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In emerging big data era, mobile social networking (MSN) is an important data source, which provides
an attractive proximity-based communication platform for mobile users with similar interests, attributes,
or background to communicate with each other. In this kind of proximity-based MSN, profile matching
protocol, which enables a mobile user to break the ice and start a conversation with someone attractive,
is one of important components for its success. However, profile matching may occasionally leak the
sensitive information, hence privacy concerns often hinder users from enabling this functionality. Aiming
at this problem, in this paper, we present a new secure and fine-grained privacy-preserving matching
protocol, called SFPM. Differently from those previously reported private profile matching schemes,
our proposed SFPM can fine-grainedly differentiate users with the same value of matching metrics
by two phases of profile matching. In addition to the personal privacy preservation through secure
and efficient cryptographic algorithm, SFPM also achieves the flexibility of profiles changing at the
same time. Extensive performance evaluations via smartphones with android system are conducted, and
experimental results demonstrate the effectiveness of the SFPM protocol.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

As mentioned by IBM, the rapid development of mobile social 
networking (MSN) shown in Fig. 1, promotes the generation of big 
data [1]. Actually, plentiful statistics have indicated that most of 
big data are produced by MSN, for example, the internet access 
records of Unicom users have reached 10 TB each day in China. 
Because of this rising situation, many applications based on big 
data mining and sharing, like the friend recommender systems of 
WeChat [2] and Twitter [3], and other personalized recommender 
systems [4–7], have been emerged. In these applications, when 
sharing the personal information, like location and preferences in 
public, people can receive a variety of useful location-based ser-
vices from these recommender systems. In this paper, we focus
on studying a kind of very popular location-based applications, 
called proximity-based friend recommendation (PFR) mentioned in 
[8], which allows physically proximate mobile users to have more 
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tangible face-to-face social interaction in public places such as air-
ports, trains and stadiums [9]. In general, one possible way is to 
use the widely known profile matching [10] technique, which is 
the first step to find the targeting user. As stated by Wu et al. 
[11], the essence of profile matching is that two users need to 
compare their personal profile attributes before real interaction. 
However, a real-world concern is that social profile attributes used 
in the profile matching process include sensitive information about 
users and the violation of the privacy of the users’ social profiles 
may pose serious problems. Existing researches show that loss of 
privacy can expose users to unwanted advertisements [12] and 
spams/scams, cause social reputation or economic damage [13], 
and make them victims of blackmail or even physical violence 
[14]. Hence, the privacy concerns must be addressed when devel-
oping profile matching techniques for mobile social networks. In 
addition to security, clients of mobile social networks run on com-
puting resource-constrained mobile devices. Therefore, a privacy-
preserving and power-efficient profile matching scheme is needed 
for mobile social services.

Recently, there are quite a few schemes for private profile 
matching, which allow two users to compare their personal pro-
files without revealing private information to each other [10,15]
have been researched. As mentioned in [16], there are two main-

http://dx.doi.org/10.1016/j.bdr.2015.11.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:xueyang.swjtu@gmail.com
mailto:rxlu@ntu.edu.sg
mailto:hbliang@home.swjtu.edu.cn
mailto:xhutang@swjtu.edu.cn
http://dx.doi.org/10.1016/j.bdr.2015.11.001


JID:BDR AID:30 /FLA [m5G; v1.168; Prn:13/11/2015; 13:55] P.2 (1-8)

X. Yang et al. / Big Data Research ••• (••••) •••–•••
Fig. 1. Popular mobile social networking in big data era.

streams of approaches to solve the privacy-preserving profile-based 
friend matching problem. The first category treats the personal 
profile as a set of attributes and provides well-designed protocols 
based on private set intersection (PSI) and private cardinality of 
set intersection (PCSI) [10,17,18]; The second category considers 
the personal profile as a vector and measures the social proximity 
by private vector dot product or vector distance [19–22]. However, 
the vast majority of approaches in the first category have been 
proposed to enable only coarse-grained private matching and are 
unable to further differentiate users with the same attribute(s), 
which is less practical in applications [23]. To solve this problem 
and thus further enhance the usability of PFR in MSN, fine-grained 
private matching have been widely used in the second category, 
which are the basic idea of research in this paper. Hence, in what 
follows, we mainly discuss some related works of the second cate-
gory.

