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allowing for hundreds of regimes in the volatility. Our in-sample results suggest that MSM
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1. Introduction

In recent years, large fluctuations in crude oil prices
have caused grave concern among both market partici-
pants and regulators. One of the reasons for this concern
is that the oil price uncertainty has a significant impact on
the economy (Elder & Serletis, 2010). Theories of both in-
vestment under uncertainty and real options predict that
an uncertainty about oil prices can depress current invest-
ment (Bernanke, 1983; Brennan & Schwartz, 1985; Henry,
1974; Majd & Pindyck, 1987). In addition, the volatility is
a key input in pricing options and a major determinant of
the value at risk (VaR). Therefore, the modeling and fore-
casting of the crude oil return volatility are of considerable
interest among academics.

In the literature on the forecasting of volatility, the fam-
ily of generalized autoregressive conditional heteroscedas-
ticity (GARCH) models (Bollerslev, 1986) has been used
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widely for capturing the dynamics of oil return volatility
(see for example Alizadeh, Nomikos, & Pouliasis, 2008; Giot
& Laurent, 2003; Kang, Kang, & Yoon, 2009; Mohammadi &
Su, 2010; Narayan & Narayan, 2007; Nomikos & Pouliasis,
2011; Sadorsky, 2006; Wang & Wu, 2012; Wei, Wang, &
Huang, 2010). However, several shortcomings of GARCH-
class models have been observed. First, most GARCH-
class models can only capture the characteristic of short
memory, rather than long-range dependence, even though
long-range dependence in volatility has been documented
commonly in the literature. The fractional integrated
GARCH (FIGARCH) of Baillie, Bollerslev, and Mikkelsen
(1996) and its extensions seem to capture the long mem-
ory in volatility well. However, the unanimous finding of
hyperbolic decay of the autocorrelation function of abso-
lute returns or squared returns is more likely to be a fic-
tion due to unaccounted structural breaks, rather than the
“genuine” one revealed by FIGARCH. Lamoureux and Las-
trapes (1990) argue that the persistence implied by GARCH
models becomes much weaker following the incorpora-
tion of structural breaks. Specifically, Lee, Hu, and Chiou
(2010) show empirically that some sudden events (e.g., the
Iraqi invasion of Kuwait and the Gulf Wars) result in an
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increase in the permanent component of the conditional
variance, which is evidence of structural breaks. The sim-
ple regime switching process can capture structural shifts
in the volatility well, but can also lead to the spurious find-
ing of fractional integration (Granger & Terasvirta, 1999)
and exponential rather than hyperbolic decay of the auto-
correlation function (Ryden, Terasvirta, & Asbrink, 1998).
Baillie and Morana (2009) claim that the proposed adap-
tive FIGARCH (AFIGARCH) incorporates both long mem-
ory and structural breaks by allowing the intercept of
FIGARCH to follow a slowly varying function specified by
Gallant’s (1984) flexible functional form. As was pointed
out by Wang, Bauwens, and Hsiao (2013), this paramet-
ric model is less efficient if there are no structural breaks
in the sample period. In addition, the AFIGARCH model
has the problem of needing to determine the order of the
trigonometric terms in the Gallant flexible functional form,
in addition to the order of the specification of the station-
ary components in the conditional variance equation. For
larger values of the order of the trigonometric terms, the
AFIGARCH model has more parameters that need to be es-
timated, and hence is more likely to result in over-fitting,
where a model includes irrelevant explanatory variables
that may improve the in-sample fitting but cause a poorer
out-of-sample performance.

Second, GARCH-class models cannot accommodate the
property of multiscaling (or multifractality) (Lux & Kaizoji,
2007), which is a well-known stylized fact in economic
data (Cont, 2001). The scaling property, which is a concept
borrowed from statistical physics, defines the behaviors of
some forms of volatility measures (e.g., the squared or ab-
solute returns) as a function of the time interval on which
the returns are computed.' The scaling behavior is char-
acterized by the so-called Hurst exponent and its related
index. If g-order moments of the distributions of price in-
crements display different scaling behaviors for different
values of g, a multiscaling behavior is revealed. The inves-
tigation of scaling behaviors in economic and financial data
has expanded considerably since the work of Mandelbrot
(1963) (see for example Mandelbrot, 1997, 2001; Man-
tegna & Stanley, 1995; Muller et al., 1990; Stanley & Plerou,
2001). Multiscaling in crude oil markets, which is what we
are interested in, is also found in a few studies (Alvarez-
Ramirez, Alvarez, & Rodriguez, 2008; Wang & Liu, 2010;
Wang & Wu, 2013). Traditional GARCH-class models are
always related to the dynamics of squared returns rather
than to another order of moments, and therefore, they do
not take into account multiscaling behavior in price move-
ments. The recent empirical study by Wang, Wei, and Wu
(2011) also shows the lack of ability of GARCH-class mod-
els to capture multiscaling volatility in crude oil markets.

