate QoS attributes and fidelity val-

140 Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143
ues of each agent service according to the following strategy: time
is randomly distributed between 10 and 100 ms; cost is uniformly
distributed [70,100] $; reliability, maintainability, reputation is ran-
domly generated in [0,1]. The fidelity for the first four attributes is
in [0,1]. At each experiment point, we record average values M of
normalizing matrix M and average fidelity values F of matrix F of
selected agent service with highest score by using Jiang’s algorithm
and our algorithm, respectively, i.e.,

MðiÞ ¼
P5

j¼1Mi;j

5
; FðiÞ ¼

P4
j¼1fidi;j

4
ð15Þ

where i is numbering of agent service with highest QoS perfor-
mance selected by using Jiang’s algorithm or our algorithm. Let
Qei(i) in formula (16) denote QoS evaluation index for current algo-
rithm, in order to measure final QoS evaluation of selected agent
service. The higher the Qei, the greater the comprehensive quality
performance. In which, r1 and r2 are evaluation weight for QoS
attribute and fidelity factor.

Q eiðiÞ ¼ r1 �MðiÞ þ r2 � FðiÞ;r1 ¼ r2 ¼ 0:5 ð16Þ

Simulations are divided into three groups for different weight
values of the QoS attributes in formula (11) considering different
users’ quality preference. Group 1: w1 = w2 = w3 = w4 = w5 = 0.2,
denoting unbiasedness; Group 2: w1 = w2 = 0.35,w3 = w4 = w5 = 0.1,
showing preference for time and cost; Group 3: w1 = w2 =
0 5 10 15 20 25 30 35 40 45 5
0.2

0.4

0.6

0.8

1

of

Q
oS

 E
va

lu
at

io
n

In
de

x

0 5 10 15 20 25 30 35 40 45 5
0.2

0.4

0.6

0.8

1

of

Q
oS

 E
va

lu
at

io
n

In
de

x

0 5 10 15 20 25 30 35 40 45 5
0.2

0.4

0.6

0.8

1

of

Q
oS

 E
va

lu
at

io
n

In
de

x

(a) results for

(b) results for

(c) results for

Fig. 6. A comparison on QoS evaluation index of select
0.125,w3 = w4 = w5 = 0.25 showing preference for other attributes.
For each group, we run the experiments 100 times. The simulation
results are shown in Fig. 6.

It can be seen from three subfigures in Fig. 6 that our algorithm
gives slightly higher performance than Jiang’s algorithm. In some
experiment points, same agent service is selected by two algo-
rithms. The results demonstrate better compromised selection be-
tween quality and users’ evaluation in our algorithm.
6.2. Impact of attribute weight values on matchmaking

To show the impact of weight values of QoS attributes on
matchmaking, a similar simulation method to example in Section
5.3 will be adopted. For each experiment point, assume there are
100 similar tasks (or agent service requests) and 15 candidate
agent service providers. For each request, we randomly delegate
a request to an agent service, and randomly generate QoS attribute
values and its fidelity values. In these attributes, time is randomly
distributed between 10 and 100 ms; cost is uniformly distributed
[10,150] $; reliability, maintainability, reputation is randomly gener-
ated in [0,1]. The fidelity for the first four attributes is in [0.5,1].
The maximal and minimal values of each attribute for 15 agent ser-
vices are recorded in each point.

Simulations are divided into three groups for different weight
values according to different users’ quality preference as following.
0 55 60 65 70 75 80 85 90 95 100

 experiments

Our algorithm Jiang algorithm

0 55 60 65 70 75 80 85 90 95 100

 experiments

Our algorithm Jiang algorithm

0 55 60 65 70 75 80 85 90 95 100

 experiments

Our algorithm Jiang algorithm

 1th Group Experiment

 2nd Group Experiment

 3rd Group Experiment

ed optimal agent service for three different group.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

20

40

60

80

100

of experiments

tim
e

(m
s)

mintime maxtime exp1time exp2time exp3time

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
20

40

60

80

100

120

140

of experiments

co
st

 ($
)

mincost maxcost exp1cost exp2cost exp3cost

(a) The time value of agent service with highest QoS performance for 50 experiments

(b) The cost value of agent service with highest QoS performance for 50 experiments

Fig. 7. The time and cost values of agent service with highest QoS performance.

