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Abstract
In this study, seven popular equations, including 3-parameter Weibull, 2-parameter Weibull,

Gompertz, Logistic, Mitscherlich, Korf and R distribution, were used to model stand diame-

ter distributions for exploring the relationship between the equations’ inflection point attri-

butes and model accuracy. A database comprised of 146 diameter frequency distributions

of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations was used to demon-

strate model fitting and comparison. Results showed that the inflection points of the stand

diameter cumulative percentage distribution ranged from 0.4 to 0.6, showing a 1/2 close

rule. The equation’s inflection point attribute was strongly related to its model accuracy.

Equation with an inflection point showed much higher accuracy than that without an inflec-

tion point. The larger the effective inflection point interval of the fitting curve of the equation

was, and the closer the inflection point was to 0.5 for the equations with fixed inflection

points, the higher the equation’s accuracy was. It could be found that the equation’s inflec-

tion point had close relationship with skewness of diameter distribution and stand age,

stand density, which provided a scientific basis for model selection of a stand diameter dis-

tribution for Chinese fir plantations and other tree species.

Introduction
Relative to crude stand-level simplifications and complex individual tree models, diameter dis-
tribution models can provide more detailed knowledge on the forest structure, product value,
and forest operations costs for forest managers and researchers. Various probability density
functions (PDF) such as normal, log-normal, gamma, beta, Johnson’s SB, and Weibull had
been widely used to describe the diameter frequency distributions or the accumulative percent-
age distribution [1–8]. Some researches reported that two- and three-parameter Weibull
equations were probably the most widely applied equations for modelling stand diameter dis-
tributions [5,9,10]. Liking Weibull equation, several classical equations, such as Logistic [11],
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Gompertz [12], Richards [13] all defined sigmoid curves, are also popularly applied to forest
growth modelling [14]. Furthermore, Logistic and Richards equations were firstly used to
model stand diameter distribution by Gadow and Hui [15] and Ishikawa [16], respectively.
Due to brief form and relatively high accuracy, the two equations promised a broad application
foreground in diameter-class distribution.

For S-shaped equation, inflection point is crucial and has definite biological meaning, which
decides the equation shape [14,17–23]. While modelling tree’s diameter growth course, the in-
flection point of an equation presents at the trees’ age with the maximum growth rate. While
modelling diameter distribution caused by differentiation, the presence of inflection point
means the key accumulative frequency percentage with the maximum increasing rate and its
corresponding diameter. By exploring the modelling properties of equations with different in-
flection point attributes for stand diameter distributions, it will be great help for choosing an
appropriate model for a given distribution situation.

The goal of this study was to analyze the relationship between model accuracy and inflection
point attributes of several popular equations including 2-parameter Weibull, 3-parameter
Weibull, Gompertz, Logistic, Mitscherlich [24], Korf [25] and R distribution [26], and provide
theoretical and practical basis for selecting suitable equations used to model stand diameter
distributions.

Materials and Methods

Data
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) is one of the most important reforesta-
tion and commercial species widely distributed in southern China [27]. The species is highly
valued for lumber and other products. Trial plots for Chinese fir plantations located in Fenyi
city, Jiangxi Province, China, experience a subtropical climate. The longitude is 114°330E, lati-
tude 27°340N. Mean annual temperature, precipitation and evaporation are 16.8°C, 1656 mm,
and 1503 mm, respectively. Chinese fir stands mentioned as follows in the location all are built
and authorized by Research Institute of Forestry of Chinese Academy of Forestry and the data
originated from our continuous survey. So no specific permits were required for the described
field studies, and the field studies did not involve endangered or protected species.

The data, including 146 diameter distributions, came from a density experiment of Chinese
fir that was established in 1981. Planting density was limited within an optimum range accord-
ing to managerial purposes. The series of planting densities was 1667 (A), 3333 (B), 5000 (C),
6667 (D) and 10000 (E) stems�ha-1. Every planting density had 3 designed replications. Each
plot area was 0.06 ha and two adjacent plots were separated by a buffer zone. All trees in each
plot were marked for continuous measurement. Diameter at breast height (DBH) of every tree
in each plot was measured after tree height reached 1.3 m. All 15 plots were measured every
year before reaching 10 years old, and every two years after reaching 10 years old. All plots
were measured 10 times, so a plot includes 10 stands with different ages. Self-thinning occurred
in all plots during the experimental period. Taking into account the degrees of freedom of esti-
mating each stand, the stands with less than 5 diameter classes were removed [28], and 146
stands were remained. The 146 stands were described in Table 1.