In this paper, we use the Markov switching multifrac-
tal (MSM) model of Calvet and Fisher (2001) to forecast
the crude oil market volatility. This model is motivated

1 There is also another type of scaling behavior that is studied in
the economics literature: the behavior of the tails of the distribution of
returns as a function of the size of the price changes, but the interval on
which the returns are measured is constant. This type of scaling behavior
is measured by a tail index of the distribution.

by the stylized fact of multiscaling behavior or multifrac-
tality in financial data. The MSM model assumes a hi-
erarchical and multiplicative structure of heterogeneous
volatility components, which differs fundamentally from
conventional volatility models (such as GARCH-class ones)
(Lux & Kaizoji, 2007). The advantage of a MSM model over
the conventional regime-switching model is that, while the
number of parameters grows quadratically as the number
of states increases in a regime-switching model, the MSM
model is more parsimonious in parameterization, even
after allowing for hundreds of states in order to capture
possible structural changes. The MSM model is known to
generate outliers and long memory in the volatility and
to decompose the volatility into components with hetero-
geneous decay rates (Calvet & Fisher, 2004). Therefore, it
can address the aforementioned problems of traditional
volatility models well.

We apply the MSM model to West Texas Intermediate
(WTI) and Brent crude oil return data. We compare its
in-sample and out-of-sample performances with those of
several traditional models, including the popular GARCH-
class models and the historical volatility (HV) model.
Our in-sample results based on Vuong's (1989) closeness
test suggest that MSM models fit the data significantly
better than GARCH-class models. For the comparison of
out-of-sample performances, we use six loss functions to
evaluate the forecast accuracy. An advanced econometric
test named the model confidence set (MCS; see Hansen,
Lunde, & Nason, 2011) is employed to examine further
whether the differences in forecasting losses among
different models are statistically significant. We find that
MSM models produce more accurate forecasts than either
GARCH-class models or the HV model for most of the
loss functions employed. The GARCH and HV models are
always excluded from MCS at the 90% confidence level,
while the MSM models are included in MCS under most
loss criteria. Based on the empirical evidence, we conclude
that the MSM models outperform the GARCH-class models
for forecasting the crude oil market volatility.

The remainder of this paper is organized as follows.
Section 2 provides a general description of MSM models
for forecasting the volatility. Section 3 describes the data
and provides some preliminary analysis. Section 4 reports
the empirical results, and Section 5 concludes.

2. Forecasting models

2.1. Markov switching multifractal (MSM) volatility model

We forecast the crude oil return volatility using the
MSM volatility model introduced by Calvet and Fisher
(2001). The MSM volatility model assumes that the
underlying return follows a discrete-time Markov process
with multifrequency stochastic volatility.?

We denote by ¢; the innovations of crude oil returns, r,
which can be expressed as r; = u; + &, where u, is the
conditional mean. MSM models the innovations &; in the

2 We use the ML estimator of the MSM model. For a detailed
presentation of the ML estimator, see Calvet and Fisher (2004).



Y. Wang et al. / International Journal of Forecasting 32 (2016) 1-9 3

following framework of stochastic volatility models (Calvet
& Fisher, 2001, 2004):

P 1/2
&t = OtZt, O =0 (1_[ Mi,t) s (1)
i=1

where o is a positive constant and the random vari-
ables {z;} are iid. with standard normal distribution
(i.e., zz ~N(0,1)). For k € {1, 2, ..., k}, the random mul-
tipliers or volatility components My, are persistent and
satisfy the condition My, > 0 and E(My;) = 1. For the
sake of simplicity, we follow Calvet and Fisher (2004) by
assuming that the k multipliers are independent at any
given time. Given the vector of volatility components M; =

(M1, My, ..., Mg,), foranym = (my, my, ..., mp) € R¥

we define the function g(m) = ]_[f‘:1 m;, and the stochastic
volatility process can be written as o; = o[g(M,)]/2.