Liang et al. proposed the multiple pseudonyms technique to 
improve the anonymity protection for profile matching protocol 
in [19], where secure dot-product computation is one of impor-
tant building block. From the perspective of flexibility, multiple 
pseudonyms technique can ensure anonymity, but, it cannot satisfy 
the flexibility with slightly larger number of pseudonyms, which 
actually requires a lot of storage space and management overhead. 
In [21], Zhang et al. designed a fine-grained private matching pro-
tocol with different privacy levels in proximity-based mobile social 
networks, which included different matching metrics: l1 distance 
and max distance. However, it did not consider the difference of 
profile items and is unable to further differentiate users with the 
same value of l1 distance or the max distance. He et al. [24]
addressed this issue by proposing a novel user self-controllable 
profile matching protocol, which allowed users to self-define the 
weighted of profile items during matching, thus provided more 
accurate matching results for users. Unfortunately, the method of 
matching information similarity in both [21] and [24] was based 
on the time-consuming paillier encryption [25] satisfying homo-
geneity. Thus, due to the heavy overheads of encryption and de-
cryption, it is difficult to improve the overall operating of MSN ap-
plications. The purpose of this paper is to preserve private profile 
items from disclosing while improving the efficiency of schemes 
of the second category. In order to improve efficiency, we utilize 
some efficient methods to securely compute the vector dot prod-
uct, while existing efficient methods are mainly two kinds. One is 
a new asymmetric scalar-product-preserving encryption proposed 
by Wong et al. [22], which is focused on the problem of k-nearest 
neighbor (kNN) computation on an encrypted database, however, it 
cannot satisfy the flexibility with the variation of profile items. The 
other is an efficient privacy-preserving cosine similarity comput-
ing (PPCSC) protocol proposed by Lu et al. [26], which could serve 
as the foundation of many research fields, like privacy-preserving 
big data miming, data access control, recommendation system. Ex-
tensive simulation results showed that the PPCSC protocol is the 
most efficient one in terms of computation and communication 
overheads. Thus, we choose the PPCSC protocol as the basis of 
our protocol. Moreover, most of privacy preserving profile match-
ing protocols do not consider the attack model. To the best of our 
knowledge, none of the existing solutions to profile matching pos-
sesses all the desired properties: privacy-preserving, security (e.g., 
authentication and integrity), efficiency (e.g., cost-effective compu-
tation and communication overhead) and flexibility.

Therefore, how to achieve an efficient, flexible and privacy-
preserving profile matching protocol is still challenging in proxim-
ity-based MSN. Aiming at the above challenge, in this paper, we 
propose a secure and finer-grained privacy-preserving matching 
protocol, called SFPM, for proximity-based MSN. With the SFPM 
protocol, users can efficiently and flexibly seek out the finer-
grained matching target while without disclosing any personal in-
formation. In addition, our proposed protocol achieves the integrity 
of the message and source data authentication, and immensely 
decreases the computation overhead in comparison with that pro-
posed in [21] and [24], especially alleviating the computational and 
communication burden of smartphones. Specifically, the main con-
tributions of this paper are four aspects.

• We present SFPM, a new secure and fine-grained privacy-
preserving matching protocol, which consists of two stages
matching: cosine similarity and weighted l1 norm. With SFPM,
users can finer-grainedly distinguish users and find out the
most matched one.

• Compared to the previous private matching protocols, SFPM
provides a flexible and efficient matching style. In particu-
lar, we introduce a data processing center (DPC) to accom-
plish matching computations, which can immensely relieve
the computation and communication burden of mobile de-
vices. Moreover, the encryption algorithm proposed in [26] is
more efficient and flexible compared with [22]. Consider the
case when user inserts some profiles, only the inserted profiles
should be encrypted, and then DPC only executes multiplica-
tion on these profiles and adds them in the previous computa-
tion result. Deleting and updating operations are similar with
inserting. Therefore, our protocol is flexible for the variation of
personal profiles.

• In addition to data confidentiality, the SFPM protocol achieves
the integrity of the message and source data authentication by
appending the message authentication codes, like the keyed-
hashing for message authentication code (HMAC), as a result
the ciphertexts can defense the additive noise.

• To validate the effectiveness of the proposed SFPM proto-
col, we implement both the SFPM protocol and the protocol
one proposed by Zhang [21] on a platform with two an-
droid phones and a computer. By contrasting, we demonstrate
that SFPM is much more efficient than existing similar profile
matching schemes [21,24] in terms of the computational over-
head.

The remainder of this paper is organized as follows. In Sec-
tion 2, we formalize the system model and confirm the design 
goal. After that, we propose the SFPM protocol in Section 3. The 
security analysis and performance evaluation are introduced in 
Section 4 and 5, respectively. Finally, we draw our conclusions in 
Section 6.

