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Abstract
Permeability is one of the most important characteristics of

hydrocarbons bearing formations. Formation permeability is
often measured in laboratory from cores or evaluated from well
test data. However, core analysis and well test data are usually
only available from a few wells in a field. On the other hand,
almost all wells are logged.

This paper presents a nonparametric model to predict
reservoir permeability from a conventional well logs data using
artificial neural network (ANN). The ANN technique is
demonstrated with an application to one of Saudi oil fields. This
field is the largest offshore oil field in the world and was
deposited in a fluvial dominated deltaic environment.

The use of conventional regression methods to predict
permeability in this case was not successful. The ANN
permeability prediction model was developed from some of the
data set consisting of core permeability and well logs data from
three early development wells. The ANN model was built and
trained from some of the well logs data and their corresponding
core measurements by using a back propagation neural network
(BPNN). The resulted model was blind tested using data, which
was withdrawn from the modeling process. The results of this
study show that ANN model permeability predictions are
consistent with actual core data. It could be concluded that the
ANN model is a powerful tool for permeability prediction from
well log data.

Introduction
Many oil reservoirs have heterogeneity in rock properties.

Understanding the form and spatial distribution of these
heterogeneities is fundamental to the successful exploitation of
these reservoirs. Permeability is one of the fundamental rock
properties, which reflect rock ability to transmit fluids when
subjected to pressure gradients. While this property is very
important in reservoir engineering, there is no specific
geophysical well log for permeability, and its determination
from conventional log analysis is often unsatisfactory [1].

In general, porosity and permeability are independent
properties of a reservoir. However, Permeability is low if
porosity is disconnected, whereas permeability is high when
porosity is interconnected and effective. Despite this
observation, theoretical relationships between permeability and
porosity have been sought, such as the Kozeny-Carmen theory
which relates permeability to porosity, and specific surface area
of a porous rock which is treated as an idealized bundle of
capillary tubes. This theory, however, ignores the influence of
conical flow in the constrictions and expansions of the flow
channels and treats the highly complex porous medium in a
very simple manner. Empirical relationships based on the
Kozeny-Carmen theory have also been developed that relates
permeability to other logs and/or log-derived parameters such as
resistivity and irreducible water saturation [2]. These
relationships are applied only either to the region above the
transition zone or to the transition zone itself. Since core
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permeability data are available in most exploration and
development wells, statistical methods have become a more
versatile alternative in the solution of this problem domain.
Therefore, regression is widely  used as a statistical method in
searching for relationships between core permeability and well
logs parameters [3,4]. This parametric method requires the
assumption and satisfaction of multinomial behavior and
linearity. It is a model-based technique, and hence it must be
applied with caution. Details of the uses and abuses of statistical
methods in geosciences can be found in literature (e.g. see
references 5 and 6).

Besides statistical methods, a relatively new nonlinear and
nonparametric tool, namely Artificial Neural Networks (or
simply neural nets), has become increasingly popular in
petroleum industry [7-12]. In this work, the neural network is
applied to determine reservoir permeability from the knowledge
of conventional well log responses. Core permeability and well
logs data from three early development wells from one of the
Saudi oil reservoirs were used to develop an ANN permeability
prediction model. These core permeability data and their
corresponding well logs data are randomly distributed and
divided into two parts. The first part was used for training and
building the network model. The second part was used as a
“blind test” of the model.

 Artificial Neural Networks (ANN)
 Artificial neural networks are computational devices whose

conception has been motivated by our current knowledge of
biological nervous systems. As such, neurocomputing, or
computation by using artificial intelligent neural networks,
offers an alternative to the traditional computational approach
based on sequential and algorithmic processing.

Probably the main feature that characterizes the artificial
neural networks approach is the simultaneous use of a large
number of relatively simple processors, instead of using very
few powerful central processors, as is nowadays the standard in
most man-made computers. This is also the computational
architecture for the central nervous systems of the most
developed animals, where the basic computational unit is the
neuron.

The use of a large number of simple processors makes it
possible to perform parallel computation and to have a very
short response time for tasks that involve real-time
simultaneous processing of several signals. Furthermore it is
also possible to have a decentralized architecture, which is
much more fault tolerant to loss of individual processors than
centralized architectures.

Another important feature of artificial neural networks is
that, although each processor is very simple in terms of
computational power and memory, they are adaptable nonlinear
devices. Consequently, artificial neural networks can be used to
approximate nonlinear models, an essential property for solving
many real-world problems. The adaptable parameters of
artificial neural network models are the connections that link the
processors. This is similar to "learning" in biological neural
networks that is supposed to be the result of changes in the
strength of the connections between neurons [13-18].

