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Abstract

A simple and accurate projection finite volume method is developed for solving shallow water equations in two space
dimensions. The proposed approach belongs to the class of fractional-step procedures where the numerical fluxes are reconstructed
using the method of characteristics, while an Eulerian method is used to discretize the conservation equations in a finite volume
framework. The method is conservative and it combines advantages of the method of characteristics to accurately solve the
shallow water flows with an Eulerian finite volume method to discretize the equations. Numerical results are presented for several
applications in rotating shallow water problems. The aim of such a method compared to the conventional finite volume methods is
to solve shallow water equations efficiently and with an appropriate level of accuracy.
c⃝ 2015 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

Modeling shallow water flows with Coriolis forces is useful to study hydraulic engineering problems involving ro-
tating flows in meteorology and climate research, and other applications in coastal hydrodynamics. The mathematical
governing equations are commonly achieved by vertical integration of the Navier–Stokes equations along with the
assumptions of a hydrostatic pressure and a vertically uniform horizontal velocity profile. Many numerical methods
are available in the literature to solve the shallow water equations. The most popular techniques are based on the
well-known Roe scheme [11] originally designed for hyperbolic systems of conservation laws without accounting for
source terms. The authors in [1] have also developed exact solutions for the Riemann problem at the interface with
a sudden variation of the topography in shallow water equations. The main idea in their approach was to define the
bottom level such that a sudden variation in the topography occurs at the interface of two cells. An approach based
on a local hydrostatic reconstruction has been proposed in [2] for open channel flows with topography. The extension
of ENO and WENO schemes to shallow water equations has been studied in [15]. Unfortunately, most ENO and
WENO schemes that solve real flows correctly are still very computationally expensive. On the other hand, numerical
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methods based on kinetic reconstructions have been studied in [13] among others, but the complexity of these methods
is relevant.

In [5], the authors proposed a simple and accurate method for solving the one-dimensional shallow water equations
on non-flat beds. This method incorporates the techniques from method of characteristics into the reconstruction
of numerical fluxes. The performance of the proposed method has been demonstrated for several test examples on
shallow water equations in one space dimension. In this paper we extend this method to two-dimensional shallow
water equations with Coriolis forces. Our main goal is to present a class of numerical methods that are simple, easy
to implement, and accurately solves the shallow water equations without relying on a Riemann solver. This goal is
reached by a projection of the shallow water system in the local coordinates and a method of characteristics is used.
In the first step, the conservation equations are integrated over an Eulerian control volume. We term this step by
corrector stage applied to the conservation equations. In the second step, the shallow water equations are projected
in a non-conservative form and integrated along the characteristics defined by the water velocity. This step is called
predictor stage and used to calculate the numerical fluxes required in the corrector stage. Our method can be treated
as a conservative modified method of characteristics for shallow water equations or as a Riemann solver-free finite
volume method for shallow water equations. The discretization of flux gradients and source terms are well-balanced
and the method satisfies the exact C-property. The proposed scheme has the ability to handle calculations of slowly
varying flows as well as rapidly varying flows over continuous and discontinuities bottom beds. These features are
demonstrated using several benchmark problems for two-dimensional shallow water flows. Results presented in this
paper show high resolution of the proposed finite volume characteristics method and confirm its capability to provide
accurate and efficient simulations for shallow water flows including Coriolis forces.

This paper is organized as follows. The rotating shallow water equations and their projection finite volume
discretization are presented in Section 2. In Section 3, the method of characteristics is formulated for the reconstruction
of the numerical fluxes. This section includes also the discretization of the source terms. Section 4 is devoted to
numerical results for several test examples for rotating shallow water equations. Our new approach is shown to enjoy
the expected accuracy as well as the robustness. Section 5 contains concluding remarks.

2. Projection method for shallow water equations

The two-dimensional shallow water equations represent mass and momentum conservation and have been widely
used to model water flows under the influence of gravity. In a conservative form these equations are formulated as
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where g is the gravitational acceleration, fc is the Coriolis parameter defined by fc = 2ω sin φ, with ω denoting the
angular velocity of the earth and φ is the geographic latitude, h(t, x, y) is the water depth, u(t, x, y) and v(t, x, y)

are the depth-averaged velocities in the x- and y-direction, respectively. In the present work, we neglect diffusion by
viscous or turbulent effects, the wind effects and friction forces in the momentum equation. It is well known that the
system (1) is strictly hyperbolic with real and distinct eigenvalues. For simplicity in presentation we rewrite Eqs. (1)
in a conservative form as
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Fig. 1. An illustration of control volumes Ci, j used in the proposed method.
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Note that Eq. (2) has to be solved in a bounded spatial domain Ω with smooth boundary Γ , equipped with given
boundary and initial conditions. In practice, these conditions are problem dependent and their discussion is postponed
for Section 3 where numerical examples are discussed.