2. System model and design goal

2.1. System model

In our system model, we consider a trusted key distribution 
center (KDC), a semi-trusted data precessing center (DPC), and a 
group of l + 1 users U = {U A, U1, U2, . . . , Ul}, where U A is the re-
quester of the PFR service and the others are the neighbors, as 
shown in Fig. 2, where we briefly represent the users with smart-
phones. KDC is a trustable and powerful entity, who is mainly 
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Fig. 2. System model under consideration.

responsible for keys generation of every users. DPC denotes a semi-
trusted and powerful entity, who is assumed to be honest-but-
curious. That is, it will honestly execute the assigned tasks in the 
system; however, it would like to learn information of encrypted 
contents as much as possible. Therefore, it should be prevented 
from accessing the plaintext even if it is honest. Each user carries 
a smart-phone or other kinds of mobile devices installing the same 
matching application, like the friends recommendation of WeChat.

In our SFPM protocol, we essentially define a two-phase profiles 
matching, which is required to achieve high similarity, efficiency 
and ensure privacy preserving. Considering a common application 
scenario, when U A wants to find a proximity-based person to chat 
with, he (she) uses the global positioning system (GPS)-based pro-
gram to find l adjacent users Ui ∈ U. Applying the two-phase pro-
file matching, U A may find the most similar user and keep secret 
of personal profiles simultaneously.

Phase-I matching process. Phase-I matching process is based on 
the cosine similarity. Once receiving the encrypted profiles, DPC 
computes the cosine values between U A and Ui . Let U∗ denote 
a m-subset of U, which contains m users and anyone of them has 
the largest cosine value with U A . If l ≥ m ≥ 2, then m users execute 
phase-II. Otherwise, the total process is terminated

Phase-II matching process. Phase-II matching process is based on 
the weighted l1-norm. DPC computes the weighted l1-norm be-
tween U A and Ui ∈ U

∗ to find the most similar user, where the 
weighted vector is according to the profiles of U A .

2.2. Design goal

Our design goal is to develop a secure and privacy-preserving 
matching protocol to provide finer-grained profile matching with-
out disclosing any information about their profiles in proximity-
based MSN. Specifically, we i) apply an efficient encryption algo-
rithm to minimize the personal profiles disclosure; and ii) develop 
a two-phase matching method-cosine similarity and weighted 
l1-norm to find the most matched user as much as possible.

3. The SFPM protocol

In this section, we propose the SFPM protocol to support high 
similarity and efficiently profile matching, which consists of three 
parts: system initialization, cosine similarity profile matching and 
weighted l1-norm profile matching. Before describing them, we 
give two reasonable assumptions: i) the communication channel 
between KDC and l + 1 users or DPC are assumed to be secured 
by existing methods, such as secure sockets layer (SSL); and ii) the 
communication channels among users are assumed to be 3G, 4G or 
WiFi networks, which are suitable for those of users and DPC. In 
addition, for clear description, some notations are used throughout 
this paper: i) let k1, k2, k3 and k4 denote the security parameters; 
ii) hsk() is the HMAC, used for implementing the message integrity
and authenticity.

Consider the public attribute set consisting of n attributes 
{A1, . . . , An}, where n may range from several tens to several hun-
dreds depending on specific applications in MSN. The attribute 
may have different meanings in different contexts, such as inter-
ests [10] and disease symptoms [20]. Every user selects an inte-
ger bi ∈ [0, q − 1] to indicate one’s level of interest in Ai (for all 
i ∈ [1, n]). The higher bi , the more interest the user has in Ai , 
and vice versa. Therefore, every personal profile is defined as a 
vector (b1, . . . , bn) ∈ Fn

q . In particular, we consider U A with pro-

file �a = (a1, . . . , an), and U j with profile �b j = (b( j)
1 , . . . , b( j)

n ), for
|q| = k5, |n| = k6 in the SFPM protocol. When U A initiates a profile 
matching request of adjacent people, GPS-based matching applica-
tions, like WeChat and Twitter, frequently find the adjacent U j ∈U, 
who use the same applications. Afterwards, all users, DPC and KDC 
execute the two-phases profile matching protocol. Because the to-
tal privacy-preserving profile matching process between U A and 
U j is identical, for each 1 ≤ j ≤ l, without loss of generality, we 
only consider the profile matching between U A and U j , which is 
shown as in Fig. 3.