It can be seen that the volatility dynamics are driven
by the stochastic process of the vector M;. Following the
suggestion of Calvet and Fisher (2004), we assume that
M, is first-order Markov, for parsimony. The state vector
M; is unobservable, and should be inferred recursively by
Bayesian updating. For k € {1,2,..., k}, the multiplier
M is drawn from a fixed distribution M with probability
Y& and is equal to its value in the previous period My ;_1
with probability 1 — y4. The transition probabilities y =
(Y1, ¥2. - - ., vg) are specified as

k_
n=1-1—y)®", (2)

where y; € (0, 1) and b > 1. Since we have y; < -+ <
% < 1 < b, (4, b) is used to specify the set of transition
probabilities. This feature of transition probabilities is con-
sistent with the definition of multifractality (Calvet, Fisher,
& Mandelbrot, 1997; Fisher, Calvet, & Mandelbrot, 1997;
Mandelbrot, Fisher, & Calvet, 1997), and is responsible for
multifractality in financial data. The only restriction in this
multifractal process is: M > 0 and E(M) = 1. Calvet and
Fisher (2004) suggest that M can be taken simply as a bino-
mial random variable with a value of either mg or 2 — mg,
with probability 0.5. In summary, the MSM volatility model
has only four parameters (my, o, b, y¢) that require esti-

mation, even if the number of states (2¥) is very large.

2.2. GARCH-class models

We compare the forecasting performance of the MSM
volatility model with those of several popular GARCH-
class models. Five GARCH-class models with different
specifications are considered. The first is the GARCH model
of Bollerslev (1986), which is the most popular volatility
model other than the ARCH model introduced by Engle
(1982). The GARCH (1,1) can be written as follows:

r= e+ & =+ hg/zm, ne ~ iid(0, 1),
hy =w+058t2_1 + Bhe_1, (3)

3 This specification is connected with the discretization of a Poisson
arrival process. For a detailed introduction to this specification, see Calvet
and Fisher (2001).

where u, denotes the conditional mean and h; is the
conditional variance with the sufficient conditions w >
0,a > 0,8 > 0toensure h;y > 0.

Another model employed in this paper is the integrated
GARCH (IGARCH) proposed by Engle and Bollerslev (1986).
This model assumes an infinite persistence in the condi-
tional volatility. The specification of IGARCH(1,1) is the
same as that of GARCH(1,1), but with the parameter re-
strictiono 4+ 8 = 1.

In order to take possible asymmetries into account,
Glosten, Jagannathan, and Runkle (1993) propose a GJR
model. The specification for the conditional variance of
GJR(1,1) is given by

he = o+ [a + yl(e—1 < 0)] 5}2_1 + Bh_1, (4)

where I(-) is an indicator function, i.e., I(-) is 1 when
the condition (-) is met, and O otherwise. The sufficient
condition for confirming hy > Oisw > 0, > 0,8 >0
and @ + y > 0. The asymmetric effect is captured by the
coefficient y, with y > 0.

Another popular model that is capable of dealing with
asymmetric effects is the exponential GARCH (EGARCH)
proposed by Nelson (1991). The EGARCH is given by

log(hy) = o+ o (Ine—1| — E [ne—1])
+¥ne—1 + Bloghe_1). (5)

As was claimed by Nelson (1991), there are no parameter
restrictions with EGARCH.

The abovementioned GARCH-class models assume that
the volatility autocorrelation decays at an exponential
rate. Baillie et al. (1996) propose a fractionally integrated
ARCH model (FIGARCH) that allows the volatility autocor-
relation to decay at a hyperbolic rate. Interestingly, the
FIGARCH(1, d, 1) nests the GARCH(1,1) with d = 0. The
FIGARCH(1, d, 1) model can be written as

ht = w+ ﬁh[_l
+[1 -1 -8 - ¢l —L)"e, (6)

where0 < d < 1,w > 0,¢,8 < 1,dis the fractional
integration parameter, and L is the lag operator. The pa-
rameter d characterizes the long memory property in the
volatility. The advantage of the FIGARCH process is that for
0 < d < 1, it is sufficiently flexible to allow for inter-
mediate ranges of persistence, between the complete inte-
grated persistence of the volatility shocks that is associated
withd = 1and the geometric decay that is associated with
d=0.