Computation of the observed cumulative diameter distributions
Diameter class, k, is defined in absolute scale (e.g., [1, 3) for k = 2 cm, [3, 5) for k = 4 cm, etc.),
namely, diameter class k is the midpoint value of the absolute scale. The relative frequency of
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stems in diameter class k of stand i at plot j is given by:

Fkij ¼
Nkij

Nij

ð1Þ

where Nkij is the number of trees of diameter class k of stand i (i = 1, 2, . . ., 10) at plot j (j = 1, 2,
. . ., 15), and Nij is the total number of trees of stand i at plot j. The cumulative frequency of
stems in diameter class k of stand i at plot j can be obtained by:

Ckij ¼ F2ij þ F4ij þ � � � þ Fðk�2Þij þ Fkij ð2Þ

where F2ij, F4ij� � �F(k−2)ij, Fkij are> 0, and Ckij is� 1. The k values for every stand density are
listed in Table 1. Fig 1 shows some examples of the observed diameter frequency percentage
distribution (solid line with dots) and the diameter cumulative percentage distribution (histo-
grams) for some stands from different planting densities, stand ages and quadratic mean DBH.

Equations selected
Seven commonly applied equations, including Weibull (2-parameter and 3-parameter), Gom-
pertz, Mitscherlich, Logistic, Korf and R distribution were used to simulate the stand diameter
cumulative percentage distributions. R distribution was originated from Richards equation
[26]. The existence of an asymptote and good monotonic quality equips the seven equations
with a mathematical basis for modelling stand diameter cumulative distribution. The upper as-
ymptotic value of each equation when simulating stand diameter cumulative percentage distri-
bution can be set as 1. The basic form of each equation is shown in Table 2.

In Table 2, 2-parameter Weibull, 3-parameter Weibull, Gompertz, Logistic, Korf and R dis-
tribution are S-shaped equations, Mitscherlich is a convex equation. It is known that 2-parame-
ter Weibull, 3-parameter Weibull, Korf and R distribution have floating inflection point.
Logistic and Gompertz equations have fixed inflection point. In contrast, Mitcherlich has no
inflection point. Obviously, these equations have different inflection point attributes, which
provide a chance to explore the role of inflection point on model accuracy of stand diameter
distributions. Each stand diameter cumulative percentage distribution from 146 stands was fit-
ted by using the seven equations respectively, and about 1050 fitting processes have been done.
The seven equations were solved using the NLIN procedure of SAS with the Gauss-Newton it-
eration method [29]. After that, the role of the inflection point distribution range or location
attributes of the equations on their modelling accuracy were analyzed. The relationships of
skewness and kurtosis of inflection points and stand age and planting density were used to
evaluate the theoretical meaning of the equations’ inflection points.

Table 1. Description of the data used for modelling.

Planting density (stems/ ha) Stands density (stems/ ha) Age (year) Site index a (m) DBH (cm) Height (m) k values

1667(A) 1633~1667 6~20 12.52~16.42 7.90~18.35 5.50~15.50 5~11

3333(B) 3200~3333 6~20 14.52~16.92 6.59~14.07 5.10~15.2 5~10

5000(C) 4267~5000 6~20 14.07~14.47 5.59~12.27 4.65~13.70 5~9

6667(D) 5450~6667 6~20 12.88~13.25 5.16~10.89 4.60~12.60 5~9

10000(E) 5783~10000 6~20 13.85~14.23 4.97~10.75 4.40~13.20 5~10

a The value of site index is equal to the average dominant height of observed stand of Chinese fir plantation at the reference age of 20. DBH means

diameter at breast height.