3.1. System initialization

KDC first chooses two large primes α, p with |p| = k1, |α| =
k2 and two large random numbers s, d ∈ Zp such that s · d ≡ 1
(mod p), and then chooses a secret key K j (|K j| = 128) for U j ∈U, 
and K A (|K A | = 128) for U A to compute HMAC, respectively. Next, 
KDC publics the system parameter params = (p, α), and sends 
(s, K A) to U A and (d, K j) to U j , respectively. In addition, KDC also 
sends the key list LK = (〈u A, K A〉, 〈u1, K1〉, . . . , 〈ul, Kl〉) to DPC, 
where u A and u j are the unique identities for U A and U j , respec-
tively.

3.2. Phase-I: cosine similarity matching

Before describing the detailed process, we give the well-known 
formula called cosine similarity.

cos(�u, �v) =
∑n

i=1 ui vi√∑n
i=1 u2

i

√∑n
i=1 v2

i

.

This is an important measure of similarity of two objectives cap-
tured by vectors �u = (u1, . . . , un) and �v = (v1, . . . , vn), respectively. 
In big data analysis, cos(�u, �v) has become a critical building block 
for many data mining techniques.

Based on the cosine similarity formula, we can obtain that the 
greater cos(�a, �b j) of U A and U j is, the higher the cosine similarity, 
which implies the higher matching degree between U A and U j . 
The detailed operations of phase-I are as follows.

1. U A executes the following operations:
a For each ai, i = 1, . . . , n, choose a random numbers ci , where

ci is of the length |ci | = k3 bits, and compute

Ci = s(αai + ci) (mod p). (1)

In addition, compute A = ∑n
i=1 a2

i .
b Compute the HMAC for u A‖A by means of the key K A , e.g. 

hK A (u A‖A).
c Send (u A, A, C1, . . . , Cn, hK A (u A‖A)) to DPC.

2. U j does the following operations:



JID:BDR AID:30 /FLA [m5G; v1.168; Prn:13/11/2015; 13:55] P.4 (1-8)

4 X. Yang et al. / Big Data Research ••• (••••) •••–•••
Fig. 3. The SFPM protocol of fine-grained privacy-preserving matching.
a For each b( j)
i , i = 1, . . . , n, choose a random numbers r( j)

i , 
where r( j)

i is of the length |r( j)
i | = k4 bits, and compute

D( j)
i = d(αb( j)

i + r( j)
i ) (mod p). (2)

Besides, compute B j = ∑n
i=1(b

( j)
i )2.

b Compute the HMAC for u j‖B j by means of the key K j , e.g. 
hK j (u j‖B j).

c Send (u j, B j, D
( j)
1 , . . . , D( j)

n , hK j (u j‖B j)) to DPC.
3. DPC does the following after receiving the messages from U A

and U j .
a Refer to the key list LK stored in advance, and find the 

HMAC key K A and K j of U A and U j , respectively. With 
the HMAC keys, DPC computes h′

K A
(u A‖A) and h′

K j
(u j‖B j),

respectively. Afterwards, check whether h′
K A

(u A‖A) = hK A

(u A‖A) and h′
K j

(u j‖B j) = hK j (u j‖B j).

b If the verification fails, DPC requires retransmission or does 
nothing. Otherwise, DPC does the following operations:
1) Compute

E =
n∑

i=1

Ci D( j)
i (mod p). (3)

And then, obtain the dot product �a · �b j = ∑n
i=1 aib

( j)
i =

E−(E (mod α2))

α2 , so cos(�a, �b j) = �a·�b j√
A·√B j

.

2) After l cosine values have been computed, denoted as
{u j, cos(�a, �b j)}l

j=1. DPC computes the HMAC

hK A ({u j‖ cos(�a, �b j)}l
j=1) by means of the secret key K A .

c Return ({u j, cos(�a, �b j)}l
j=1, hK A ({u j‖ cos(�a, �b j)}l

j=1)) back
to U A

4. Once receiving the message, U A computes h′
K A

({u j‖
cos(�a, �b j)}l

j=1) and checks whether h′
K A

({u j‖ cos(�a, �b j)}l
j=1) =

hK A ({u j‖ cos(�a, �b j)}l
j=1). If the verification fails, U A requires 

retransmission. Otherwise, he (she) compares l values of 
cos(�a, �b j), where j = 1, . . . , l, and then chooses a set of m

users U∗ , where U∗ = {Ui |i = arg max j=1,...,l cos(�a, �b j)}.