Nowadays artificial neural network model is the subject of
study in many areas as diverse as medicine, engineering and
economics, to tackle problems that cannot be easily solved by
other more established approaches.

Reservoir Description
The field understudy is located in the Northern Area of the

Arabian Gulf. It is an anticline structure with productive area
about 65 km long and 15km wide. It is one of a series of
structures trending southwest to northeast produced by uplift
movement that is reflecting deep-seated basement faults. This
reservoir is a thick sequence of sandstone, siltstone and shale
with thin intervals of limestone, coal and varying amounts of
ironstone. One of the most important observations about the
reservoir of interest is the gradual decrease in sand content from
Southwest to Northeast. It has been convenient to plot core
permeability versus core porosity for several wells and generate
a correlation to estimate formation permeability in wells from
which cores are not available. For homogeneous reservoirs, this
method may prove adequate. As the degree of heterogeneity of
a reservoir increases, such correlation loses its reliability. Figure
1 shows a semilog plot of core permeability versus core
porosity measurements from three wells. The scatter of this data
shows the high degree of heterogeneity in this reservoir.

Neural Network Model

Data Description
Core and log data from three development wells (namely A,

B, and Well C) were used to construct the network model. A
total of 700 core measurements for porosity and permeability
and their corresponding well logging responses were available
for network training and testing. The well log responses that
have been used include gamma ray (GR), bulk density (RHOB),
sonic compressional transit time (DT), thermal neutron apparent
porosity (NPHI), and deep induction log (ILD). Due to the
lateral discontinuity of the formation beds over the lateral
extension of the reservoir, as mentioned earlier, a 460 data
samples were chosen by a random number generator for
network training. The remaining 240 samples were put aside to
be used for testing the network’s integrity and robustness.

Back Propagation Neural Network
Architecture

A typical back propagation neural network (BPNN) is
composed of three layers: input, hidden and output layers. Each
layer is made of a number of processing elements or neurons.
Each neuron is connected to each neuron in the preceding layer
by a simple weighted link. Figure 2 shows a schematic diagram
of the designed BPNN. It has n1 input neurons that represent n1
types of well logs. There are n2 hidden neurons and one output
neuron. The output is the permeability. The solid lines represent
the strength or weights of the connections between neurons. The
number of input and output neurons is usually straightforward
and is determined by the particular application. On the contrary,
the optimum number of hidden neurons is usually obtained by
trial and error

Network Training
The BPNN requires the use of training patterns, and involves

a forward-propagation step followed by a backward-
propagation step. The forward propagation step sends input
signal through the neurons at each layer resulting in the
calculation of an output value. BPNN uses the following
mathematical function:
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Where y is the output variable, xi are the input variables, b
and w are the connection weights, n1 is the dimension of the
input vector and n2 is the number of hidden neurons. Note that
bo and woj are called the bias weights (analogous to the intercept
used in statistical regression). Small random numbers are used
to initialize all the connection weights (including the bias
weights) and the final values are determined by iteration
process.

The output, y, depends on the particular transfer function that
is chosen. The common transfer functions used in multilayer
network are log-sigmoid (y=f(x)=(ex/(1+ ex)) and tan-sigmoid
or tanh-1 (y=f(x)=(ex - e-x )/( ex + e-x)). These functions are
sometimes called the “squashing function” as it squashes the
values into the range of (-1,1). Therefore, all the values of the
input variables (φ, GR, RHOB, DT, NPHI, and ILD) and target
(K) variable must be normalized or scaled in the range of  [–1,
1].

Consequently, different normalization formulas were tested
to normalize the input variables. The following formulation was
adapted because it gave a better performance index for the
neural network model.