doi:10.1371/journal.pone.0126831.t001
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Evaluation criteria
The model performances of seven equations were evaluated using the residual sum of square
(RSS) and adjusted coefficient of determination (R2

adj:). The RSS and R
2
adj: were respectively

Fig 1. Examples of the observed diameter distributions. The diameter frequency percentage distribution
(solid line with dots), the diameter cumulative percentage distribution (histograms). (A: 1667 stems/ha, 6 a,
9.8 cm; B: 1667 stems/ha, 12 a, 15.7 cm; C: 1667 stems/ha, 18a, 18.0cm; D: 5000 stems/ha, 6 a, 7.0 cm; E:
5000 stems/ha, 12 a, 10.6 cm; F: 5000 stems/ha, 18a, 12.0cm).

doi:10.1371/journal.pone.0126831.g001

Table 2. Basal forms andmathematical analysis of the seven equations.

Equation Expression formula Characteristics of inflection point Ordinate of inflection point

Mitscherlich y = 1−le−mx No No

Gompertz y = exp(−ea−bx) Fixed 1/e

Logistic y = 1/(1 + ep−qx) Fixed 1/2

R distribution y = (1 + exp(−(x−q)/ p))r Floating ((r − 1) / r)r

Korf y = exp(−b / xc) Floating exp(−1−1/ c)
2-parameter Weibull y = 1 − exp[−(x/b)c] Floating 1− exp(1/ c−1)

3-parameter Weibull y = 1 − exp[−((x − a)/b)c] Floating 1− exp(1/ c−1)

doi:10.1371/journal.pone.0126831.t002
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calculated as

RSS ¼
Xn

k¼1

ðobsk � estkÞ2 ð3Þ

R2
adj: ¼ 1�

1
n�k�1

Xn

k¼1

ðobsk � estkÞ2

1
n�1

Xn

k¼1

ðobsk � obskÞ2
; ð4Þ

where obsk and estk are the observed and predicted diameter frequency for diameter class k,
and n is the number of diameter classes in a sample stand.

Skewness and kurtosis are used to describe the shape and modelling properties of distribu-
tion function. Skewness and kurtosis values of frequency distributions are calculated for each
stand. The mathematical formulas are:

skewness ¼

Xk

i¼1

ðxi � �dÞ3Fi

s3
Xk

i¼1

Fi

ð5Þ

kurtosis ¼

Xk

i¼1

ðxi � �dÞ4Fi

s4
Xk

i¼1

Fi

ð6Þ

where xi is the midpoint value of diameter class k, and �d is the average value of DBH of a stand,
Fi is the frequency of diameter class k, σ is standard deviation of DBH. Based on the estimated
class frequency of every 146 stands, the skewness and kurtosis values for the seven equations
were calculated by formula (5) and (6).

Results and Analysis

Model accuracy of equations
Table 3 shows the residual sum of square (RSS) and adjusted coefficient of determination (R2

adj:)

of the 146 diameter distributions for seven equations. Based on two statistical indices (RSS and
R2
adj:), equations with three parameters, such as R distribution and 3-parameter Weibull, per-

formed better than the other equations with two parameters. However, 2-parameter Weibull
and Logistic performed better than Gompertz, Korf and Mitscherlich although they all had two

Table 3. The averages (standard errors in parentheses) of residual sum of square (RSS) and adjusted coefficient of determination (R2
adj:) of 146 di-

ameter distributions.

Equation R distribution 3-parameter Weibull 2-parameter Weibull Logistic Gompertz Korf Mitscherlich

RSS 0.0013 (0.0015) 0.0014 (0.0016) 0.0019 (0.0022) 0.0022 (0.0019) 0.0086 (0.0045) 0.0183 (0.0085) 0.1405 (0.0898)

R2
adj: 0.9977 (0.0055) 0.9975 (0.0045) 0.9978 (0.0028) 0.9973 (0.0032) 0.9902 (0.0064) 0.9802 (0.0101) 0.8226 (0.0867)

doi:10.1371/journal.pone.0126831.t003
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parameters. It showed that there were other factors that led to the discrepancy in model accura-
cy besides the number of parameters.