After phase-I is finished, m remaining users belong to the sub-
set U∗ , where 0 ≤ m ≤ l. If m < 2, the total process is terminated, 
otherwise, for each U j ∈ U

∗ , DPC executes the following weighted 
l1-norm matching between U A and U j .

3.3. Phase-II: weighted l1-norm matching

Based on the result of phase-I, m users remain to be matched 
with U A to seek out the most matched one. Before describing the 
detailed operations, we give a definition of the binary vector.

Definition 1. For all x ∈ [0, q − 1], we define a binary vector h(x) =
(x1, . . . , xq−1), where xi is equal to one for 1 ≤ i ≤ x and zero for 
x < i ≤ q − 1.

Recall that the profiles of U A is �a = (a1, . . . , an) and U j is �b j =
(b( j)

1 , . . . , b( j)
n ). Therefore, the l1-norm between �a and �b j is defined

as

l1(�a, �b j) =
n∑

i=1

|ai − b( j)
i |.

The l1-norm evaluates the overall absolute difference between two 
personal profiles. However, we can not compute l1-norm immedi-
ately so that the privacy of personal profiles can be prevented from 
disclosing. In particular, by means of Definition 1, we convert �a, �b j
into

â = h(�a) = (â11, . . . , â1(q−1), . . . , âik, . . . , ân(q−1))

b̂ j = h(�b j) = (b̂( j)
11 , . . . , b̂( j)

1(q−1), . . . , b̂( j)
ik , . . . , b̂( j)

n(q−1)),

where h(�a) = (h(a1), . . . , h(an)), h(�b j) = (h(b( j)
1 ), . . . , h(b( j)

n )), i =
1, . . . , n and k = 1, . . . , q − 1. Therefore, with the appropriate 
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weight vector ω = (ω1, . . . , ωn) chosen by U A , the weighted 
l1-norm can be derived as follows:

ωl1(�a, �b j) =
n∑

i=1

ωi |ai − b( j)
i |

=
n∑

i=1

ωi(

q−1∑
k=1

|âik − b̂( j)
ik |)

∵âik,b̂
( j)
ik ∈{0,1}−−−−−−−−−−−−−−−→

=
n∑

i=1

ωi(

q−1∑
k=1

|âik − b̂( j)
ik |2)

=
n∑

i=1

ωi(

q−1∑
k=1

(â2
ik + (b̂( j)

ik )2 − 2âik · b̂( j)
ik ))

=
n∑

i=1

ωiai +
n∑

i=1

ωib
( j)
i − 2

n∑
i=1

ωi(

q−1∑
k=1

âik · b̂( j)
ik )

=
n∑

i=1

ωiai +
n∑

i=1

ωib
( j)
i − 2

n∑
i=1

ωih(ai)h(b( j)
i ).

When the third equality holds because the value of âik and b̂( j)
ik is 

either one or zero, that is, the value of |âik − b̂( j)
ik | is either one or 

zero.
Since U A and U j possess the values 

∑n
i=1 ωiai and 

∑n
i=1 ωib

( j)
i ,

respectively, we only need to securely compute the value h(ai) ·
h(b( j)

i ) for i = 1, . . . , n, without knowing profiles of U A and U j .
As in phase-I, U A , DPC and each U j ∈ U

∗ execute the following 
operations.

1. U A sends the identities list LU of m users to KDC, e.g. LU =
(u1, . . . , um).

2. After receiving LU , KDC chooses the secret key K with |K | =
128, to compute HMAC, and then sends it to U j and U A , re-
spectively.

3. Once receiving the secret key K , U A first chooses the weight
vector ω = (ω1, . . . , ωn) based on the preference of profiles �a,
and computes the HMAC for ω, e.g. hK (ω). And then imple-
ments the following operations:
a Send the message (ω, hK (ω)) to U j .
b Convert the profile vector �a = (a1, . . . , an) into â = (â11, . . . ,

ân(q−1)). For each âik ∈ â, choose a random numbers cik , 
where cik is of the length |cik| = k3 bits, and calculate

Cik = s(αâik + cik) (mod p). (4)

Besides, compute A∗ = ∑n
i=1 ωiai

c Compute the HMAC for u A‖A∗‖ω with the key K A , e.g. 
hK A (u A‖A∗‖ω).

d Send the message (u A, A∗, ω, C11, . . . , Cn(q−1), hK A (u A‖A∗‖
ω)) to DPC.

