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Abstract

Workflow scheduling in scientific computing systems is one of the most challenging prob-
lems that focuses on satisfying user-defined quality of service requirements while minimizing
the workflow execution cost. Several cost optimization approaches have been proposed to
improve the economic aspect of Scientific Workflow Scheduling (SWFS) in cloud and grid
computing. To date, the literature has not yet seen a comprehensive review that focuses
on approaches for supporting cost optimization in the context of SWFS in cloud and grid
computing. Furthermore, providing valuable guidelines and analysis to understand the cost
optimization of SWFS approaches is not well-explored in the current literature. This paper
aims to analyze the problem of cost optimization in SWFS by extensively surveying existing
SWFS approaches in cloud and grid computing and provide a classification of cost optimiza-
tion aspects and parameters of SWFS. Moreover, it provides a classification of cost based
metrics that are categorized into monetary and temporal cost parameters based on various
scheduling stages. We believe that our findings would help researchers and practitioners in
selecting the most appropriate cost optimization approach considering identified aspects and
parameters. In addition, we highlight potential future research directions in this on-going
area of research.
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1. Introduction

Efficient resources utilization remains a key issue in parallel and distributed computing
environments. To resolve this issue, an organization needs to focus on finding the most suit-
able allocation of an application’s tasks to available computational resources. This notion
is generally referred as scheduling [1, 2]. Optimal scheduling problem is known to be an
NP-complete problem [3–5]. There is no proposed scheduling approach that can achieve
an optimal solution within the polynomial time, especially in the case of scheduling large-
size tasks [6, 7]. Users can employ different available computational resources to execute
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the tasks in an efficient manner. However, current limited computational resources lack in
accomplishing users’ demands (e.g., strict service completion deadline, and vast amount of
required storage) due to the tremendous increase in complexity and size of today’s appli-
cations. Consequently, users need to determine an appropriate computational environment
that provides the required storage space and computational resources for processing large-
scale complex applications.

Grid computing and cloud computing resources can provide an optimal solution that
can meet the user’s requirements by providing scalable and flexible solutions for considered
applications [3]. The cloud computing based task scheduling differs from the grid computing
based scheduling in the following two ways:

• Resource sharing: cloud computing offers advanced services by sharing resources
using the virtualization notion with the help of internet technologies. Consequently,
it supports real-time allocation to fully utilize the available resources while improving
elasticity of cloud services. Thus, the scheduler in a cloud workflow system needs to
consider the virtualization infrastructure (e.g., virtual services and virtual machines)
to efficiently facilitate the computational processes. In contrast, grid computing allows
allocating a large cluster of resources in a shared mode. Therefore, it supports batch
processing and resources will be available once they are released by other users.

• Cost of resource usage: cloud computing provides a flexible costing mechanism in
considering the user’s requirements (i.e. pay-as-you-go and on-demands services). On
the other hand, grid computing follows a quota strategy to determine the accumu-
lated cost of requested services [8]. Therefore, grid computing has no flexible costing
mechanism as in cloud computing.

In the literature, researchers have categorized task-scheduling strategies into two main
categories: (i) job-based, and (ii) workflow-based [9–13]. Job-based scheduling usually fo-
cuses on scheduling a set of independent tasks to be executed in a sequence or parallel
manner [14, 15]. In contrast, workflow-based scheduling (or global task scheduling) aims
at mapping and managing the execution of inter-dependent (i.e. precedence constraints)
tasks on shared resources for applications with higher complexity [16]. The workflow can
be defined as multiple steps or activities, which are necessary to complete a submitted task.
The components of these activities can be any executable instances (e.g. load sets, report
sets, programs, and data) with different structures (e.g. process, pipeline, data distribution,
data aggregation, and data redistribution). The workflow scheduling attained more atten-
tion of researchers compared to job scheduling, since workflow-based scheduling is able to
efficiently determine an optimal solution for large and complex applications by considering
precedence constraints between potential tasks. Motivated by this, we focused on review-
ing workflow-based scheduling in cloud and grid computing. Workflow-based scheduling is
commonly represented using a Directed Acyclic Graph (DAG) model [3, 17–20]. The DAG
is usually represented by:

DAG = {T,E} (1)

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where T (vertex) is a set of tasks (a task can be any program that the user would like to
execute in a workflow application) and E is a set of directed edges between the vertices.