In summary, in addition to MSM volatility models, we
also use five GARCH-class models to describe and forecast
WTI and Brent crude oil return volatilities, namely the
standard GARCH(1,1), IGARCH, GJR, EGARCH and FIGARCH.

3. Data and preliminary analysis

We use daily spot price data for West Texas Intermedi-
ate (WTI) and Brent crude oil. The sample covers the pe-
riod from January 4, 1993, to September 9, 2013, resulting
in 5141 observations. Our data are obtained from the U.S.
Energy Information Administration (EIA).
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Fig. 1. Prices, returns and volatilities of crude oil.

Taking P; to be the oil price on day t, we use the
percentage daily price return, r,, which can be written as
1, = 100 x (log(P;) —log(P;_1)). The squared daily returns
are taken as a proxy for the actual volatilities.

Fig. 1 plots the prices, returns and volatilities of crude
oil. It is evident that some aggregate demand and supply
shocks can lead to large fluctuations in crude oil markets.
For example, as a typical case of an oil demand shock, the
Asian financial crisis in 1998 resulted in large crashes in
crude oil prices. The largest oil price change in our sample
period occurred in September 2001, shortly after the “9/11
terrorist attack”. The second Gulf War in 2003 led to
decreases in oil production, thus causing sharp increases in
oil prices in a short period of time. Driven by the economic
boom in emerging economies, the oil price experienced
persistent increases from 2003 to 2008. Due to the global
economic recession triggered by the subprime crisis in the
U.S., the oil price dropped quickly in the second half of
2008. From this general review of the history of oil prices,
we can see that oil prices demonstrate a high uncertainty
over time. Considering the essential role played by crude
oil in the world economy, the problem of managing the
oil price risk is of great interest for economists, market
participants and policy makers.

Table 1 reports the descriptive statistics of crude oil
returns. We can see that the WTI and Brent returns

display similar statistical properties. This can be explained
by the high degree of integration in world crude oil mar-
kets (see, e.g. Adelman, 1984; Fattouh, 2010). Specifically,
the mean values of crude oil returns are close to zero, while
the standard deviations are tens of times larger. The Jar-
que-Bera statistics reject the null hypothesis of a Gaussian
distribution at the 1% significance level. This stylized fact
of a fat-tailed distribution is also evidenced by the nega-
tive skewness and positive excess kurtosis. The Ljung and
Box (1978) Q statistics for serial correlation show that the
null hypothesis of no autocorrelation up to the 10th or
20th orders is rejected at the 1% significance level for both
returns and volatilities, implying the existence of auto-
correlations. The F-statistics of the ARCH test consistently
indicate the existence of ARCH effects in oil returns. The
presence of strong ARCH effects may be the reason why
GARCH-class models are used widely in financial time se-
ries analysis and are appreciated in risk management. Ta-
ble 1 also gives the results of unit root tests. The augmented
Dickey and Fuller (1979) and Phillips and Perron (1988)
statistics both show rejections of the null hypothesis of a
unit root in oil returns. The test statistic of Kwiatkowski,
Phillips, Schmidt, and Shin (1992) cannot reject the null
hypothesis of stationarity. Overall, the evidence from unit
root tests reveals the crude oil return process to be
stationary.
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4. Empirical results

4.1. In-sample performance

We describe and forecast oil return volatility dynamics
using a Markov switching multifractal (MSM) volatility
model. Table 2 reports the estimation results of MSM(k)
for WTI and Brent oil price returns, where the hierarchical
level k varies from 1 to 10. We find that MSM(7) (128
regimes) and MSM(10) (1024 regimes) fit WTI oil returns
almost equally well, and better than the other MSM
models, as is evidenced by the higher log-likelihoods of
these two models. Meanwhile, MSM(6) (64 regimes) fits
Brent returns best.

We compare the in-sample performances of MSM with
those of several popular GARCH-class models.* Table 3
shows the results based on Vuong's (1989) test. We choose
MSM(10) and MSM(6) as benchmarks for modeling the
WTI and Brent oil return volatilities, respectively, because
they fit the data better than the other MSM models. The test
statistics indicate that the selected MSM models fit the oil
return data better than the GARCH-class models at the 1%
significance level.