Let us cover the spatial domain Ω with cells Ci j = [xi− 1
2
, xi+ 1

2
]× [y j− 1

2
, y j+ 1

2
] shown in Fig. 1. The cells, Ci j , are

centered at (xi = i∆x, y j = j∆y) with uniform sizes ∆x and ∆y for simplicity in the presentation only. Integrating
(1) over the element Ci j , the basic equations of the finite volume method obtained using the divergence theorem are
given by
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where η = (nx , ny)
T denotes the unit outward normal to the surface Si, j of the element Ci j . Using the local cell

outward normal η and tangential τ = η⊥ depicted in Fig. 2, the above equations can be projected as
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where the normal projected velocity uη = unx + vny and the tangential projected velocity uτ = vnx − uny . In
order to simplify the system (3), we first sum Eq. (3b) multiplied by nx to Eq. (3c) multiplied by ny , then we subtract
Eq. (3b) multiplied by ny from Eq. (3c) multiplied by nx . The outcome of these operations is
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Fig. 2. Illustration of the projected velocities on the control volume Ci, j .
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which can be rewritten in a differential form as
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The system (4) can also be reformulated in a non-conservative form as
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is the total material derivative. The system (5) can also be rearranged in a compact vector
form as
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Note that using the projection method on the local coordinates the two-dimensional shallow water equations (1) in
the control volume Ci, j reduce to the one-dimensional system (6) on each surface Si, j of this control volume. In the
proposed method the system (6) is used only to reconstruct the numerical fluxes while the finite volume method is
applied directly to the conservative system (1). Similar projection techniques have also been used in [12,4] among
others.
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3. Finite volume characteristics method

In this section we formulate the finite volume characteristics method for the numerical solution of the shallow
water equations (1). The method consists of two steps and can be interpreted as a predictor–corrector approach. The
first step deals with the finite volume discretization of the equations whereas in the second step, reconstruction of the
numerical fluxes is discussed.

3.1. Finite volume discretization

For the space discretization of Eq. (2), we use the notations

Wi± 1
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2
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to denote the point-values and the approximate cell-average of the variable W at the gridpoint (t, xi± 1
2
, y j ), (t, xi ,

y j± 1
2
), and (t, xi , y j ), respectively. Integrating Eq. (2) with respect to space over the control volume Ci, j shown in

Fig. 1, we obtain the following semi-discrete equation
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where Fi±1/2, j = F(Wi±1/2, j ) and Gi, j±1/2 = G(Wi, j±1/2) are the numerical fluxes at the cell interfaces x = xi±1/2
and y = yi±1/2, respectively. In (7), Qi, j and Ri, j are consistent discretizations of the source terms Q and R in (2).
The spatial discretization of Eq. (7) is complete when a time integration is performed and a numerical construction of
the fluxes Fi±1/2, j and Gi, j±1/2 is chosen. In general, this construction requires a solution of Riemann problems at
the interfaces xi±1/2 and yi±1/2, see for example [11,12,4]. From a computational viewpoint, this procedure is very
demanding and may restrict the application of the method to shallow water equations for which Riemann solutions
are available.

To integrate Eq. (7) in time we divide the time interval into N subintervals [tn, tn+1] with length ∆t = tn+1 − tn
for n = 0, 1, . . . , N . We use the notation wn to denote the value of a generic function w at time tn . We may consider
a first-order two-step time stepping scheme, in which the fully-discrete formulation of the system (2) is given byWi, j = Wn
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i±1/2, j ) and Gn
i, j±1/2 = G(Wn

i, j±1/2). Note that other high-order time stepping methods can
also be applied without major conceptual modifications. It should also be noted that using the splitting (8) the Coriolis
forces are supposed to be updated separately in the first step of the splitting whereas, the second step deals with the
remaining source terms.

