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This study answered the following questions: 1) Is polarimetric C-band SAR (PolSAR) more efficient than dual-
polarization (dual-pol) C-band SAR for mapping várzea floodplain vegetation types, when using images of a sin-
gle hydrological period? 2) Are single-season C-band PolSAR images more accurate for mapping várzea vegeta-
tion types than dual-season dual-pol C-band SAR images? 3) What are the most efficient polarimetric
descriptors for mapping várzea vegetation types? We applied the Random Forests algorithm to classify dual-
pol SAR images and polarimetric descriptors derived from two full-polarimetric Radarsat-2 C-band images ac-
quired during the low and high water seasons of Lago Grande de Curuai floodplain, lower Amazon, Brazil. We
used the Kappa index of agreement (κ), Allocation Disagreement (AD) and Quantity Disagreement (QD), and
Producer's and User's accuracy measurements to assess the classification results. Our results showed that
single-season full-polarimetric C-band data can yield more accurate classifications than single-season dual-pol
C-band SAR imagery and similar accuracies to dual-season dual-pol C-band SAR classifications. Still, dual-
season PolSAR achieved the highest accuracies, showing that seasonality is paramount for obtaining high accura-
cies inwetland land cover classification, regardless of SAR image type. On average, single-season classifications of
low-water periods were less accurate than high-water classifications, likely due to plant phenology and flooding
conditions. Classifications using model-based polarimetric decompositions (such as Freeman–Durden,
Yamaguchi and van Zyl) produced the highest accuracies (κ greater than 0.8; AD ranging from 7.5% to 2.5%;
QD ranging from 15% to 12%), while eigenvector-based decompositions such as Touzi and Cloude–Pottier had
the worst accuracies (κ ranging from 0.5 to 0.7; AD greater than 10%; QD smaller than 10%). Vegetation types
with dense canopies (Shrubs, Floodable Forests and Emergent Macrophytes), whose classification is challenging
using C-band, were accurately classified using dual-season full-polarimetric SAR data, with Producer's and User's
accuracies between 80% and 90%.We conclude that full polarimetric C-band imagery can yield very accurate clas-
sifications of várzea vegetation (κ ~0.8, AD ~3% and QD ~10%) and can be used as an operational tool for forested
wetland mapping.

© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Várzeas are Amazon wetland ecosystems located on sediment-rich
(“white water”) river floodplains (Junk, 1997), covering 12% to 29% of
the Amazon River basin (Melack & Hess, 2010). Várzea vegetation
types can be classified based on different criteria; Junk, Piedade,
Schöngart, andWittmann (2012) provide a comprehensive, hierarchical
classification that initially divides várzea vegetation into two categories:
Systems predominantly covered with (1) herbaceous plants or
(2) woody plants. The first group is subdivided into three subgroups ac-
cording to phenology, species composition and terrain elevation:
(a) Low-lying areas mostly covered by annual grasses and herbs,
(b) Low-lying areas mostly covered by perennial grasses and (c) High-
).
lying disturbed areas with annual and perennial grasses and herbs.
The second group is subdivided according to flood duration: (a) Low
várzea forests (N3 months of flooding per year); (b) High várzea forests
(b3 months of flooding per year) and (c) Swamp forests (which may
have permanent or multiannual flooding periods). Human-induced
land cover changes often modify the expected spatial distribution of
these plant communities, affecting the observed proportions between
vegetation types (Junk et al., 2012; Junk, Bayley & Sparks, 1989; Renó,
Novo, Almeida-Filho and Suemitsu, 2011a; Renó, Novo, Suemitsu,
Rennó and Silva, 2011b;Wittmann, Schöngart, & Junk, 2010;Wittmann,
Junk, & Piedade, 2004).

Várzeas provide several ecosystem services that are important for the
survival and quality of life of riverine human populations, such as water
consumption, runoff reduction and slope stabilization, wood and forest
products, and fisheries. Várzea ecosystems also host a wide range of dis-
tinctive fauna and flora, including the Amazonian manatee (Trichechus
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inunguis) (Arraut et al., 2010) and the pirarucu fish (Arapaima gigas)
(Arantes, Castello, Cetra, & Schilling, 2013), and have an important role
in regional biogeochemical cycles, functioning as both sinks and sources
of greenhouse gases (CO2 and CH4). Despite its importance, várzea wet-
lands have been increasingly threatened by anthropogenic land use/
land cover change and economic appropriation of the space for agricul-
ture, pastures and commercial fishery activities (Castello et al., 2013).
About 54% of the forest cover in the lower Amazon River várzea has
been removed or replaced by other vegetation types and/or land uses be-
tween 1970 and 2008 (Renó et al., 2011a; Renó et al., 2011b).