4.2. Out-of-sample performance

Market participants are generally more interested in
models’ out-of-sample performances than their in-sample
performances, because they are more concerned about
how well they can do using these volatility models in the
future. Therefore, we now compare the forecasting abilities
of the MSM and GARCH models.

Our forecasting procedure divides the sample period
into two subsamples: the in-sample period for parameter
estimation, covering the first 1000 trading days, and the
out-of-sample period for forecast evaluation, covering
the last 4141 days. We compute 1- and 20-day-ahead
forecasts. For the sake of computational convenience, we
re-estimate the model parameter every 20 days using the
rolling window method, where the window length is 1000
observations. Thus, the parameters are fixed within the
20-day window, and only the data are updated. This fixed
parameter and rolling window forecast scheme follows the
work of Laurent, Rombouts, and Violante (2012) to satisfy
the assumptions of the MCS test (Hansen et al., 2011) for
comparing the forecasting abilities of nested models.

As has been pointed out by researchers (see, e.g. Boller-
slev, Engle, & Nelson, 1994; Diebold & Lopez, 1996; Lopez,
2001), it is difficult to determine which is the best loss
function for evaluating forecasting performances. There-
fore, we employ the following six popular loss function cri-
teria, rather than making a single choice:

T

MAE1=ﬁ Z

t=N+1

A

he — he|, (7)

4 To save space, the parameter estimates of these GARCH-class models
are not given here, but are available upon request.

Table 1
Descriptive statistics of crude oil price returns.
WTI Brent

Mean 0.031 0.036
Std. dev. 2414 2.251
Maximum 16.41 18.13
Minimum —17.09 —19.89
Skewness —0.181 —0.103
Excess kurtosis 4.892 5.126
Jarque-Bera 51405 5636.3
Q(10) 31.84 23737
Q(20) 4317 4554
Q%(10) 11048 5215
Q%(20) 1927. 2"‘ 963.5
ARCH(10) 55.15 3170
ARCH(20) 35.23" 2199
ADF —7237 " —70.15 "
PP —72.88" —70.14"
KPSS 0.048 0.050

Note: Std. Dev. is the daily standard deviation. The Jarque and Bera (1980)
statistic tests for the null hypothesis of a Gaussian distribution. ADF, PP
and KPSS denote statistics from the augmented Dickey and Fuller (1979),
Phillips and Perron (1988) and Kwiatkowski et al. (1992) unit root tests,
respectively. The optimal lag length of the ADF test is chosen based on
the Schwarz information criterion (SIC) (Schwarz, 1978), and the optimal
bandwidths of the PP unit root test and the KPSS stationarity test are
determined based on the Newey-West criterion (Newey & West, 1994).
The null hypothesis of the ADF and PP tests is a unit root, and that of
the KPSS test is stationarity. Q (I) and Q2 (I) are the Ljung and Box (1978)
statistics of the return and squared return series for up to Ith order serial
correlation, respectively.
* Denotes rejection of the null hypothesis at the 10% significance level.
= Denotes rejection of the null hypothesis at the 5% significance level.
™ Denotes rejection of the null hypothesis at the 1% significance level.

MAE, = , (8)

=)

i (he—n0)". ()
MSE; — i (Vi - ) (10)

i

=)

MSE; =

QLIKE = (ln(fu) + ht/ﬁ[) , and (11)

R’LOG = (m(h[/ﬁ[))2 , (12)