( )[ ]STDEVXXX averagnew −=                                      (2)

max)( newnewnormalized XXX =                                           (3)

Where, X is the input vector of one dimension for any input
variable

On the other hand, logarithmic scale has been used instead of
the absolute value of the target variable (K) and the
normalization has been made by using the following formula:

( )KKnew log=                                                                             (4)

( )max/ newnew KKK =                                                                 (5)

The objective of the neural network is to obtain optimal
weights to give a best value for the neuron (node of the
dependent variable) of the output layer. There are three steps
involved in the development of a neural network model. The
first step is to define the dominant input variables, the number
of hidden layers and the number of neurons in each hidden
layer. The second is to define a quantitative measure of network
performance, called the performance index, which is small
when the Network performs well and large when the Network
performs poorly. It represents the calculated mean squared error
as the difference between the target output, yk 

actual, and the
network output, yk

ANN:

( )∑ −=
21 ANN

k
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k yy

q
e                                                     (6)

where q is the number of training pairs in the training set.
The third step is to adjust the network weights and biases in
order to reduce the performance index. The most common
method used to adjust the weights and bias is the back
propagation. This method takes the error (difference) from each
iteration (training cycle) and uses it to change the weights on
the neural network interconnections:
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where wij is a weight for the i neuron in the hidden layer j; e
is the error from the current training cycle; _ is the learning rate
(a number between 0 and 1 that controls how much the weights
can change in each iteration); α is the momentum (a constant on
the momentum term that uses the previous weight change to
keep the errors changing in the right direction); and t reflects the
current iteration (t-1 is the previous iteration).

One of the problems that occurred during neural network
training is overfitting problem. The error on the training set is
driven to a very small value. But when new data is presented to
the network the error increases. One method for improving
generalization is by early stopping. As mentioned earlier the
available data are randomly divided into two groups. The first
group is used for the process of network training which
represent 66% of the total sample points, and the rest 34% were
used for network testing. Finally the training process data were
divided into validation process (30%) and forward training
process (70%). The final architecture of the neural network to
predict permeability contained six input variables and one
hidden layer with 19 neurons (as shown in Figure 2). This
configuration and the proper use of the validation set were
sufficient enough to ensure fast convergence after bout 60
iterations.

Neural Network Permeability Model
Results

The developed model up to this stage was able to reproduce
the 460 training data. Table 1 shows the statistical description of
the input data used for training process. Table 2 shows the
statistical description of the input data used for testing.

The trained network was finally tested to estimate
permeability values from the three wells in the reservoir
understudy. These are including the 240 sample pairs that were
separated from the three available wells for testing purpose.
These involve a wide range of permeability (0.1-9000md). This
further indicates the high degree of heterogeneity of this
reservoir. The cross plots of core measurements against network
prediction results shown in Figure 3 show a good match. The
permeability prediction results yielded correlation coefficients
of 0.9969 for Well A, 0.9897 for Well B, and 0.982 for well C.
Figure 4 shows the actual core permeability values in
comparison with the network’s estimation, for each well sample
points. From Figure 4, it is obvious that although permeability
values cover a wide range, the ANN model is able to follow the
core permeability trend very closely. One might comment on
the input variables that were used in this study in the following
fashion. Gamma ray log response is an evidence of clay
presence that has an impact on permeability. Rock density ,
sonic, and neutron logs are an inverse functions of porosity and
shale content. Deep induction log response demonstrates
resistivity from which fluid saturation is deduced. Fluid
saturation may be a function of fluid migration in the rock
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during the geological time and, therefore, the migration may
have been influenced by permeability.

Conclusions
1. The ANN model for predicting permeability is perfect

when training the network with all six input variables
(φ, GR, RHOB, DT, NPHI, and ILD).

2. Artificial neural network is capable of estimating
formation permeability with high accuracy, by use of
a geophysical well-log data, comparable to that of
actual core measurements.

3. The ANN model results yielded excellent correlation
coefficients (0.9969, 0.9897, and 0.9820 for A, B, and
C wells respectively).

4. The developed ANN model does not incorporate
depth as part of input parameters which means that it
is applicable to any field.

5. This study shows that neuro-estimation of formation
permeability by use of well-log data is a highly
feasible technique.

REFERENCES
1. Mohaghegh, S., Balan, B. and Amri, S; Permeability

Determination from Well Log Data, SPE 30978,
presented at SPE Eastern Regional Conference and
Exhibition, held in Morgantown, West Virginia, 17-
21 Sept. 1995.

2. Bateman, R. M., Open-Hole Log Analysis and
Formation Evaluation, IHRDC, Boston, 1985.

3. Wendt, W. A., Sakurai, S., and Nelson, P.H.,
Permeability Prediction from Well logs Using
Multiple Regression, Reservoir Characterization:
Academic Press, Inc., Orlando, Florida, p. 181-222,
1985.

4. Mohaghegh, S., Balan, B., and Ameri, S., State-of-
the-Art in Permeability Determination from Well Log
Data: Part2 –  Verification, Accurate Permeability
Predictions, the Touch-Stone of all Models, SPE
30979, Presented at SPE Eastern Regional Conference
and Exhibition, held in Morgantown, West Virginia,
17-21 Sept. 1995.