Radar remote sensing has been an important tool for monitoring
várzea ecosystems, especially given their extent and complexity. Synthet-
ic Aperture Radar (SAR) microwaves can penetrate clouds, common in
tropical and equatorial latitudes, and interact three-dimensionally with
the vegetation, detecting both canopy structural characteristics and the
flooding beneath it. SAR applications in várzea began in the 1980s with
the Shuttle Imaging Radar (SIR-A, -B and -C) and other airborne missions
(Hess, Melack, & Simonett, 1990; Kasischke, Melack, & Dobson, 1997),
and progressed with several satellite systems such as ERS-1 and ERS-2
(C-band), JERS-1 and ALOS/PALSAR (L-band) and Radarsat (C-band)
(Silva, Melack, Streher, Ferreira-Ferreira, & de A. Furtado, 2015; Hender-
son & Lewis, 2008), including the only comprehensivewetlandsmapping
for the entire Amazon Basin (Hess et al., 2015; Hess, Melack, Novo,
Barbosa, & Gastil, 2003; Melack & Hess, 2010).

Most past platforms have only been capable of single- or dual-polar-
ization (dual-pol) configurations, with limited potential for discriminat-
ing várzea vegetation types with subtle structural differences (Silva,
Costa, & Melack, 2010; Hess et al., 1990). Dual or multi-seasonal imag-
ery (Hess et al., 2003; Martinez & Le Toan, 2007; Silva et al., 2010) mul-
tiple incidence angles (Lang, Townsend, & Kasischke, 2008;
Marti-Cardona, Lopez-Martinez, Dolz-Ripolles, & Bladè-Castellet,
2010) and/or multiple wavelengths (Costa, 2004; Costa, Niemann,
Novo, & Ahern, 2002; Hess et al., 1995) have all been explored to over-
come such limitations, with the dual or multi-season approach offering
the best balance between feasibility and effectiveness (Silva et al.,
2015).

Modern spaceborne platforms such as TerraSAR-X (X band),
Radarsat-2 (C band) and ALOS-PALSAR-2 (L band) have full polarimetric
or quad-pol imaging modes (PolSAR), as did a few previous platforms
such as SIR-C (multi-frequency) and ALOS/PALSAR (L-band). Full polar-
imetric systems allow the reconstruction of the complete scatteringma-
trix of the backscattered wave, permitting the calculation of
polarimetric decompositions and other polarimetric descriptors (Lee &
Pottier, 2009) to quantify the contribution of different scatteringmech-
anisms to the resulting backscattered signal. Several studies have
highlighted the potential of PolSAR imagery for wetlands research
(Brisco et al., 2013; Brisco, Kapfer, Hirose, Tedford, & Liu, 2011;
Gosselin, Touzi and Cavayas, 2013), but some questions remain
underexplored in wetlands research, especially in várzea regions.

Therefore, we used two full-polarimetric C-band Radarsat-2 images
acquired in two different periods of the hydrological year to answer the
following questions: 1) Is polarimetric C-band SAR (PolSAR) more effi-
cient than dual-polarization (dual-pol) C-band SAR for mapping várzea
floodplain vegetation types, when using images of a single hydrological
period? 2) Are single-season C-band PolSAR images more accurate for
mapping várzea vegetation types than dual-season dual-pol C-band
SAR images? 3) What are the most efficient polarimetric descriptors
for mapping várzea vegetation types?

2. Methods

2.1. Study area

Lago Grande de Curuai (Fig. 1) is a large floodplain lake complex lo-
cated to the south of the city of Óbidos (Pará, Brazil). The Curuai flood-
plain has an annual and monomodal flooding regime, with peak
flooding (high water season) occurring between May and June, and
minimal flooding (low water season) occurring between November
and December. Annual differences in water stage height between the
two periods vary between 5 and 7 m at the deepest parts of the lake
(Rudorff, Melack, & Bates, 2014).

2.2. Data acquisition and processing

We used two full-polarimetric Radarsat-2 (RS2) images (C band,
~5.6 cm wavelength) acquired in 2011–06–22 (high water season —
HW) and 2011–10–20 (low water season — LW), with approximately
8 × 5 m (range × azimuth) spatial resolution and 25° (SQ7) incidence
angle. Other incidence angles (35° — SQ14 and 45° — SQ27) were
assessed, but did not have significant effects on mapping accuracy. Fur-
thermore, previous research recommends steep incidence angles for
wetland/várzea mapping applications (Hess et al., 1990; Silva et al.,
2008).

PolSAR processing consisted of (Fig. 2): (1)multilookingwith 4 looks
in azimuth and 1 in range, resulting in approximately 20 × 20 m
ground-range spatial resolution; (2) covariance (C) and coherence
(T) matrix calculation; (3) speckle noise filtering using the Refined Lee
adaptive filter with a 5 × 5mask; (4) calculation of polarimetric decom-
positions (Table 1); (5) sigma-nought (σ0) calibration; and (6) Range–
Doppler terrain correction and georeferencing. To preserve both spatial
resolution and edges between surface targets, we did not use spatial av-
eraging kernels to calculate polarimetric decompositions. Speckle was
already mitigated by both multilooking and the use of speckle filtering.