where h; and ﬁt are the actual volatility and volatility
forecasts, respectively. T is the length of the full sample
(T = 5140), and N is the length of the in-sample dataset
(N = 1000). MAE and MSE are the mean absolute error and
the mean squared error, respectively. QLIKE corresponds
to the loss implied by a Gaussian likelihood, and R? LOG is
similar to the R? of the Mincer-Zarnowitz regressions.
However, one major limitation of these loss functions
is that they cannot tell us whether the differences
in forecasting accuracy among different models are
statistically significant. To address this issue, we use the
model confidence set (MCS) method, a test that was
proposed by Hansen et al. (2011). The idea behind this test
is that the data available may be not informative enough to
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Table 2
Estimation results of MSM models.
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
WTI oil market
o 1.500 9.453 7.329' 11.06" 8.697 5.256 3.980 " 20.69 3.844 3.235'
b (1.500) (1.881) (3.021) (3.398) (3.551) (4.785) (6.111) (439.7) (5.890) (6.438)
o 1682 1576 1.478" 1434 1.389 " 1.344" 1314 1443 13117 1.288"
0 (101.6) (85.58) (94.23) (90.95) (103.9) (96.53) (103.1) (145.7) (93.23) (95.01)
N 0.039" 0.056" 0.096 " 0.266 0.758 " 0.752" 0733 0432 0716 0.826
Vi (6.488) (4.369) (3.306) (3.143) (3.777) (3.359) (4.286) (83.20) (3.692) (4.500)
N 31927 2705 2.906 " 3.207 3.010 2.861 27227 24847 2087 20747
e (32.86) (39.61) (28.87) (29.72) (32.05) (20.56) (25.56) (33.43) (20.67) (24.86)
Log (L) —11316 —11228 —11188 —11185 —11179 —11178 —11175 —11188 —11176 —11175
Brent oil market
3 1.500 7.617 4178 7.941" 6.133" 8.121" 6.108 5.980 15.56 20.87
(1.500) (1.932) (2.326) (2.916) (2.197) (3.705) (2.042) (1.843) (4.498) (23.25)
o 1.569 1520 14217 1.376" 1.358"" 1.333" 1.358" 1.358" 1.356 1.389"
0 (109.3) (87.22) (100.6) (83.42) (68.20) (95.91) (64.04) (68.69) (95.50) (128.8)
N 0.020" 0.035" 0.029" 0.156 0.145 0.791" 0.144" 0.142" 0.969 0430
Vi (4.137) (3.882) (2.881) (2.447) (2.287) (4.430) (2.196) (1.996) (4.132) (4.660)
s 2627 25347 26817 2.599 2215 2.170° 23717 20357 2999 22347
(45.30) (42.28) (37.55) (28.47) (37.88) (35.18) (33.15) (36.48) (28.10) (45.67)
Log (L) —11102 —10998 —10971 —10964 —10963 —10962 —10964 —10964 —10965 —10968
Notes: The numbers in parentheses are t-statistics.
" Denotes rejections at the 10% significance level.
" Denotes rejections at the 5% significance level.
™" Denotes rejections at the 1% significance level.
Table 3
Results of Vuong’s (1989) closeness test.
WTI Brent
Likelihoods Statistics Likelihoods Statistics
GARCH —11293 —4.164" —11022 —3.146"
IGARCH —11299 —42417 —11024 —2981"
GJR —11292 —4,048" —11012 —2628"
EGARCH —11300 —3.818 —11018 —2.790"
FIGARCH —11283 —4.092" —11019 —3.460 "
MSM(1) —11316 —8.068 " —11102 —7.572"
MSM(2) —11228 —5220" —10998 —3.360"
MSM(3) —11188 —1.888 —10971 —1.185
MSM(4) —11185 —1.705 —10964 —0.596
MSM(5) —11179 —1.146 —10963 —0.424
MSM(6) —11178 —1.119 —10962 0
MSM(7) —11175 —0.290 —10964 —0.544
MSM(8) —11188 —2200" —10964 —0.609
MSM(9) —11176 —1.729 —10965 —0.872
MSM(10) —11175 0 —10968 —1.433

" Denotes rejections at the 10% significance level.
" Denotes rejections at the 5% significance level.
™" Denotes rejections at the 1% significance level.

yield a single model that can dominate all of its competitors
significantly. In such cases, one can only obtain a smaller
set of models, called the model confidence set, which
contains the best forecasting model at a given level of
confidence. Therefore, the models in the MCS perform
equally well at the given confidence level. To save space,
we do not provide a detailed description of the MCS test,
but refer interested readers to Hansen et al. (2011).

Table 4 shows the 1-day-ahead forecasting results for
the WTI return volatility. We also include the historical

5 To save space, we do not provide a detailed description of the MCS
procedure, but refer interested readers to Hansen et al. (2011). Some
recent studies also include applications of MCS (e.g. Laurent et al., 2012).

volatility (HV) model in our comparison. After all, all efforts
at volatility forecasting would be futile if none of the mod-
els could beat the historical volatility. We find that MSM
models have lower forecasting losses than the GARCH-
class models or the HA model under five of the six loss
functions, suggesting an improved forecasting accuracy.
Although the standard GARCH(1,1) has lower forecasting
losses than the MSM models under the QLIKE criterion, the
MCS results indicate that their forecasting accuracies are
not significantly different. Moreover, we can see that, un-
der four of the six losses, MCS only contains MSM(10). This
indicates that the MSM(10) forecasts are significantly more
accurate than their competitors, including the GARCH-
class models, HA and the other MSM models.
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Table 4
One-day-ahead forecasting results for WTI oil volatility.
MSE; MAE; MSE, MAE, QLIKE R’LOG