4. Once receiving the (ω, hK (ω)), U j checks the validity of
HMAC. If verification succeeds, U j executes the following op-
erations:
a Convert profile vector �b j = (b( j)

1 , . . . , b( j)
n ) into b̂ j = (b̂( j)

11 , . . . ,
b̂( j)

n(q−1)). For each b̂( j)
ik ∈ b̂ j , choose a random numbers r( j)

ik , 

where r( j)
ik is of the length |r( j)

ik | = k4 bits, and compute

D( j)
ik = d(αb̂( j)

ik + r( j)
ik ) (mod p). (5)

In addition, compute B∗ = ∑n
i=1 ωib

( j) .
j i
b Compute the HMAC for u j‖B∗
j by means of the key K j , e.g.

hK j (u j‖B∗
j ).

c Send (u j, B∗
j , D

( j)
11 , . . . , D( j)

n(q−1), hK j (u j‖B∗
j )) to DPC.

5. After receiving the messages from U A and U j , DPC checks the
validity of HMACs, e.g. hK j (u j‖B∗

j ) and hK A (u A‖A∗‖ω). If veri-
fication succeeds, DPC executes the following operations:
a For each 1 ≤ i ≤ n, compute

Ei =
q−1∑
k=1

Cik D( j)
ik (mod p). (6)

And then, compute ωih(ai)h(b( j)
i ) = ωi

Ei−(Ei (mod α2))

α2 . Con-
sequently, the weighted l1-norm between U A and U j e.g. 
ωl1(�a, �b j) = A∗ + B∗

j − 2 
∑n

i=1 ωih(ai)h(b( j)
i ), can be calcu-

lated.
b After m values of the weighted l1-norm have been com-

puted, denoted as {u j, ωl1(�a, �b j)}m
j=1, compute the HMAC 

hK A ({u j‖ωl1(�a, �b j)}m
j=1) by means of the secret key K A , and 

return

({u j,ωl1(�a, �b j)}m
j=1,hK A ({u j‖ωl1(�a, �b j)}m

j=1))

back to U A .
6. After receiving the message from DPC, U A first checks the

validity of the HMAC. If the verification fails, U A requires
retransmission. Otherwise, he (she) compares m values of
ωl1(�a, �b j), where j = 1, . . . , m, and find out the most matched
one U B , where U B ∈ U

∗ , such that B = arg min j=1,...,m ωl1(�a,

�b j).

4. Security analysis

In this section, we analyze the security and feasibility of the 
SFPM protocol. As discussed in Section 1, each U j ∈U and U A con-
cern about disclosing their personal profiles to complete strangers, 
so a privacy-preserving matching protocol is needed. For the pri-
vacy preservation of the SFPM protocol, since each ai ∈ �a or âik ∈ â
is one time masked with random Ci = s(αai + ci) (mod p) or 
Cik = s(αâik + cik) (mod p), respectively, without knowing the pri-
vate key s and the random numbers ci or cik , it is impossible 
to guess U A ’s vector �a = (a1, . . . , an). In addition, for ensuring 
the confidentiality of the private key s, the parameter p is set 
large enough, which also increases the difficulty for guessing the 
vector �a. Therefore, each ai ∈ �a is privacy-preserving during the 
dot-product computation. For each U j ∈ U, the security analysis 
for the profile vector �b j = (b( j)

1 , . . . , b( j)
n ) is similar with that of

U A . Hence, the profiles of U j are also privacy-preserving during 
the dot-product computation. Because the communication chan-
nels between DPC and users or among users are assumed to 3G, 
4G or WiFi networks, which are insecure, the message transmitted 
through these channels would be likely to suffer from some ac-
tive attacks, like message tampering. Hence, we utilize HMACs in 
our proposed SFPM protocol, to ensure the integrity of the mes-
sage and source data authentication. In addition, the ciphertexts 
can defense the additive noise. For example, in phase-I, if the ci-
phertexts of U A is tampered by adding the additive noise denoted 
as N , the Eq. (1) becomes C ′

i = s(αai + ci) + N (mod p), then DPC 
computes

E ′ =
n∑

i=1

C ′
i D( j)

i

=
n∑

[α2aib
( j)
i + αair

( j)
i + αcib

( j)
i + cir

( j)
i

i=1
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Fig. 4. Comparison of computation complexity.
+ N(αb( j)
i + r( j)

i )] (mod p),

and then, computes E ′ − (E ′ (mod α2)) = α2aib
( j)
i , which equals 

to E − (E (mod α2)), that is the ciphertexts can resist the additive 
noise. Obviously, the ciphertexts of U j also can resist the addictive 
noise.