We applied Range–Doppler terrain correction using the Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM)
(Jarvis, Reuter, & Nelson, 2008). This DEM has 90 m spatial resolution
and approximately 5 m vertical resolution (Bhang, Schwartz, & Braun,
2007), and it was obtained at http://srtm.csi.cgiar.org/at its version 4.

We georeferenced the RS2 images using a Landsat5/TM Global Land
Survey 2000 (USGS, 2009) image, obtained at http://glcf.umd.edu/data/
landsat/. Polarimetric decompositions were performed using the Polar-
imetric SAR Data Processing and Educational Tool (PolSARPRO) software,
version 4.2 (Pottier et al., 2009), which was also used for multilooking,
speckle filtering and σ0 calibration, the latter using image metadata,
with ±1 dB expected radiometric error. We performed Range–Doppler
terrain correction using the Next ESA SAR Toolbox (NEST), version 4C-
1.1 (Engdahl, Minchella, Marinkovic, Veci, & Lu, 2012).

2.3. Image classification

We grouped backscattering and polarimetric decomposition attri-
butes into 27 different sets to serve as inputs for classification, based
on the nature of the data and seasonality (high water, low water or
dual-season, Table 2). It was thus possible to compare and assess classi-
fication accuracies between (a) single- and dual-season classifications,
(b) dual-pol SAR (HH + HV) and PolSAR data, and (c) among different
polarimetric attributes.

Prior to classification, we segmented all images using the
multiresolution segmentation algorithm implemented in eCognition
8.0, with the parameters Scale = 8, Shape = 0.1 and Compactness =
0.5. We defined these parameters based (a) on previous studies
(Furtado, Silva, Fernandes, & Novo, 2015) and (b) trial and error/heuris-
tic approach. The selected parameters gave more importance to image
radiometry (Shape = 0.1) and balanced natural and human-made tar-
get contours (Compactness = 0.5). Scale values between 5 and 50
were tested, and the value of 8 was selected as optimal, based on the vi-
sual interpretation of segmentation results (Fig. 3).

We created a single segmentation layer using dual-season C matrix
main diagonal images as inputs (corresponding toHH, HVandVVpolar-
izations) and used it for all classifications. The C matrix diagonal con-
tains most of the scattering matrix information, has a higher signal-to-
noise ratio than other polarimetric descriptors, and has better edge
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Fig. 1. (a) Location of Pará state (dark gray) within Brazil (light gray), showing the location of Óbidosmunicipality (black star); (b) detailed view of the Lago Grande de Curuai floodplain
water surfaces (dark gray), highlighting the Radarsat-2 (RS2) image coverage (black polygon). At the bottom, detailed view of (c) highwater season and (d) lowwater season Radarsat-2
HH images extracted from POLSAR datasets. Radarsat-2 products are licensed for use by MacDonald, Dettwiler and Associates, Ltd.

Fig. 2. Data acquisition, image processing and image classification workflow for classifying vegetation types land cover in the Lago Grande de Curuai várzea (Amazon, Brazil) using
Radarsat-2 full polarimetric images.
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Table 1
Polarimetric decompositions extracted fromdual-seasonRadarsat-2 PolSAR images for classifying vegetation types and land cover in the LagoGrandedeCuruai várzeafloodplain, Amazon,
Brazil.

Polarimetric
decomposition

Symbol Description

Cloude–Pottier (Cloude & Pottier, 1996)
α angle α Dominant scattering type
Entropy H Proportional importance of the dominant scattering type
Anisotropy A Proportional importance of secondary and tertiary scattering types

Freeman–Durden (Freeman & Durden, 1998)
Volumetric scattering FDV Proportion of volumetric scattering
Double-bounce scattering FDD Proportion of double-bounce scattering
Odd scattering FDS Proportion of odd (surface) scattering

Touzi (Touzi, 2007)
Scattering type magnitude αS1; αS2; αS3; αSm; Angle of the symmetric scattering vector direction in the trihedral–dihedral basis.

Similar to Cloude–Pottier's α angle
Scattering type phase difference ΦαS1, ΦαS2, ΦαS3, ΦαSm Phase difference between trihedral and dihedral scattering
Helicity τ1; τ2; τ3; τm Symmetric nature of target scattering. If τ = 0, target is isotropic
Orientation angle ψ1; ψ2; ψ3; ψm Target tilt angle

Yamaguchi (Yamaguchi, Yajima, & Yamada, 2006)
Volumetric scattering YV Proportion of volumetric scattering
Double-bounce scattering YD Proportion of double-bounce scattering
Odd scattering YS Proportion of odd (surface) scattering
Helicity YH Proportion of helix-type scattering

Van Zyl (Vanzyl 1992)
Volumetric scattering VZV Proportion of volumetric scattering
Double-bounce scattering VZD Proportion of double-bounce scattering
Odd scattering VZS Proportion of odd (surface) scattering
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detection characteristics (Qi, Yeh, Li, & Lin, 2012) (Fig. 3). After segmen-
tation, we calculated the mean pixel value for all polarimetric descrip-
tors in each image object and used it to compose the classification
input sets.