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 141
Group 1: w1 = w2 = 0.35,w3 = w4 = w5 = 0.1, showing preference
for time and cost;

Group 2: w1 = w2 = 0.1,w3 = w4 = 0.35,w5 = 0.1, showing prefer-
ence for reliability and maintainability;

Group 3: w1 = w2 = w3 = w4 = 0.15,w5 = 0.4, showing preference
for reputation.

For each group, we run the experiments 50 times and select an
agent service with highest score by using our algorithm for each
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2
0

0.2

0.4

0.6

0.8

1

of

re
lia

bi
lit

y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 2
0

0.2

0.4

0.6

0.8

1

of

m
ai

nt
ai

na
bi

lit
y

minreliability

(a) The reliability value of agent service w

(b) The maintainability value of agent servic

Fig. 8. The reliability and maintainability values of
time. Then we observe the relationship between maximal/minimal
values and its attribute value.

Fig. 7 shows the time and cost values of selected agent service
with highest QoS performance. It is easy to see from two subfigures
that the experiment results in Group 1 are most close to their min-
imal values due to negative attributes, i.e., black curves.

Fig. 8 shows the reliability and maintainability values of selected
agent service with highest score. We can see that the experiment
results in Group 2 are most close to their respective maximal val-
5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
experiments

5 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
experiments

maxreliability exp1reliability exp2reliability exp3reliability

minmt maxmt exp1mt exp2mt exp3mt

ith highest QoS performance for 50 experiments

e with highest QoS performance for 50 experiments

agent service with highest QoS performance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of experiments

re
pu

ta
tio

n

minreputation maxreputation exp1reputation exp2reputation exp3reputation

Fig. 9. The reputation values of agent service with highest QoS performance.

142 Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143
ues, i.e., two red curves. This phenomenon is expected because
they belong to positive attributes, the higher value, the better
performance.

Finally, the reputation values of selected agent service with
highest score are shown in Fig. 9. Due to same reason for Fig. 8
and preference for reputation on weight value, the experiment re-
sults in Group 3 are most close to maximal values, i.e., blue curve.

7. Conclusion

In this paper, we discuss the agent service matchmaking prob-
lem for autonomic element, which has been taken as one of the
most important issue in field of autonomic computing. We consider
together the factors of semantic and QoS, and propose an agent ser-
vice description model named ASDM_SQ. Further, a matchmaking
algorithm so-called ASMA_SQ with semantic and QoS constraints
is presented to find the agent service satisfying both the given
semantic similarity threshold and optimal QoS performance. The
whole algorithm consists of two phases, one is semantic similarity
matchmaking, and the other is QoS similarity matchmaking.

ASMA_SQ algorithm has following features:

(1) The semantic and QoS factors are considered synthetically,
which can both overcome the shortcoming of heterogeneity
of service description based on traditional syntax, increase
precision ratio, and satisfy different needs came from agent
service requestor to service performance;

(2) During matchmaking for semantic similar matchmaking, the
distance-based and set-theory methods are used to compute
similar, respectively. These methods are simple and effec-
tive. Moreover, they can be used to overcome the shortcom-
ing that the conceptions are difficult to be distinguished on
equal conditions, and the matchmaking result is not perfect;

(3) The final characteristic is that we introduce evaluation
mechanism of confidence of individual QoS attributes during
QoS matchmaking, i.e., fidelity factor for each attribute,
which will overcome drawbacks such as subjectiveness
and unfairness and improve the self-configuration capability
for agent element. Simulation experiments demonstrate the
effective and correction of our algorithm for agent service
matchmaking, and perform better performance in terms of
QoS than other existing algorithm. Simulations show also
that our algorithm has better compromise between attribute
quality and users’ evaluation when selecting agent service.
Acknowledgements

This work is supported by the National Natural Science Founda-
tion of China under Grant No. 90718021.
References

[1] M. Parashar, S. Hariri, Autonomic computing: an overview, Lecture Notes in
Computer Science 3566 (2005) 257–269.

[2] J. Kephart, D. Chess, The vision of autonomic computing, IEEE Computer
Society (1) (2003) 41–59.