The theoretical skewness obtained from R distribution, 3-parameter Weibull, 2-parameter
Weibull and Logistic almost were negative and similar to the observed values (Fig 2). However,
those of originated from Gompertz, Korf and Mitscherlich almost were positive (Fig 2). The
kurtosis values obtained from R distribution, 3-parameter Weibull, 2-parameter Weibull and
logistic were closer to the observed stands than other distributions, and the values mostly gath-
ered at 3 (Fig 2). In contrast, most of the kurtosis values originated from Gompertz, Korf and
Mitscherlich were less than 3. Additionally, it could be found that the correlation between ob-
served stands and skewnesses coming from R distribution, 3-parameter Weibull, Logistic, 2-pa-
rameter Weibull and Gompertz, Mitscherlich and Korf declined in turn (Fig 3), which was
almost the same as the above-mentioned comparison result of modelling precision. In a word,
the skewness and kurtosis from R distribution were the closest to observed stands, following by
twoWeibull distributions and Logistic (Figs 2 and 3).

The role of inflection point
Inflection point attribute of the observed stands. For every 146 stands, there was always

an equation among the seven equations that could precisely model the observed diameter dis-
tribution. Based on the best model, RSS valuse were all very small, and less than 0.01 (Table 3).
The inflection point of every observed diameter distribution could be calculated based on its
best equation. In fact, no single equation always had the best model accuracy for all the stands.

Fig 2. Skewness and Kurtosis values of DBH from observed stands and equation simulations. Each circle dot represents a stand.

doi:10.1371/journal.pone.0126831.g002
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For the 146 stands, the R distribution was selected as the best equation for 71 times, 3-parame-
ter Weibull, 2-parameter Weibull, Logistic 55, 3, 2 respectively. R distribution and 3-parameter
Weibull were simultaneously selected 7 times (Fig 4). The 146 inflection values were then ob-
tained for the 146 stands from different equations. Fig 5 summarizes the distribution of inflec-
tion point of the 146 stands. The inflection points of the observed stand diameter cumulative
percentage distributions ranged from 0.3787 to 0.6436, mainly between (0.4, 0.6) (Fig 5).

Inflection point attibutes of the seven modelling equations. The inflection point attri-
butes of the seven equations are shown in Table 4. It can be found that the inflection points of
R distribution, Korf, 2-parameter Weibull and 3-parameter Weibull were variable, and each
equation had a unique main distribution interval. The inflection point distribution range of R
distribution better covered the inflection point distribution range of the observed stands than
other equations. About 91% of inflection points were in the interval (0.4, 0.6), whereas. 100%
and 98% for 2-parameter Weibull and 3-parameter Weibull. The inflection points of the Korf
equation all laid in the interval (0.2, 0.4). The Logistic and Gompertz equations both had a
fixed inflection point, respectively 0.5 and 0.37. The Mitscherlich equation had no inflection
point.

Accuracy comparison of equations with or without inflection points. Equations listed
in Table 3 have inflection points except for the Mitscherlich. The RSS of R distribution, 3-pa-
rameter Weibull, 2-parameter Weibull, Logistic, Gompertz, and Korf equations was 0.91%,
0.98%, 1.34%, 1.58%, 6.13% and 13.04%, respectively (Table 3). The theoretical and experimen-
tal values for the seven equations were compared using a representative stand in Fig 6. It could

Fig 3. Correlation analysis of skewness of observed stands and seven equations.

doi:10.1371/journal.pone.0126831.g003
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Fig 4. The times selected as the best equation for the 146 stands.R, 3W, 2W, L, RW, RL, RG, RWL
refers to R distribution, 3-parameter Weibull, 2-parameter Weibull, Logistic, R distribution and 3-parameter
Weibull, R distribution and Logistic, R distribution and Gompertz, R distribution and 3-parameter Weibull and
Logistic respectively.

doi:10.1371/journal.pone.0126831.g004

Fig 5. Frequency percentage of different distribution interval of ordinates of stand inflection points.

doi:10.1371/journal.pone.0126831.g005
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be found that the theoretical and observed values corresponded well for R distribution, two
Weibull equations and Logistic, whereas the fitting curve of the Mitscherlich equation (lacking
an inflection point) obviously deviated from the observed values, which showed that the accu-
racy of an equation with an inflection point is higher than that of an equation without an in-
flection point. The reason might be that the top of the observed diameter distribution often
was away from the smallest diameter and the realistic distribution often had an inflection
point.