We used the RandomForests (RF) algorithm (Breiman, 2001) to per-
form data classification, as implemented in the randomForest package
(Liaw & Wiener, 2002) of the R statistical software, version 3.1.1 (R
Core Team, 2014). RF is a hierarchical classification algorithm that
uses n random decision trees to form a “random forest” thatwill classify
the data based on the consensus among all trees. The RF classification
procedure consists of: (1) defining a number ntrees of random trees;
(2) randomly selectingmtry attributes for assessment at each individual
tree node, and identifying the attribute that produces the purest leaves
(i.e., the polarimetric descriptor that best discriminates the selected
classes) withinmtry; (3) building a single decision tree where all classes
are discriminated in different nodes; (4) repeating this process ntree
times, (5) building a consensus tree based on the most selected attri-
butes, and (6) using this consensus tree to classify the input data.

The RF algorithm is (1) less susceptible to noisy data, (2) non-
parametric, and thus supports data with varying statistical distributions
(such as SAR intensities, phase and polarimetric attribute images), and
(3) has only two settable parameters, reducing the subjectivity factor
when comparing classification accuracies among different datasets
(Barrett, Nitze, Green, and Cawkwell, 2014). Still, we assessed the im-
pact of changes in ntrees and mtry on classification accuracy, and settled
Table 2
Input sets for classification of vegetation types and land cover in the Lago Grande de
Curuai várzea floodplain, Amazon, Brazil. Each set was separately assessed for low-water,
high-water, and dual-season conditions, totaling 27 input sets.

Abbreviation Inputs for classification

HH + HV HH + HV (dual-pol)
C C Matrix (including phase information)
CP Cloude–Pottier
TZ Touzi
VZ Van Zyl
YG Yamaguchi
FD Freeman–Durden
APD All polarimetric decompositions
APC All images
on optimum values for each parameter by taking those that achieved
the highest accuracies.

We assessed the parameter mtry for the following values (using
ntrees = 5000): (a) one polarimetric attribute; (b) one third of the
total number of polarimetric attributes; (c) the squared root of the
total number of polarimetric attributes; (d) half of the total number of
polarimetric attributes, (e) two thirds of the total number of polarimet-
ric attributes; (f) all polarimetric attributes. After selecting the bestmtry

value, we assessed the ntrees parameter using the following values: (a′)
250; (b′) 500; (c′) 1000; (d′) 5000; (e′) 25,000 and (f′) 50,000. Each pa-
rameter was assessed taking into account the hydrological period and
the total number of images used as input.

Changes inmtry and ntrees had little or no influence on classification ac-
curacy, using either reduced (HH+ HV) or increased numbers of inputs
(C matrix and APC), with a maximum difference of 0.01 in κ observed
among all parameter combinations. Therefore, we set mtry as the
squared-root of the total number of inputs, as suggested by Breiman
(2001), and ntrees as 5000, based on previous SAR studies (Ferreira-
Ferreira, Silva, Streher, Affonso, Furtado, Forsberg, & Novo, 2014).

2.4. Vegetation and land cover classes

We defined six land-cover classes for this study (Table 3), described
as follows: 1) Floodable forests (FF): Tree vegetation growing on higher
floodplain areas and subject to shorter seasonal flooding periods;
2) shrubs (SB): Shrubs and/or early succession arboreal vegetation
with sparse canopies and low height, subject to longer seasonal
flooding; 3) emergent macrophytes (EM): Herbaceous plant communi-
ties dominated by palustrine grasses with high biomass and density
levels, and subject to longer seasonal flooding periods; 4) floating mac-
rophytes (FM): Free-floating herbaceous vegetationwith lower biomass
and/or sparse canopies; 5) open water (OW): Free water surfaces; and
6) várzea fields (VF): Floodplain areas that are completely under water
during the high water season but emerge in the low water season,
being colonized by terrestrial herbaceous plants.