[3] T. Gerald, M.C. David, E.W. William, D. Rajarshi, S. Alla, W. Ian, O.K. Jeffrey, R.W.
Steve, A multi-agent systems approach to autonomic computing, in:
AAMAS’04: Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, New York, NY, USA, 2004, pp.
464–471.

[4] D.W. Tom, H. Tom, Towards autonomic computing: agent-based modeling,
dynamical systems analysis, and decentralized control, in: INDIN’03:
Proceedings of the First IEEE International Conference on Industrial
Informatics, Banff, Alberta, Canada, 2003, pp. 470–479.

[5] G.J. Wickler, Using Expressive and Flexible Action Representations to Reason
about Capabilities for Intelligent Agent Cooperation, Ph.D. Thesis, University of
Edinburgh, Edinburgh, UK, 1999.

[6] K. Sycara, S. Widoff, M. Klusch, J.G. Lu, LARKS: dynamic matchmaking among
heterogenous software agents in cyberspace, Autonomous Agents and Multi-
Agent Systems 5 (2) (2002) 173–203.

[7] K. Sycara, M. Klusch, J.G. Lu, S. Widoff, Matchmaking among heterogeneous
agents on the Internet, in: Proceedings of AAAI Spring Symposium on
Intelligent Agents in Cyberspace, Stanford, USA, 1999, pp. 40–46.

[8] M. Klusch, K. Sycara, Brokering and matchmaking for coordination of agent
societies: a survey, in: A. Omicini et al. (Eds.), Coordination of Internet Agents,
Springer, 2001.

[9] K. Arisha, S. Kraus, F. Ozcan, R. Ross, V.S. Subrahmanian, T. Eiter, S. Kraus,
Impact: a platform for collaborating agents, IEEE Intelligent Systems 14 (2)
(1999) 64–72.

[10] H.E. Lu, Agent services description and matching, in: PDPTA’03: Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications, Las Vegas, Nevada, USA, 2003, pp. 1040–1048.

Z. Kun et al. / Knowledge-Based Systems 23 (2010) 132–143 143
[11] Z.Z. Shi, Y.C. Jiang, H.J. Zhang, M.K. Dong, Agent service matchmaking
based on description logic, Chinese Journal of Computers 27 (5) (2004) 625–
635.

[12] J. Hu, J. Gao, B. Zhou, B.S. Liao, J.J. Chen, Ontology based agent services
compatible matchmaking mechanism, in: ICMLC’03: Proceedings of the Third
International Conference on Machine Learning and Cybernetics, Shanghai, PR
China, 2004, pp. 111–116.

[13] Z.L. Zhang, C.Q, Zhang, An improvement to matchmaking algorithms for
middle agents, in: AAMAS’02: Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, Bologna, Italy,
2002, pp. 1340–1347.
[14] Y.C. Jiang, Z.Z. Shi, Quality of service driven agent service matchmaking, Mini–
Micro Systems 26 (4) (2005) 687–692.

[15] N.R. Jennings, On agent-based software engineering, Artificial Intelligence 177
(2) (2000) 277–296.

[16] Y.H. Li, Z.A. Bandar, D. McLean, An approach for measuring semantic similarity
using multiple information sources, IEEE Transactions on Knowledge and Data
Engineering 15 (4) (2003) 871–882.

[17] M.A. Rodriguez, M.J. Egenhofer, Determining semantic similarity among entity
classes from different ontologies, IEEE Transactions on Knowledge and Data
Engineering 15 (2) (2003) 442–456.

[18] A. Tversky, Features of similarity, Psychological Review 84 (4) (1977) 327–352.

	Agent service matchmaking algorithm for autonomic element with semantic and QoS constraints
	Introduction
	Autonomic computing based on agent
	Related work of matchmaking in agents
	Autonomic element agent service description model
	Our proposed matchmaking algorithm
	Definitions and basic ideas
	Semantic similarity matchmaking phase
	QoS matchmaking phase

	Simulation experiments on QoS matchmaking
	Impact of fidelity factor on matchmaking
	Impact of attribute weight values on matchmaking

	Conclusion
	Acknowledgements
	References