Accuracy comparison among equations with floating inflection points. The inflection
points of fitting curves of R distribution, 2-parameter Weibull, 3-parameter Weibull and Korf
have a floating range (Fig 7). The size of inflection point distribution intervals of R distribution,
3-parameter Weibull, 2-parameter Weibull and Korf decreased in sequence (Table 4), which
was the same as the model accuracy sequence of the four equations (Table 3). It showed that
the equation has the high accuracy which has the wide inflection point distribution interval
(Table 3, Table 4). The inflection point range of the best equation (R distribution) was almost
identical to that of the observed stands, and most was in the main interval (0.4, 0.6). The

Table 4. Distribution of ordinates of inflection points for each equation.

Equation Mitscherlich Gompertz Logistic Korf 2-parameter Weibull

Interval No �0.37 0.5 0.2666~0.3292 0.4761~0.5829

― �0.37 0.5 0.2~0.3 0.3~0.4 0.4~0.5 0.5~0.6

Proportion ― 100% 100% 54% 46% 18% 82%

Equation 3-parameter Weibull R distribution

Interval 0.3824~0.5867 0.3787~0.6436

0.3~0.4 0.4~0.5 0.5~0.6 0.3~0.4 0.4~0.5 0.5~0.6 0.6~0.7

Proportion 2% 31% 67% 2% 22% 69% 7%

doi:10.1371/journal.pone.0126831.t004

Fig 6. Theoretical and observed values generated from the seven equations with different inflection points using the stand with DBH = 13.0 cm
and H = 12.7 m at planting density 3333 trees/ha for Chinese fir.

doi:10.1371/journal.pone.0126831.g006
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inflection point distribution ratios of 3-parameter Weibull and 2-parameter Weibull in the
range (0.4, 0.6) were respectively 98% and 100%. Thus the twoWeibull equations both showed
high accuracy. The inflection point floating range of Korf equation was between 0.2666 and
0.3292, and its accuracy was much lower than that of the R distribution and twoWeibull equa-
tions. The skewness and kurtosis values of Korf obviously deviated from the observed values
(Fig 2). One explanation might be that the inflection point floating range of Korf equation was
not within the main distribution interval (0.4, 0.6) of the observed stands’ inflection points.

Accuracy comparison of equations with fixed inflection points. Gompertz and Logistic
both have a fixed inflection point. The position of the inflection points of the two equations are
shown in Fig 7. Logistic had higher model precision than Gompertz. It showed that the equa-
tion with its fixed inflection point close to 0.5 was more suitable for describing the actual stand
diameter distribution. The inflection value (0.5) of Logistic lied within the main interval
(0.4~0.6), however, the inflection point of Gompertz deviated from the main existing interval.
With regard to equations with a fixed inflection point, the accuracy of the equation might be
measured by the relative position of the equation’s inflection point in the main existing interval
(0.4~0.6).

Accuracy comparison between equations with fixed inflection points and equations with
floating inflection points. R distribution, 3-parameter Weibull and 2-parameter Weibull
equations with floating inflection point performed better than Logistic and Gompertz equa-
tions with fixed inflection points (Table 3). However, Logistic and Gompertz performed better
than Korf (Table 3). It could be found that equations with floating inflection points and their
inflection points distributing in the main interval (0.4~0.6) have higher model accuracy, which
might be the reason that R distribution, 3-parameter Weibull and 2-parameter Weibull per-
fromed better than Logistic. Additionally, the closer the position of equation’s inflection point
to the center of the main distribution interval (0.4~0.6) was, the higher the equation’s model

Fig 7. Inflection points distributions of fitting curves for four equations with floating inflection points
(R distribution, 3-parameter Weibull, 2-parameter Weibull and Korf) and two equations with fixed
inflection points (Logistic and Gompertz), the inflection points of the observed stands diameter
distributions also shown.

doi:10.1371/journal.pone.0126831.g007
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accuracy was, which might be the reason that Logistic had higher model accuracy than Gom-
pertz and Gompertz was superior to Korf. These findings showed that besides the main distri-
bution interval (0.4, 0.6), the inflection point of the observed stand diameter cumulative
percentage distribution curve also obeys a ‘1/2’ close rule.