Since most várzea locations are extremely hard to reach, we defined
training and validation samples based on the interpretation of several
ancillary data and our extensive knowledge of the location (Table 3
and Fig. 4). Our main sources of information were geotagged photo-
graphs and field notes acquired between 2013–10–18 and 2013–10–



Fig. 3. Segmentation layer created using eCognition 8.0multiresolution algorithmwith Scale=8, Shape=0.1 and Compactness=0.5. The edges between targets are clearly visible in (a),
showing a R(HH)G(HV)B(VV) high-water season composite, while much harder to detect in (b), showing the Cloude–Pottier α angle for the high water season. Radarsat-2 products are
licensed for use byMacDonald, Dettwiler andAssociates, Ltd. A color version of thisfigure is available in the online version of this article, and the figure is presented in full-resolution in the
Electronic Supplementary Material.
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29, and during a previous field trip from 2011–04–10 to 2011–04–15
(Arnesen et al., 2013). These data were complemented by Google
Earth™ and Microsoft Bing™ online high-resolution imagery and by
Landsat5/TM scenes acquired during the same hydrological periods as
the RS2 images (high-water: 2011–06–23 and 2011–07–25; low-
water: 2011–10–29). Despite the two year difference between imagery
and field data acquisition, all georeferenced field descriptions and pho-
tographs obtained in 2013matched the previous land cover and vegeta-
tion types observed on Landsat5/TM and RS2 images.
Table 3
LagoGrande deCuruaifield photographs and image interpretation key for high and lowwater R
of selected training (T) and validation (V) samples. Class acronyms are: FF— floodable forests,
and OW— open water. Radarsat-2 products are licensed for use by MacDonald, Dettwiler and A

Class Field photographs RS2 examples

FF

SB

EM

FM

OW

VF

TOTAL
2.5. Accuracy assessment

We assessed overall classification accuracy using 292 ground truth
samples (Fig. 4), and the Kappa (κ) (Congalton, 1991), Quantity Dis-
agreement (QD), and Allocation Disagreement (AD) (Pontius &
Millones, 2011) accuracy indexes. We also assessed class-based accura-
cy, using User's and Producer's percent accuracies (Congalton, 1991).
Validation samples were selected using the same criteria described
above for training samples.
adarsat-2 (R:HH, G:HV andB:VV) and Landsat5/TM (R:4, G:5, B:3) data, aswell the number
SB— shrubs, EM— emergent macrophytes, FM— floating macrophytes, VF— várzea fields
ssociates, Ltd. A color version of this figure is available in the digital version of this article.

Landsat5/TM examples #T #V

41 57

33 32

37 49

23 30

21 49

36 75

191 292



Fig. 4. Location and spatial distribution of (a) training samples and (b) validation samples shown over a low-water RS2 HH image of Lago Grande de Curuai floodplain, Amazon, Brazil.
Radarsat-2 products are licensed for use by MacDonald, Dettwiler and Associates, Ltd. A color version of this image is available in the online version of this article, and a full-resolution
version is included in the Electronic Supplementary Material.

Fig. 5.Kappa (a), allocation disagreement (b) and quantity disagreement (c) for highwater (blue), lowwater (red), and dual-season (green) várzea land cover andvegetation classification
in the Lago Grande de Curuai floodplain, Amazon, Brazil.
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Initially, 400 validation points were randomly created using ArcGIS
10.3, and only points with unambiguous interpretation were kept (292),
ensuring that (a) every class had at least 30 validation points (Table 3)
and (b) there was no spatial clustering, to avoid a positive bias. To assess
the accuracy of each individual land-cover class, we compared the best
and worst classification results obtained from all input sets, for a total of
six classifications: two for each hydrological period (high and low-
water) and two for dual-season classification. This analysis aimed to un-
derstand the interactionbetweenpolarimetric attributes andhydrological
conditions when classifying each vegetation/land cover type.

3. Results

3.1. Polarimetric attribute classification accuracy

For the HW season, C matrix was the most accurate PolSAR input
(κ = 0.75; AD = 3.21%; QD = 12.78%), followed by APC (κ = 0.75;
AD = 4.07%; QD = 12.13%), APD (κ = 0.75; AD = 4.54%; QD =
11.84%), and the model-based decompositions of Yamaguchi (κ =
0.72; AD = 5.42%; QD = 12.67%) and Freeman–Durden (κ = 0.67;
AD = 7.42%; QD = 14.35%). The classification based on the Touzi de-
composition had the lowest accuracy (κ = 0.64, AD = 10.7%, QD =
12.5% (Fig. 5a, b and c, Fig. 6a and b).

On average, LW classifications were less accurate than HW, with the
highest accuracy achieved by APD (κ = 0.70, AD = 13.03%, QD =
7.86%) and the lowest accuracy by the Cloude–Pottier decomposition
(κ=0.52, AD= 28.53%, QD= 7.17%). Although QD values were smaller
for all LW classifications, theywere disregarded as large AD errors can ar-
tificially decreaseQD (Pontius &Millones, 2011). Differences between the
most and least accurate classifications were smaller for the LW season
than for the HW season (κ = 0.66 to 0.70; AD = 15.7% to 13%; QD =
11.73% to 8.1%).