3.2. Method of characteristics

In the present study, we reconstruct the numerical fluxes Fi±1/2, j and Gi, j±1/2 using the method of characteristics.
The fundamental idea of this method is to impose a regular grid at the new time level and to backtrack the flow
trajectories to the previous time level, see for example [10,14]. At the old time level, the quantities that are needed are
evaluated by interpolation from their known values on a regular grid. Hence, the characteristic curves associated with
Eq. (6) are solutions of the initial-value problems
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Fig. 3. Sketch of the method of characteristics: A water particle at gridpoint xi+1/2 is traced back in time to Xi+1/2 where the intermediate

solution Ûn
i+1/2, j is interpolated.

with a similar system of the characteristic curves Y j+1/2(s) in the y-direction. Note that X i+1/2(s) (respectively
Y j+1/2(s)) is the departure point at time s of a particle that will arrive at the gridpoint xi+1/2 (respectively y j+1/2(s))
in time tn + ∆t , compare Fig. 3. The method of characteristics does not follow the flow particles forward in time, as
the Lagrangian schemes do, instead it traces backwards the position at time tn of particles that will reach the points
of a fixed mesh at time tn + ∆t . By doing so, the method avoids the grid distortion difficulties that the conventional
Lagrangian schemes have. Hence, the solution of (9) can be expressed in an integral form as

X i+1/2, j (tn) = xi+1/2, j −

 tn+∆t

tn
uη


s, X i+1/2, j (s)


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In our simulations we used a first-order Euler method to approximate the integral in (10), however other high-order
Runge–Kutta methods are also possible. In general X i+1/2, j (tn) (respectively Y j+1/2(tn)) will not coincide with
the spatial position of a gridpoint. Thus, once the characteristic curves X i+1/2, j (tn) (respectively Y j+1/2(tn)) are
accurately calculated, the intermediate solutions W n

i+1/2, j and W n
i, j+1/2 of a generic function W are reconstructed
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feet computed by interpolation from the gridpoints of the control volume where the departure points reside, see Fig. 3
for an illustration. For instance, a Lagrange-based interpolation polynomials can be formulated as
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Note that other interpolation procedures such as Spline or Hermite interpolation methods or interpolation techniques
based on radial basis functions can also be applied. Assume an accurate approximation of the characteristics curves
X i+1/2, j (tn) is made, the predictor stage in the FVC method applied to the shallow water equations is defined by the



F. Benkhaldoun et al. / Mathematics and Computers in Simulation 118 (2015) 87–101 93

solution of the system (6) as
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The intermediate states Un
i, j+1/2 in the y-direction can be evaluated in the same manner. Once the projected states are

calculated in the predictor stage (14), the states Wn
i±1/2, j and Wn

i, j±1/2 are recovered by using the transformations
v = (uτ , uη) · η and u = (uτ , uη) · τ .

In the proposed method, the discretization of the source terms Qi, j in (7) is carried out such that the discretization
of the source terms are well balanced with the discretization of flux gradients using the concept of C-property [6].
Recall that a numerical scheme is said to satisfy the C-property for Eqs. (1) if the condition

hn
+ Z = C = constant, un

= vn
= 0, (15)

holds for stationary flows at rest. Therefore, the treatment of source terms Qi, j in (7) is reconstructed such that the
condition (15) is preserved at the discretized level. Following the same steps in our study reported in [5] for the
one-dimensional shallow water equations, the discretization of the terms in (7) is carried out as
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where the averaged solutions are defined by
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The discretization of source terms in (16) is achieved by projecting the original shallow water model into the local
system where a dimension by dimension discretization is used. Details on this approach can be found in [5] and for
brevity they are omitted here. It should be stressed that the C-property is obtained by assuming a linear interpolation
procedure in the predictor stage of the FVC method. However, a well-balanced discretization of flux gradients and
source terms for a quadratic or cubic interpolation procedures can be carried out using similar techniques.

4. Numerical results

In this section we perform numerical tests with our finite volume characteristics method for the two-dimensional
shallow water equations. In all our computations a fixed Courant number CFL = 0.8 is used while the time step ∆t is
varied according to the stability condition

∆t = CFL
min (∆x,∆y)

max

|un| +

√
ghn, |vn| +

√
ghn

 .



94 F. Benkhaldoun et al. / Mathematics and Computers in Simulation 118 (2015) 87–101

Table 1

Relative L1-error and CPU times (in seconds) obtained for the accuracy test example at time t = 100 using the Roe, SRNH and FVC methods.