MSM(2) 246.50 6.655 3.065 1.344 2.672 6.401
MSM(4) 245.33 6.596 3.034 1.332 2.666 6.353
MSM(6) 245.28 6.614 3.035 1.332 2.665 6.328
MSM(8) 244.50 6.626 3.043 1.336 2.667 6.361
MSM(10) 245.52 6.572 3.017 1.326 2.667 6.301
GARCH 245.84 6.914 3.194 1.384 2.663 6.603
EGARCH 253.28 6.831 3.191 1.375 2.694 6.559
GJR 251.22 6.936 3.225 1.384 2.669 6.581
IGARCH 249.93 7.106 3.319 1.402 2.669 6.626
FIGARCH 246.77 6.933 3.208 1.384 2.666 6.582
Historical volatility 275.43 7.385 3.693 1521 2.872 7.355

Notes: The numbers in this table are loss functions. Values in bold indicate that the corresponding models have the lowest forecasting losses under a
pre-specified criterion. Underlined numbers indicate that the corresponding models are included in MCS. We perform 10,000 block bootstraps to generate

p-values for the MCS test. The confidence level for MCS is 90%.

Table 5
One-day-ahead forecasting results for Brent oil volatility.
MSE; MAE, MSE; MAE, QLIKE R’LOG

MSM(2) 205.84 5.774 2.667 1.266 2.568 6.872
MSM(4) 205.37 5739 2.647 1.260 2.565 6.838
MSM(6) 204.63 5.724 2.628 1.254 2.560 6.779
MSM(8) 205.73 5.760 2.655 1.261 2.565 6.823
MSM(10) 206.04 5.727 2.639 1.257 2.568 6.805
GARCH 205.58 5.947 2.736 1.285 2.554 6.914
EGARCH 209.40 6.004 2.799 1.308 2.597 7.048
GJR 205.17 5.933 2.710 1.282 2.544 6.894
IGARCH 208.63 6.123 2.838 1.309 2.558 6.982
FIGARCH 206.19 5.930 2.731 1.281 2.562 6.871
Historical volatility 218.59 6.226 3.049 1.389 2.733 7.646

Notes: The numbers in this table are loss functions. Values in bold indicate that the corresponding models have the lowest forecasting losses under a
pre-specified criterion. Underlined numbers indicate that the corresponding models are included in MCS. We perform 10,000 block bootstraps to generate

p-values for the MCS test. The confidence level for MCS is 90%.

Table 6
Twenty-day-ahead forecasting results for WTI oil volatility.
MSE; MAE; MSE, MAE, QLIKE R2LOG

MSM(2) 284.7 6.921 3.183 1.323 4.442 6.124
MSM(4) 269.5 6.758 3.079 1.319 4.435 6.202
MSM(6) 275.8 6.842 3.119 1.315 4.437 6.121
MSM(8) 269.9 6.748 3.064 1.308 4.430 6.123
MSM(10) 276.5 6.878 3.142 1.327 4.445 6.206
GARCH 268.1 7.095 3.266 1.371 4419 6.422
EGARCH 275.2 7.123 3.236 1.345 4.425 6.154
GJR 2674 7.138 3.322 1.381 4493 6.412
IGARCH 280.9 7.659 3.629 1.445 4.466 6.618
FIGARCH 330.1 8.634 4.337 1.603 4714 7.130
Historical volatility 305.6 7.824 3.850 1523 4.601 7.076

Notes: The numbers in this table are loss functions. Values in bold indicate that the corresponding models have the lowest forecasting losses under a
pre-specified criterion. Underlined numbers indicate that the corresponding models are included in MCS. We perform 10,000 block bootstraps to generate

p-values for the MCS test. The confidence level for MCS is 90%.