3.2. Single-season vs. dual-season classification

Dual-season classifications were systematically more accurate than
single-season classifications. Almost all dual-season classifications had
higher accuracies when compared to their single-season counterparts
(κ = 0.75 or higher; AD = 4% or lower; QD ranging from 11% to 15%),
except for the Touzi (κ = 0.69, AD = 13.79%, QD = 10.34%) and
Fig. 6. Dual-season APC (a) and low-water Cloude–Pottier (b) classifications, respectively the
Grande de Curuai floodplain (Amazon, Brazil). A color version of this figure is available in the o
plementary Material.
Cloude–Pottier (κ = 0.72, AD = 13.17%, QD= 8.86%) decompositions.
The highest overall accuracy, considering all datasets, was achieved by
the Dual Season APC dataset, i.e. all polarimetric decompositions plus
C matrix images (κ = 0.83, AD = 2.14%, QD= 11.28%).

3.2.1. Class-specific error assessment
The use of dual-season imagery and/or the combination of several

different polarimetric attributes brought the largest improvements in
all class-specific accuracies (Fig. 7). In average, vegetation classes (SH,
EM and FF) had a 30% to 40% increase in Producer's Accuracy and User's
Accuracy when dual-season images and/or several different polarimet-
ric descriptors (APC and APD classifications) were used. EM Producer's
Accuracy increased from 46.4% to 89.2% and User's Accuracy increased
from 26.5% to 67.3% betweenHWTZ and dual-season APD, respectively.
For the SH class, Producer's Accuracy increased from 38.1% to 75% and
User's Accuracy from 48.5% to 72.7% between HW TZ and dual-season
APD, respectively. For the FF class, Producer's Accuracy increased from
48.6% to 79.1% and User's Accuracy increased from 64.3% to 94.6% be-
tween LW TZ and dual-season APD, respectively. Tables 4, 5 and 6
show the confusion matrices for the three most accurate classifications
and Tables 7, 8 and 9 for the three least accurate classifications (all con-
fusionmatrices are available in the Electronic SupplementaryMaterial).

4. Discussion

4.1. PolSAR responses to vegetation dynamics

Overall, our results confirm that PolSAR images are more efficient
than dual-pol SAR images in mapping wetland land cover and vegeta-
tion types. PolSAR classification accuracies reported in the literature
vary from 64% (Brisco et al., 2011) to 95% (Brisco et al., 2013), but
more frequently between 75% and 90% (Ainsworth, Kelly, & Lee, 2009;
Garcia, Roberto, Mura, Johann, & Kux, 2012; Lee, Grunes, & Pottier,
2001; Millard & Richardson, 2013; Qi et al., 2012; Sartori, Imai, Mura,
Novo, & Silva, 2011). The accuracies yielded in this study ranged from
κ ~0.5 to 0.83, AD from ~30% to 2% andQD from 15.3% to 3.33%.We con-
sider the combination of the Random Forests algorithm and PolSAR im-
agery to be very effective for mapping várzea vegetation types, even
when using shortwave C-band images,which are known to be saturated
by várzea vegetation types with dense canopies, similar structures, and
most and least accurate várzea land cover and vegetation type classifications for the Lago
nline version of this article, and a full-resolution figure in presented in the Electronic Sup-



Fig. 7. Producer's Accuracy (PA) andUser's Accuracy (UA) from the threemost accurate – (a) and (b), respectively – and the three least accurate – (c) and (d), respectively – classifications
of land cover and vegetation type in the Lago Grande de Curuai floodplain (Amazon, Brazil), expressed as percent of validation samples (n=292).We omitted the “Várzea Fields” class for
comparison purposes as it is present only in dual-season classifications. Confusion matrices for all evaluated classifications are available in the Electronic Supplementary Material.

219L.F.A. Furtado et al. / Remote Sensing of Environment 174 (2016) 212–222
similar backscattering mechanisms. Based on the results of this study,
we can affirm that SAR and PolSAR images are a major source of infor-
mation for várzea and wetland vegetation mapping, rather than a less-
efficient alternative to optical imagery that should be used only when
the latter is not available.

The polarimetric descriptors based on the decomposition of the T
matrix eigenvectors (e.g. Touzi and Cloude–Pottier) systematically
yielded lower mapping accuracies than decompositions based on scat-
tering models (e.g. Freeman–Durden and Yamaguchi). While the van
Zyl polarimetric decomposition is an eigenvector-based decomposition
(van Zyl, 1992), its descriptors are similar to those generated from scat-
tering models based on polarimetric decompositions (double-bounce,
Table 4
Confusionmatrix for dual-season all polarimetric decomposition plus C-Matrix (APC) clas-
sification, dual-season most accurate classification of Lago Grande de Curuai floodplain
várzea. Land cover and vegetation classes are: EM — emergent macrophytes; FF —
floodable forest; FM — floating macrophytes; OW — open water, SH — shrubs and VF —
várzea fields.

Dual-season APC

Classes EM FF FM OW SH VF Total

EM 33 0 0 0 4 0 37
FF 9 53 0 0 5 0 67
FM 1 1 27 0 0 10 39
OW 0 0 0 52 0 5 57
SH 6 2 0 0 24 0 32
VF 0 0 0 0 0 60 60
Total 49 56 27 52 33 75 292
odd and volumetric scattering), and thereby we considered van Zyl as
a model-based decomposition.