Finally we give restrictions of system parameters for the feasi-
bility of the SFPM protocol. In fact, the key lies in correctly obtain-
ing

n∑
i=1

aib
( j)
i = E − (E (mod α2))

α2
. (7)

Hence, we need constraints such that

n∑
i=1

(α2aib
( j)
i + αair

( j)
i + αb( j)

i ci + cir
( j)
i ) < p (8)

n∑
i=1

(αair
( j)
i + αb( j)

i ci + cir
( j)
i ) < α2. (9)

5. Performance evaluation

In this section, we evaluate the computation complexity and
communication overhead as well as overall execution time of our 
protocol in contrast to two similar works proposed by Zhang et al. 
(Protocol one in [21]) and He et al. [24], respectively. As mentioned 
in [24], since these two protocols do not consider the Phase-I 
matching process (the cosine similarity), we only need to com-
pare the computation and communication overhead in our Phase-II 
matching parts with those in their protocols. In addition, for con-
venience of comparison, we only consider the matching execution 
between two users, e.g., U A and U j .

5.1. Computation complexity

From the proposed SFPM scheme, when two users execute the 
Phase-II matching, the computation overhead incurred is mainly 
related to modular multiplication, modular addition and modular 
arithmetic. In particular, U A needs to perform n(q − 1) encryp-
tions executed by smartphones, each costing two 1024-bit mul-
tiplications (mul1) and one 1024-bit addition (add) according to 
Eq. (4). Similarly, U j totally needs 2n(q − 1) mul1 and n(q − 1)

add. Hence, the total computation overhead for two users are 
4n(q − 1)mul1 + 2n(q − 1)add. As for DPC, it needs perform n
weighted l1 norm matching, each costing (q − 1) 1024-bit multi-
plications (mul∗1), (q −2) 1024-bit additions (add∗) and one 2k2-bit
modular arithmetic (mod∗) according to Eq. (6). Hence, we can 
have that the total computation overhead of SFPM protocol is 
(4n(q − 1) mul1 + 2n(q − 1) add + n(q − 1) mul∗1 + n(q − 2) add∗ +
n mod∗) approximately.
Fig. 5. Average running time vs. number of profile items.

Table 1
Comparison of computation complexity.

Computation

SFPM 4n(q − 1) mul1 + 2n(q − 1) add
+ n(q − 1) mul∗1 + n(q − 2) add∗ + n mod∗

Protocol one [21] 2 exp2 + (2qn − 2n + 2) exp1
+ (qn − n + ∑n

i=1 bi + 1)mul2

He et al.’s protocol [24] (12 exp1 + 6 exp2 + 13 mul2)n

We present the computation complexity comparison of SFPM, 
the protocol one in [21] and He et al.’s protocol in [24] in Table 1, 
where mul2, exp1 and exp2 denote one 2048-bit multiplication, 
1024-bit exponentiation and 2048-bit exponentiation executed by 
users (smartphones) in [21] and [24], respectively. Furthermore, we 
simulate operations on two MeiZu phones with android system 4.1 
and 16 GB of RAM for evaluation. In addition, we use a computer 
with an Intel(R) Core(TM) i5-4460T CPU running at 1.90 GHz, and 
with 8 GB of RAM, which is acted as DPC. According to the bench-
mark test results in [27], the experimental result indicate that 
Tadd∗ = Tmod∗ , Tadd = 11Tmod∗ , Tmul∗1 = 3Tmod∗ , Tmul1 = 22Tmod∗ , 
Tmul2 = 32Tmod∗ , Texp1 = 1513Tmod∗ and Texp2 = 27 080Tmod∗ . From 
Table 1, we can see that besides varying with n and q, the com-
putation overhead of the protocol one is also influenced by the 
real value of bi , where bi ∈ [0, q − 1] and i = 1, . . . , n. In order 
to simulate the comparison of the theoretical analysis based on 
Table 1, we consider the best case bi = 0, i = 1, . . . , n for the pro-
tocol one, that is the computation overhead of the protocol one is 
the least. Then, with the exact operation costs, we depict the vari-
ation of computation costs in terms of number of profile n and 
maximum value of profile items q in Fig. 4. From the figure, it is 
obviously shown that the SFPM scheme largely reduces the com-
putation complexity compared to the protocol one [21] and He 
et al.’s protocol [24]. It is worth noting that the number of pro-
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Fig. 6. Comparison of communication overhead.
Table 2
Comparison of communication overhead.