T = {t0, ..., tn} (2)

E = {e1, ..., em} (3)

Note that there is a data dependency between edges in E. For instance, if there is a directed
edge e (i.e. e ∈ E) connecting ti and tj (denoted as ti → tj), then ti is considered as a parent
and tj as a child. The input data of task j depends on the produced data by the parent task
i. Similarly, the complete path from t0 to tn can be represented as:

(t0 → t1), (t1 → t2), ..., (tn−2 → tn−1), (tn−1 → tn) (4)

In order to execute workflow tasks in cloud and grid computing, it requires tasks mapping
to the set of heterogeneous resources, which are commonly used in cloud as a set of Virtual
Machines (VMs):

VM = {vm0, ..., vmk} (5)

Furthermore, it is crucial to consider the computational cost (in terms of time) of ex-
ecuting the workflow tasks on available heterogeneous VMs along with the communication
cost between these VMs.

Traditionally, the information technology staff manually executes workflow tasks, which
requires knowledge about resource availability and the estimated starting time for each work-
flow task [1, 21, 22]. It is necessary to automate and optimize the workflow scheduling
process in order to achieve an efficient Workflow Management System (WfMS). A WfMS
defines, manages, and executes workflows on available computing resources, where the work-
flow execution order is driven by a computer representation of the workflow logic. The
WfMS can be implemented for different purposes including process management, process re-
design/optimization, system integration, achieving flexibility, and improving maintainability.
The main stages of any WfMS are modeling stage, instantiation stage and execution stage
(as depicted in Figure 1)[23]. In the modeling stage, scientific processes are redesigned based
on cloud workflow specifications which should contain the task definitions, tasks structural
representation (e.g. DAG), and user-defined QoS requirements. The cloud workflow service
provider will negotiate with the service consumer to finalize Service Level Agreement (SLA).
In the instantiation stage, the WfMS selects and reserves the suitable cloud services (from
private cloud, public cloud, and hybrid cloud) based on the SLA in order to execute workflow
activities as well as satisfy the defined QoS requirements. Finally, at the execution stage,
the cloud workflow execution scheduler coordinates the data and control flows according to
the workflow specifications obtained from the modeling stage, and employs the candidate
software services reserved at the instantiation stage to execute all the workflow activities.
The workflow scheduler (i.e. workflow engine) plays a crucial role in scheduling and allocat-
ing the given tasks to the available resources by considering their dependencies as modeled
using a DAG.
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Figure 1: Process flow of scientific workflow scheduling.

WfMS in cloud and grid computing must have the ability to handle the requests from
different application domains such as business workflow applications and scientific work-
flow applications. The business workflow application (also referred as transaction intensive
workflow) has been defined by Workflow Management Coalition (WfMC) as the automation
of a business process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of procedural rules (e.g.
bank transactions and insurance claim applications) [24–28]. Conversely, Scientific Workflow
Application (SWFA) (also known as data and computational intensive scientific workflow)
mostly implies data flows together with the tasks execution [12, 24, 29, 30], including input
scripts (scientific program or data), which can be used to produce, analyze and visualize
output results. It can provide interactive tools to help scientists better execute their own
workflows and view results in real time. In addition, the SWFA simplifies the process for
scientists to reuse the same workflows and provide them with an easy-to-use environment
to track and share the output results virtually. Thus, SWFAs have been used in different
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scientific applications including weather forecasting, bioinformatics, geoinformatics, chem-
informatics, biomedical informatics, and astrophysics [3, 31]. To execute SWFA data, high
performance resources, such as supercomputers, need to be delivered by the service provider
(i.e. infrastructure as a service)[3, 31–34]. Therefore, WfMSs using cloud and grid services
enable scientists to define multi-stage computational and data processing pipelines that can
be executed as resources with predefined quality of service. Consequently, the scheduling
process can automate complex analyses, improve application performance, and reduce the
time required to obtain the desired results [11, 14, 35–37]. Inspired by this, we surveyed the
studies that focused on Scientific Workflow Scheduling (SWFS) in cloud and grid computing.