Model-based polarimetric decompositions lie on the real domain
and estimate the intensity of each scattering mechanism occurring in
a natural target (double-bounce, volumetric and odd-scattering).
These polarimetric decompositions create one individual and indepen-
dent descriptor for each backscattering mechanism, better describing
class scattering patterns and yielding better accuracy indexes (Brisco
et al., 2011; Van Beijma, Comber, & Lamb, 2014).

Polarimetric decompositions based on eigenvector decomposition
estimate target scattering mechanisms as both real and angular values.
Despite the greater number of descriptors, they usually estimate themain
backscattering mechanism of vegetation using a single or few compo-
nents (such as Cloude–Pottier and Touzi α angles) and complement this
Table 5
Confusion matrix for high water C matrix classification, high water season most accurate
classification of Lago Grande de Curuai floodplain várzea. Land cover and vegetation clas-
ses are: EM— emergent macrophytes; FF— floodable forest; FM— floating macrophytes;
OW— open water and SH — shrubs.

High water C matrix

Classes EM FF FM OW SH Total

EM 27 2 0 0 3 32
FF 11 51 0 0 11 73
FM 1 1 27 16 0 45
OW 0 0 0 111 0 111
SH 10 2 0 0 19 31
Total 49 56 27 127 33 292



Table 6
Confusionmatrix for lowwater all polarimetric decomposition (APD) classification, lowwa-
ter seasonmost accurate classificationof LagoGrandede Curuaifloodplain várzea. Land cover
and vegetation classes are: EM— emergent macrophytes; FF— floodable forest; FM— float-
ing macrophytes; OW— open water and SH— shrubs.

Low water APD

Classes EM FF FM OW SH Total

EM 81 3 9 0 3 96
FF 17 48 0 0 6 71
FM 15 0 18 0 1 34
OW 6 0 0 52 0 58
SH 5 5 0 0 23 33
Total 124 56 27 52 33 292

Table 8
Confusionmatrix for highwater Touzi polarimetric decomposition classification, highwa-
ter season least accurate classification of Lago Grande de Curuai floodplain várzea. Land
cover and vegetation classes are: EM — emergent macrophytes; FF — floodable forest;
FM — floating macrophytes; OW— open water and SH — shrubs.

High water Touzi

Classes EM FF FM OW SH Total

EM 13 4 2 1 8 28
FF 18 47 11 5 9 90
FM 0 0 11 3 0 14
OW 0 0 0 118 0 118
SH 18 5 3 0 16 42
Total 49 56 27 127 33 292
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estimate using other real and/or angular descriptors, such as Entropy and
Phase-difference. As C-band is strongly attenuated by dense vegetation
canopies, scattering intensities are similar for plant types with subtle
structural differences (Gosselin, Touzi and Cavayas, 2013) and for densely
vegetated floodplains (Costa, 2004; Henderson & Lewis, 2008; Hess et al.,
1990), hindering the ability of Cloude–Pottier α angle, Entropy and An-
isotropy, and Touzi Phase-difference and α angle to detect subtle differ-
ences in backscattering mechanisms. The main, secondary and tertiary
scattering mechanism types for each vegetation are similar and mainly
differ in intensity, not in the nature of the scattering mechanism. Touzi
Helicity and Orientation descriptors were of little use for discriminating
várzea vegetation targets, as they were almost random. The low accuracy
indexes obtained are strongly related to the wavelength and/or the simi-
larity of the vegetation types, and the accuracy of Touzi and Cloude–Pot-
tier based classifications can be higher when mapping less-similar
wetland vegetation types (Millard & Richardson, 2013) and/or when
using longer wavelengths (Sartori et al., 2011).
4.2. Dual-season classification

Wetland environments, and várzeas in particular, are very dynamic
landscapes, and the backscattering of each vegetation type is strongly
affected by hydrological variation. In general, all dual-season classifica-
tions yielded higher accuracies than single-season images andwere able
to discriminate forest, woody and grass patches with similar structures
but different phenology and flooding durations. As their backscattering
mechanism changes in both intensity and type between the high and
low water seasons, the RF classifier was able to detect seasonal back-
scattering patterns and accurately map these classes.

For the woody classes (SH and FF), the main noticeable difference
between HW and LW backscattering was related to changes in
double-bounce occurrence. This type of scattering occurred with more
intensity in the SH class, composed by shorter woody individuals with
less dense and more fragmented canopies, and subject to longer
flooding durations. These characteristics make SH canopies less attenu-
ating to the C-band signal and allow themicrowaves to penetrate cano-
py gaps and thus interact more intensely with the flooding, increasing
Table 7
Confusion matrix for dual-season Touzi polarimetric decomposition classification, dual-
season least accurate classification of Lago Grande de Curuai floodplain várzea. Land cover
and vegetation classes are: EM — emergent macrophytes; FF — floodable forest; FM —
floating macrophytes; OW— open water, SH— shrubs and VF— várzea fields.