SFPM Protocol one [21] He et al.’s protocol [24]

Comm. 2048n(q − 1) + 480 2048n(q − 1) + 3232 2048(4n + 1)

file n is varying from 10 to 100 and maximum value of profile 
items q is varying from 1 to 10, which are sufficient to specific 
MSN applications. Because, as mentioned in [21], the number of 
profile n may range from several tens to several hundreds and the 
maximum value of profile items q could be a small integer, say 5 
or 10, which may be sufficient to differentiate user’s interest level.

Moreover, we implement our protocol and the compared pro-
tocol one [21] between two users with the number n of attributes 
varying. To facilitate the comparison, according to inequality (8)
and (9), if we choose the length of p to be 1024-bits, we can 
just set k2 = 200, k3 = k4 = 128, which can ensure that we get 
the correct result. Specifically, in order to quickly get the results 
of simulations, we just set q = 32. For each parameter setting, we 
run experiments 50 times, and obtain the average total computa-
tion overhead. As shown in Fig. 5, the gap of computation overhead 
is gradually increasing with varying n, and our protocol is more 
efficient than the protocol one in terms of the computation com-
plexity.

5.2. Communication overhead

The communication overhead incurred by the SFPM proto-
col involves two aspects: 1) U A and U j send ciphertexts and 
HMACs to DPC. The data is in the form of (u j, B∗

j , D
( j)
11 , . . . , D( j)

n(q−1),

hK j (u j‖B∗
j )) for U j and its size should be Su = 1024n(q − 1) +

|u j| + |B∗
j | + 128 if we choose the length of p and HMAC to be

1024-bits and 128-bits respectively; 2) DPC sends the result to 
U A . The data is in the form of ({u j, ωl1(�a, �b j)}m

j=1, hK A ({u j‖ωl1(�a,

�b j)}m
j=1)) and its size should be Sd = |{u j, ωl1(�a, �b j)}m

j=1| + 128.
Similarly as the data processing method in [28], we set |u j | +
|B∗

j | = |{u j, ωl1(�a, �b j)}m
j=1| as 32-bit length. Hence, we can approx-

imate the total communication overhead to be 2048n(q − 1) + 480
bits.

We present the communication overhead comparison of SFPM, 
the protocol one in [21] and He et al.’s protocol in [24] in Table 2. 
Furthermore, we plot the overall communication overhead of three 
protocols with respect to the variance of n and q in Fig. 6. From 
the figures we can see that when q ≤ 5, the communication over-
head of our protocol is always less than other two protocols with 
varying n. If q > 6, the communication overhead of our protocol 
is little larger than those of He et al.’s protocol [24], but is always 
less than the protocol one in [21]. As shown in Fig. 3, the main rea-
son are two aspects: i) for ensuring the integrity of message and 
source data authentication, we introduce the HMACs, so each mes-
sage transmitted among users and DPC should include the HMACs; 
ii) the identity of each U j ∈ U is transmitted for differentiating
users. Actually, with the rapidly mobile telecommunication tech-
nology, known as 4G or 5G, it will allow larger bandwidth. For 
example, existing 4G technology can offer efficient and quite suffi-
cient communication bandwidth for PFR applications. Accordingly, 
in order to resist some active attacks (e.g., message tampering and 
forgery attack), although our protocol increases a certain amount 
of communication overhead, like HMAC, this does not influence 
the efficiency of current communication.

6. Conclusion

In this paper, we have proposed a secure and fine-grained
privacy-preserving matching protocol for mobile social network-
ing (MSN), which provides the fundamental step of effective com-
munication among strangers and prevents personal privacy from 
disclosing simultaneously. In addition, the SFPM protocol realizes 
the finer-grained differentiation of personal profiles and the flex-
ibility of the cryptographic algorithm. Detailed security analysis 
shows that the proposed SFPM protocol can ensure privacy pre-
serving, integrity of the communication message and source data 
authentication. In addition, the additive noise can be resisted in 
our protocol. Finally, the performance evaluation implemented on a 
platform with two android phones and a computer verifies the ef-
fectiveness of the proposed SFPM protocol. For the convenience of 
comparison between the proposed SFPM protocol and the protocol 
one, we just utilize the l1 norm to measure the similarity between 
two users, however, there are many other metrics for evaluating 
the similarity. Therefore, our future work is to utilize the other 
metrics, like l2 norm, to further promote the efficiency of the total 
protocol. In addition, we will implement the proposed SFPM pro-
tocol in other application environments.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.bdr.2015.11.001.
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