Gridpoints Roe SRNH FVC
L1-error CPU L1-error CPU L1-error CPU

50 × 50 3.0626E−04 9.95 2.9673E−04 10.70 2.6409E−04 2.59
100 × 100 2.6969E−04 81.26 2.6224E−04 87.96 1.9851E−04 12.01
200 × 200 2.2984E−04 658.75 2.2269E−04 741.40 1.3651E−04 84.37
400 × 400 1.7808E−04 5533.40 1.6791E−04 5914.53 8.280E−05 738.85

In all results presented in this section the linear interpolation procedure is used in the predictor stage. For comparison
reasons, we also compare the results obtained using our Finite Volume Characteristics (FVC) method to those obtained
using the well established Roe scheme in [11] and a modified Roe method (SRNH) developed in [12]. The following
test examples are selected:

4.1. Accuracy test examples

We first check the accuracy of the proposed FVC method for a shallow water system with known analytical
solution [7]. We solve the shallow water equations (1) without Coriolis force in the squared domain Ω = [−50, 50]×

[−50, 50] with analytical solution for the water depth and the velocity
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v(t, x, y) =
1
2

sin α − ax̄e−b

x̄2

+ȳ2
,

(17)

where x̄ = x + 20 −
t
2 cos α and ȳ = y + 10 −

t
2 sin α. Initial and boundary condition are set according to the exact

solution (17). Here we use the same parameters as in [7] for g = 1, a = 0.04, b = 0.02 and results are displayed at
time t = 100. We consider the relative L1-error norm defined as

M
i=1

M
j=1

hn
i, j − h(tn, xi , y j )

∆x∆y

M
i=1

M
j=1

h(tn, xi , y j )
∆x∆y

, (18)

where hn
i, j and h(tn, xi , y j ) are respectively, the computed and exact water depth at gridpoint (xi , y j ), whereas M

stands for the number of gridpoints in each direction used in the spatial discretization. The obtained results are
listed in Table 1 along with their corresponding CPU times. It reveals that increasing the number of gridpoints in
the computational domain results in a decay of L1-error in all methods. A faster decay of the error is observed in the
FVC method than in Roe and SRNH methods. A simple inspection of Table 1 also reveals that, for meshes with low
number of gridpoints, the measured CPU time is comparable for Roe and SRNH methods. However, for all considered
meshes the FVC method is the most efficient. For instance, for a mesh of 400 × 400 gridpoints, the FVC method is
about 7 and 8 faster than the Roe method and SRNH scheme, respectively. Similar results not reported here have been
obtained for the relative L1-error in the velocities u and v. Note that the Roe and SRNH schemes require a solver for
the Riemann problem at each time step to reconstruct the numerical fluxes, which is completely avoided in our FVC
scheme.

Next we examine the preservation of the C-property for the proposed FVC method. To this end we consider a two-
dimensional version of the benchmark problem of a lake at rest flow proposed in [6] to test the conservation property
of numerical methods for one-dimensional shallow water equations. Here we solve the two-dimensional shallow water
equations (1) in a channel 1000 m long and 10 m wide using the bed data provided in [6]. For this test problem the
gravitational force g = 9.8 m/s2 and the Coriolis force fc = 0. The channel bed is irregular, so this test example is
a good illustration of the significance of the source term treatment for practical applications to natural watercourses.
It is expected that the water free-surface remains constant and the water velocity should be zero at all times. We run
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Fig. 4. Cross-sections of the free-surface (left plot) and the error (right plot) for the lake at rest in the middle of the channel y = 5 m and at time
t = 10 800 s.

the FVC method using a mesh of 100 × 100 gridpoints and the obtained results are displayed at time t = 10 800 s.
In Fig. 4 we present the water free-surface along with the bed profile and the surface plot of the absolute error in the
water depth defined as |h + Z − 20|. For a better insight we also include in this figure the horizontal cross-section at
y = 5 m of the water free-surface and the absolute error along with the channel bed. As can be seen, the water free-
surface remains constant during the simulation time and the proposed FVC method preserves the C-property to the
machine precision. It should be stressed that the performance of the FVC method is very attractive since the computed
solution remains stable and accurate even when coarse meshes are used without requiring complicated techniques to
balance the source terms and flux gradients.