Table 5 reports the 1-day-ahead results for the Brent oil
return volatility. We still find that the MSM forecasts dis-
play lower losses than the GARCH-class ones under most of
the loss functions. MSM(6) generates more accurate fore-
casts than the other MSM models. MSM models are in-
cluded in MCS under five of the six loss criteria. HA and
the GARCH models are all excluded from MCS under four
loss criteria, suggesting that their forecasting accuracies
are significantly inferior to those of the MSM models. Ta-
bles 6 and 7 report the 20-day-ahead forecasting results

for the WTI and Brent oil return volatilities, respectively.
Here, we find that MSM models result in lower forecast-
ing losses than their competitors under most of the crite-
ria. MSM models are always included in MCS, while the
GARCH and HA models are excluded under most criteria.
Overall, the 20-day-ahead forecasting results are consis-
tent with the 1-day-ahead results. Based on this analysis,
we can generally conclude that the forecasting abilities of
MSM models are superior to those of traditional GARCH-
class models and the historical volatility model.
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Table 7
Twenty-day-ahead forecasting results for Brent oil volatility.
MSE; MAE; MSE, MAE, QLIKE R’LOG

MSM(2) 1905 6.574 3.030 1.369 4.443 6.947
MSM(4) 188.4 6.634 3.047 1376 4.419 6.972
MSM(6) 190.3 6.580 3.037 1371 4.434 6.942
MSM(8) 189.7 6.679 3.083 1.388 4435 7.029
MSM(10) 190.9 6.691 3.101 1.389 4.427 7.053
GARCH 189.6 7.050 3.275 1.452 4418 7.326
EGARCH 192.0 7.076 3.294 1.450 4.441 7.247
GJR 186.0 6.991 3.246 1.445 4.432 7.327
IGARCH 189.2 6.821 3.172 1.398 4417 7.132
FIGARCH 205.6 7.764 3.738 1.537 4.447 7.578
Historical volatility 199.8 7.280 3.496 1.522 4.531 7.724

Notes: The numbers in this table are loss functions. Values in bold indicate that the corresponding models have the lowest forecasting losses under a
pre-specified criterion. Underlined numbers indicate that the corresponding models are included in MCS. We perform 10,000 block bootstraps to generate

p-values for the MCS test. The confidence level for MCS is 90%.
5. Conclusions

Multifractality (or multiscaling) is a well-known styl-
ized fact in financial data. However, traditional volatil-
ity models such as GARCH-type models do not consider
this stylized fact. In this paper, we use a newly developed
multifractal Markov switching (MSM) volatility model to
capture and forecast the dynamics of the crude oil return
volatility. Based on Vuong's (1989) closeness test, we find
that the log-likelihoods of MSM models are significantly
greater than those of the GARCH-class ones, implying that
MSM models fit the oil returns data better.

We compute 1- and 20-day-ahead forecasts of MSM,
GARCH-class and historical volatility models. Six loss
functions are employed to quantify the forecasting loss. We
use an advanced test of the model confidence set (MCS; see
Hansen et al., 2011) to examine whether the differences
between the loss functions of the different models are
statistically significant. Our results indicate that MSM
models have lower forecast losses under most criteria. The
GARCH-class and HV models are always excluded from
MCS at the 90% confidence level. That is, MSM models have
greater forecasting abilities than the GARCH or HV models.

We would like to conclude this paper by outlining
some points which deserve further investigation. First, one
could investigate the performances of MSM models for
forecasting the value at risk. The estimation of the value at
risk depends on the reasonable assumption of innovations,
and is therefore beyond the scope of this paper. Second,
as the volatility is a key input in option pricing formulas,
it would be interesting to compare the performances of
MSM models and other popular models for oil option
pricing. Third, the univariate MSM models could be
extended to multivariate ones which could model the
covariances between two different asset returns, in order
to investigate hedging and asset allocations. For some
meaningful extensions of univariate to multivariate MSM
models, see Calvet, Fisher, and Thompson (2006) and Liu
and Lux (2013). Finally, we restrict the competition among
MSM models to models with up to 10 hierarchical levels.
Lux (2008) has provided evidence that adding additional
hierarchical layers could improve the forecasting capacity
of MSM further. Lux also proposed a GMM estimator
for MSM models where the computational costs for any
level k are negligible compared to the time-consuming ML

approach. Again, the use of MSM models with still higher
values of k might be worthwhile, as the model confidence
set would provide evidence on the added explanatory
power of such specifications. Overall, at least in this paper,
we have found MSM models to provide a more powerful
tool in modeling and forecasting the crude oil volatility
than traditional volatility models.
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