Theoretical meanings of inflection points
Due to the highest model accuracy, R distribution was selected to explore the relationship be-
tween inflection point of equation and distribution skewness. The result showed that the ordi-
nates of inflection points of R distribution were significantly negative to skewness of R
distribution (P<0.01) and the observed stands (P<0.01) (Fig 8). The coefficients of determina-
tion (R2

adj:) of the ordinates of inflection points of R distribution and its skewness and the ob-

served stands’ skewness were respectively 0.4483 and 0.1247. The deep relationship between
ordinate of inflection point and skewness of distribution just illustrates the importance of equa-
tion’s inflection point.

The ordinate and abscissa of inflection point respectively decreased and increased with in-
creasing stand age (Fig 9). The coefficients of determination were 0.2085 and 0.3127, respec-
tively. In addition, although the ordinate of inflection point of R distribution had no obvious
correlation with stand density, the abscissa of inflection point of R distribution had highly sig-
nificant correlation with stand density (P<0.01), Which means that the inflection point of
equation has close relationship with stand characteristics, and this relationship may be used to
predict the inflection point or the parameters of equation.

Discussion
It is important for the assumed models to be consistent with the distributional characteristics
of the application [30]. Mønness [31] ever evaluated the power-normal distribution using the
values of skewness and kurtosis. Our results noted that the shapes (reflected by skewness and
kurtosis) modeled by R distribution, 3-parameter Weibull, 2-parameter Weibull and Logistic
are undistorted and multiple, which is almost in accordance with the result of model accuracy.
This may tell us an important finding that the skewness and kurtosis values can rightly reflect

Fig 8. Relationship of the ordinates of inflection points of R distribution to Skewness of R distribution
and observed stands.

doi:10.1371/journal.pone.0126831.g008
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fitting accuracy of different models for distribution data from the structural level. Most stands
have a negative skewness, which is different from inverted J distribution that often happens for
the natural stand with positive skewness [32].

Some studies on growth course and height-diameter relationship have revealed that the in-
flection point of equation has important role for the model accuracy [33, 34]. In our study, dif-
ferences of inflection points were firstly been viewed as potential reason that affected model
accuracy of equations fitting stand diameter distributions. Obviously, the S-shaped equations
with inflection points were best selection than the convex equation without inflection point.
While comparing the model accuracy of equations with floating inflection points, to better ex-
plain the fact that R distribution and twoWeibull equations had higher modelling accuracy
than Korf, the concept of an effective inflection point interval should be proposed. The effective
inflection point interval is related to the general distribution interval and main distribution in-
terval. The larger effective inflection point interval was, the higher the accuracy of equation is.
R distribution has a wide inflection point distribution range, and its main distribution interval
is in the main existing interval of the observed stand inflection points. Its effective inflection
point interval is large. Therefore it has high accuracy. However, the ranges of the two Weibull
equations are narrower than the observed stands’, the effective inflection point intervals are
slightly smaller, and their accuracy are lower than that of R distribution. Although the inflec-
tion point of Korf equation has a floating range, the distribution range is too narrow and its in-
flection point is beyond the main existing interval (0.4, 0.6) of the observed stands’ inflection
points. Therefore, the effective inflection point interval of Korf is small and its accuracy is
lower than those of R distribution, two Weibull equations.

Fig 9. Relationship of the ordinates and abscissa of inflection points of R distribution to stand age
(upper) and planting density (lower).

doi:10.1371/journal.pone.0126831.g009
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Conclusions
Through this study, it was concluded that: (1) Inflection point of stand diameter cumulative
distribution of Chinese fir plantations is not fixed, but has a distribution range, and the main
distribution interval is (0.4, 0.6), showing a ‘1/2’ close rule. (2) The equation’s inflection point
attribute is strongly related to its model accuracy. Equation with an inflection point shows
much higher accuracy than equation without an inflection point. And the equation performed
well that had the large the effective inflection point interval. In addition, the equation with
fixed inflection point close to 0.5 was superior to the equation deviating 0.5. (3) The equation’s
inflection point had close relationship between skewness of diameter distribution and stand
age and stand density. The attributes of inflection points can be referred to a scientific basis for
selection of equation used for modelling forest stand diameter structure. R distribution is a
good selection for Chinese fir stand diameter distribution modelling.
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