4.2. Circular dam-break problem

This example was proposed in [8] to study cyclone/anticyclone asymmetry in nonlinear geostrophic adjustment.
We solve the shallow water equations (1) on a flat bottom in the spatial domain Ω = [−10, 10] × [−10, 10] subject
to Neumann boundary conditions and equipped with the following initial conditions

h(0, x, y) = 1 +
1
4


1 − tanh


ax2 + by2 − 1

c


, u(0, x, y) = v(0, x, y) = 0,

where a =
5
2 , b =

2
5 and c = 0.1. In our simulations g = 1 and fc = 1 as in [8] and two meshes of 50 × 50 and

100 × 100 gridpoints are considered. In Fig. 5 we illustrate the initial conditions used for this test example. The plots
of the computed water height are shown in Fig. 6 at three different times t = 4, 8 and 16 using a mesh of 100 × 100
gridpoints. In this figure we have also included the results obtained using the Roe and SRNH for comparison. As can
be seen a bore has formed and the water drains from the deepest region as a rarefaction wave progresses outwards. It is
clear from the presented results that the initial elliptical mass imbalance evolves in a nonaxisymmetric way. The two
expected shock waves are very well captured by the proposed FVC method. These results are qualitatively in good
agreement with those published in [8].

In Fig. 7 we exhibit the results for the vorticity variable and the velocity field obtained using the considered
methods. As can be seen the two shock waves originated behind the water elevation are slowly spinning clockwise
in the computational domain. The velocity field is well represented by the FVC method and recirculation regions
within the flow domain are well captured. For the considered simulation times, numerical results obtained using FVC
method appear to be more accurate than those obtained using Roe and SRNH methods. For instance, the numerical
diffusion is very pronounced in Roe and SRNH schemes applied to this flow problem on the mesh with 100 × 100
gridpoints. Furthermore, the numerical diffusion is more pronounced in the results obtained using Roe and SRNH
schemes than the FVC method. To further illustrate this effect we present in Fig. 8 diagonal cross-sections of the
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water depth at y = x for two meshes with 50 × 50 and 100 × 100 gridpoints. It is clear that on the coarse mesh with
50 × 50 gridpoints the numerical diffusion in the results obtained using Roe and SRNH schemes is larger than the
FVC method. Refining the mesh to 100 × 100 gridpoints the numerical diffusion in Roe and SRNH schemes reduces
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Fig. 7. Vorticity plots and velocity fields for the circular dam-break problem on flat bottom obtained at different times using Roe (first column),
SRNH (second column) and FVC (third column). From top to bottom t = 4, 8 and 16.

but the results obtained using FVC method are the most accurate. It is worth mentioning that for this test problem,
the computational time required for the FVC method is about 5 times less than for Roe and SRNH schemes. This is a
huge saving in the computational cost as the proposed FVC method is faster and more accurate than the Roe method
widely used in the literature to solve this class of applications in shallow water flows.

Our next concern is to assess the performance of our FVC method to solve this circular dam-break problem on a
non-flat bottom. Hence, we solve the same test problem on a non-flat bed defined as

Z(x, y) = 0.3


1 + tanh


3x

2


.

The computed results for the water depth obtained at t = 2, 8 and 16 using two meshes with 100×100 and 200×200
gridpoints are displayed in Fig. 9. The corresponding results for vorticity variable and velocity field are presented in
Fig. 10. From a numerical point of view this test example is more difficult than the previous one as the flow is expected
to exhibit complex features due to the interaction between the water surface and the bed. As in the previous test a bore
has formed and the water drains from the deepest region as a rarefaction wave progresses outwards. However, a slower
propagation is detected for the water free-surface in this test compared to the previous one and larger values of the
vorticity are also observed for this example compared to the simulations on flat-bottom. The FVC method resolves
accurately the flow structures and the vortices seem to be localized in the correct place in the flow domain. In addition,
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Fig. 8. Diagonal cross-sections of the water depth at y = x for the circular dam-break problem on flat bottom obtained at different times using
50 × 50 gridpoints (first row) and 100 × 100 gridpoints (second row).
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the resolution of the FVC method is clearly observed and no oscillations have been detected in the vicinity of the bed
transition.

As for the previous test example, in Fig. 11 we compare the results obtained using FVC scheme to those obtained
using Roe and SRNH methods. Here we present diagonal cross-sections of the water depth at y = x on the mesh
with 50 × 50 gridpoints at different times. For a better insight zooming plots have been included within the results.
Numerical results obtained using the FVC scheme appear to be more accurate than those obtained using Roe and
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Fig. 10. Vorticity plots and velocity fields for the circular dam-break problem on non-flat bottom obtained using a mesh with 100 × 100 gridpoints
(first row) and 200 × 200 gridpoints (second row). From left to right t = 2, 8 and 16.
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Fig. 11. Diagonal cross-sections of the water depth at y = x for the circular dam-break problem on non-flat bottom obtained at different times
using a mesh with 50 × 50 gridpoints.