5. Size, W.B., Use and Abuse of Statistical Methods in
the Earth Sciences, Oxford University Press, New
York, 1987.

6. Davis, J C., Statistics and Data Analysis in Geology,
John Wiley, New York, 1990.

7. Shokir, E. M. EL-M., Neural Network, Neural
Network Determines Shaly-Sand  Hydrocarbon
Saturation “ OGJ, pp37-41, April 23,2001

8. Shibli, S. A.R., Wong, P. M., Huang, Y., and
Maignan, M., Applications of AI-Based Techniques
for Spatial Prediction, Third Annual Conference of
the IAMG, Proceedings: Part 2, p. 675-680, 1997.

9. Wong, P. M., Taggart, I.J., and Jian, F.X., A Critical
Comparison of Neural Networks and Discriminate
Analysis in Lithofacies, Porosity and Permeability
Predications, Journal of Petroleum Geology, Vol. 18,
No. 2, p. 191-206, 1995.

10. Wong, P. M., Tamhane, D., and Wange, L., “A
Neural Network Approach to Knowledge-Based Well
Interpolation: A Case Study of a Fluvial Sandstone
Reservoir, Journal of Petroleum Geology, Vol. 20,
No. 3, p. 363-372, 1997.

11. Smith, M., Neural Networks for Statistical Modeling,
Van Nostrand Reinhold, New York, 1993.

12. Dayoff, J.E., Neural Network Architectures, An
Introduction: Van Nostrand Reinhold, New York,
1990.

13. McCulloch, W. S., and Pitts, W., A Logical Calculus
of the Ideas Immanent in Nervous Activity, Bulletin
of Mathematical Biophysics, 5, 115-133, 1943.

14. Rosenblatt, F., The Perceptron: A Probabilistic Model
for Information Storage and Organization in the
Brain, Psychological Review, 65, 386-408, 1958.

15. Widrow, B. & Hoff M. E., Adaptive Switching
Circuits, in Proc. of the WESCON Convention
Record, pp. 96-104, 1960.

16. Minsky, M. & Papert, S., Perceptrons: An
Introduction to Computational Geometry, Cambridge,
USA: The MIT Press, 1969.

17. Hopfield, J. J., Neurons with Graded Response Have
Collective Computational Properties Like Those of
Two-State Neurons, Proceedings of the National
Academy of Sciences USA, 81, 3088-3092, 1984.

18. Rumelhart, D. E., Hinton, G. E. & McClelland, J. L.,
A General Framework for Parallel Distributed
Processing, in D. E. Rumelhart & J. L. McClelland
(Eds.), Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. 1:
Explorations, chapter 2, pp. 45-76, Cambridge, USA:
Bradford Books/MIT Press, 1986



0.01

0.1

1

10

100

1000

10000

0 10 20 30

Porosity, % 

P
er

m
ea

bi
lit

y,
 m

d

40

Well A

Well B

Well C

 
 

Figure 1: Permeability Versus Porosity Measurements Plot from Three Wells in the Reservoir Understudy. 
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Figure 2: Neural Network Architecture 
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Table 1 Statistical distribution of the input data used for network training process. 

Variable Min Max Average St. Dev. 
Porosity, (Ф) 5 36.9 26.77688 6.588722 
Gamma ray (GR) 7.934 83.586 28.29141 15.59948 
Sonic 80.7 109.3 93.88557 4.303568 
Neutron 0.213 0.519 0.298479 0.039343 
Bulk density (NPHI) 1.873 2.6274 2.226158 0.103319 
Deep induction log (ILD) 0.1702 2000 54.57274 229.4703 

Table 2 Statistical distribution of the input data used for network testing  process. 
Variable Min Max Average St. Dev. 
Porosity, (Ф) 5.1 36.8 25.90846 7.211273 
Gamma ray (GR) 7.643 74.306 30.09125 16.78414 
Sonic 80.1 108.2 92.84418 4.457518 
Neutron 0.227 0.484 0.298806 0.042535 
Bulk density (NPHI) 1.84 2.7028 2.247061 0.129651 
Deep induction log (ILD) 0.169 2000 89.21511 359.5711 
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Figure 3: Cross-Plot of Measured Permeability vs. ANN predicted permeability for wells A, B, C 
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Figure 4: The actual permeability and ANN predicted permeability vs. depth for wells A, B, C. 

7 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