Dual-season Touzi

Classes EM FF FM OW SH VF Total

EM 14 6 2 0 2 0 24
FF 16 45 4 0 7 0 72
FM 5 1 21 1 1 9 38
OW 0 0 0 42 0 2 44
SH 14 4 0 0 23 1 42
VF 0 0 0 9 0 63 72
Total 49 56 27 52 33 75 292
double-bounce occurrence. Conversely, double-bounce occurrence is
less intense for the FF class, composed by taller trees with denser cano-
pies and found on the highest elevations within the várzea, thus having
floods with shorter durations and heights.

Double-bounce scattering in herbaceous/grasses targets had similar
intensities to woody classes, and in single-season classifications, there
was a large overlap in backscattering from all floodable vegetation clas-
ses. During the low water season, double-bounces may still occur in
areas that are flooded for longer periods or are quasi-permanent
flooded, such as areas of Montrichardia spp. occurrence. This behavior
may explain part of the confusion between EM and SH classes, as
these classes have longer flooding periods and therefore similar tempo-
ral backscattering signatures. Volumetric scattering intensity for herba-
ceous plants/grasses, comprised mainly by the EM class, is also similar
to those observed in woody vegetation, but seasonal changes were
more detectable due their annual growth cycle.

Several studies highlight the importance of dual- andmulti-seasonal
remote sensing data for land cover classification of várzea and other
wetlands (Costa, 2004; Kwoun & Lu, 2009; Marti-Cardona et al., 2010;
Silva et al., 2010). Several of these studies analyze the temporal back-
scattering signatures of plant communities and/or other targetswithout
attempting classification (Cable, Kovacs, Shang, & Jiao, 2014; Koch,
Schmid, Reyes, & Gumuzzio, 2012). Other studies use dual- or
multiseasonal information to obtain a single best classification, but
there is little discussion about the impacts of seasonality and the select-
ed dates used in classification accuracy (Evans & Costa, 2013). Few stud-
ies truly investigate and discuss the impacts of date choice on
classification accuracy, or attempt to identify optimum date combina-
tions (Hess et al., 2003; Jiao et al., 2014). Our study thus contributes
by quantifying the impacts of both (1) seasonality and (2) polarimetric
information on classification accuracy, when combined or not, reinforc-
ing the results of previous studies on dual- or multi-seasonal SAR/
PolSAR wetland mapping.
5. Conclusion

Our results show that single-season full-polarimetric SAR can
achieve classification accuracies that are similar or, in some cases,
Table 9
Confusionmatrix for lowwater Touzi polarimetric decomposition classification, lowwater
season lest accurate classification of Lago Grande de Curuai floodplain várzea. Land cover
and vegetation classes are: EM — emergent macrophytes; FF — floodable forest; FM —
floating macrophytes; OW— open water and SH— shrubs.

Low water Touzi

Classes EM FF FM OW SH Total

EM 71 14 10 3 6 104
FF 27 36 3 0 8 74
FM 12 0 13 0 1 26
OW 4 0 1 46 0 51
SH 10 6 0 3 18 37
Total 124 56 27 52 33 292
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higher to those achievable by dual-season dual-pol SAR classifications,
especially during the high water season (κ = 0.7–0.8; AD = 3–5% and
QD = 10–15%). Therefore, the use of PolSAR images may reduce the
need for multiple season imagery, reducing overall acquisition costs
and enabling detailed assessment of vegetation cover at any chosen pe-
riod of the hydrological cycle.

Still, várzea plant communities are very similar in terms of structure
and phenology, and dual-seasonal PolSAR datawas capable of achieving
the highest classification accuracies for all classes, combining the better
structural discrimination achieved by PolSAR with the hydrological and
phenological information brought by dual-season data. Model-based
decompositions and, to a lesser degree, the linear polarizations present
in the C-matrix stood as the most accurate polarimetric descriptors for
discriminating land cover and vegetation classes in várzea floodplains,
for both single and dual-season images.

PolSARdata in allmain SARwavelengths (C, X and Lbands) are readily
available for commercial and scientific uses, and our results can help
guide data acquisition strategies by research institutions, government
agencies and the private sector. We were able to achieve very accurate
classifications in this study (κ N 0.8, AD b 3% and QD b 10%), showing
that operational uses of PolSAR data for wetland mapping are a reality.
The methods described in this study can be applied to generate accurate
vegetation maps, contributing to improve habitat distribution, biomass
and productivity, and greenhouse gas emission estimates, for both herba-
ceous and forest vegetation, contributing to the understanding of climate
and land cover change impacts in the Amazon várzea and similar
wetlands.
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