SRNH methods, observe the differences at the hydraulic jump at times t = 8 s and t = 16 s. A comparison of CPU
times is also carried out for this problem and it is summarized in Table 2. It is clear that the FVC scheme is more
efficient than the Roe and SRNH methods. For instance, at time t = 16 s the CPU time for Roe and SRNH schemes
is about 12 times more than the FVC scheme. Balancing the accuracy reported in Fig. 11 and the computational cost
in Table 2, the FVC scheme can be considered as a highly efficient solver for this type of shallow water flows over
non-flat beds.

4.3. Periodic shear-layer flow

Our final test example consists of the periodic shear-layer problem solved in [9] using the Navier–Stokes equations.
In the current study we consider the case with zero viscosity which is most challenging to numerically solve.
Similar periodic shear-layer problems have also been studied in [3] among others. The computational domain
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Table 2
CPU times (in seconds) obtained for the circular dam-break
problem on non-flat bottom obtained at different times using a
mesh with 50 × 50 gridpoints.

t = 2 s t = 8 s t = 16 s

Roe 2.18 8.10 16.44
SRNH 2.38 8.27 16.57
FVC 0.28 0.78 1.41
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Fig. 12. Water depth (first row), vorticity plots and velocity fields (second row) for the periodic shear-layer problem obtained using a mesh with
100 × 100 gridpoints. From left to right t = 1, 2 and 4.

Ω = [−
1
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2 ] × [−
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2 ] and the initial conditions are h(0, x, y) = 1,
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Periodic boundary conditions are used and the remaining parameters are g = 1 and fc = 0.01. The objective of this
test problem is to check the performance and stability of the proposed FVC method to resolve the small perturbations
on the water free-surface and vorticity in the rotating and mixing shallow water flows. We use a mesh with 100 × 100
gridpoints in our simulations.

Fig. 12 presents the obtained results for water depth, vorticity and velocity field at times t = 1, 2 and 4. From
a simple inspection on this figure we can see, the two small regions of the circulation occurring in the center of the
computational domain, the predicted vortices with increased water depth near the upper and lower bands, and the
predicted velocity distribution that causes the water surface to recirculate. It can be easily seen that the small complex
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structures of the water flow being captured by our FVC method. There is excellent agreement between these results
and those published in [9] using a different approach based on the well-known Navier–Stokes equations.

It should be stressed that the proposed FVC method is a modular algorithm into which any high-order interpolation
procedure and any high-order time stepping scheme can easily be incorporated. Note that the method presented in this
paper can be highly optimized for the vector computers, because they not require nonlinear solvers and contain no
recursive elements.

5. Conclusions

We have presented a fast and accurate projection finite volume characteristics method to solve two-dimensional
shallow water equations on both flat and non-flat beds. The proposed method uses advantages of the method of
characteristics in a finite volume discretization of the shallow water system. In terms of advantages, the method can
solve steady flows over irregular beds without large numerical errors, thus demonstrating that the proposed scheme
achieves perfect numerical balance of the gradient fluxes and the source terms. In addition, the method can compute the
numerical flux corresponding to the real state of water flow without relying on Riemann problem solvers. Reasonable
accuracy can also be obtained easily and no special treatment is needed to maintain a numerical balance, because
it is performed automatically in the integrated numerical flux function. In addition, the proposed approach does not
require either nonlinear solution of algebraic equations or special front tracking techniques. Furthermore, it has strong
applicability to various problems in rotating shallow water flows as shown in the presented numerical results.

The proposed finite volume characteristics method has been tested on systems of shallow water equations at
different flow regimes. The method has also been compared to other well-established finite volume methods for
shallow water equations. The obtained results indicate good shock resolution with high accuracy in smooth regions
and without any nonphysical oscillations near the shock areas. The well-balancing property of the method has been
verified in flow at rest on non-flat bottom. Although we have restricted our numerical computations to structured
meshes, the current finite volume characteristics scheme can be extended to rotating shallow water flows in two space
dimensions with bottom friction using unstructured grids. These and further issues are subject of future investigations.
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