One of the most challenging problems with SWFS in cloud and grid computing is to
optimize the cost of workflow execution [6, 19, 38]. The cost optimization challenge of SWFS
in cloud computing is a multi-objective cost-aware problem that requires consideration of
three main aspects: (i) different users which usually compete for resources within the cloud
or grid computing to satisfy QoS constraints, (ii) the inter-dependencies among workflow
tasks, and (iii) high communication cost due to the inter-dependencies between the tasks
(i.e. data needs to be transferred from one resource to another). However, considering
all cost optimization problem related aspects makes the SWFS process more complicated
and also requires a high amount of computational resources in terms of computational time
[12, 39–41]. Inspired by this, a significant number of SWFS approaches have been proposed
in the literature, focusing on reducing the overall execution cost of SWFS [3, 42–44].

The main aim of this paper is to analyze the cost optimization problem in SWFS by
extensively surveying the state-of-the-art SWFS approaches in cloud and grid computing.
To achieve this aim, we targeted three main objectives: (1) to classify cost optimization
approaches based on the relevant aspects; (2) to classify cost parameters into monetary cost
[45–48] and temporal cost [9, 20, 49, 50] parameters based on scheduling stages (i.e. pre-
scheduling, during scheduling, and post-scheduling); and (3) to identify the correlation be-
tween the cost parameters and their profitability to service consumers and service providers.
Therefore, classification is used as the survey method to identify and analyze the cost aspects
and parameters of SWFS. To achieve the aforementioned objectives, the following research
questions were formulated:

RQ 1: What are the relevant cost optimization approaches for scientific workflow schedul-
ing problem? Answering RQ1 helps researchers to identify the relevant cost optimization
approaches for SWFS problem. It also provides a clearer understanding of strengths of the
underlying optimization, and limitations for all reviewed approaches (Section 2).

RQ 2: What are the main classifications affecting the cost optimization of scientific work-
flow scheduling? Answering RQ2 helps researchers to understand the overall classification
of the cost optimization aspect. The first classification emphasizes the scheduling aspects by
focusing on cost optimization approaches (Section 3). The second classification categorizes
the cost optimization parameters (cost metrics) into two groups, namely monetary and tem-
poral cost parameters. Moreover, the second classification is extended to divide the reviewed
approaches into two groups: (i) profitability for service consumers, and (ii) profitability for
service providers (Section 4).
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RQ 3: What are the main aspects for cost optimization SWFS approaches? Answering
RQ3 would help researchers to identify important cost optimization aspects of SWFS problem
in cloud and grid computing (Section 3).

RQ 4: What are the main cost optimization parameters of SWFS in cloud and grid com-
puting and how do monetary and temporal cost parameters affect the profitability of cost
optimization of SWFS? Answering RQ4 could help researchers to identify the relevant cost
optimization parameters based on the purpose of the model, which might be beneficial to ser-
vice consumers and/or service providers. Additionally, the results of applying classifications
on the reviewed cost optimization models will be obtained, providing a complete relation
between monetary and temporal costs based on the scheduling stage (Section 4 and Section
5).

1.1. Motivation and related work

The SWFS challenges have gained more attention after the emergence of cloud comput-
ing area. A significant number of SWFS approaches [3, 4, 13, 51–55] have been proposed
that focused on the cost optimization challenge due to the direct impact on the profitability
of service consumers and service providers for business and scientific workflows. Cost opti-
mization plays an important role in different aspects within the proposed cost optimization
based SWFS approaches, such as computing environment, optimization method, structural
representation, scheduling technique, and workload type.

Many review studies addressed the SWFS challenge in grid and cloud computing. Yu and
Buyya [56] reviewed a number of grid computing workflow management systems. In contrast,
Prodan and Wieczorek [24, 57] devised a classification of multi-criteria problems for SWFS.
Their devised taxonomy classifies the multi-criteria into four different aspects based on the
workflow structure (i.e. cost aggregation method, intra-dependence, optimization direction,
and interdependence). On the other hand, some review studies focused on optimizing multi-
objective criteria from the cost aspect while considering other constraints such as network
bandwidth, storage requirements, energy efficiency, robustness, and fault-tolerance. To the
best of our knowledge, no cost-specific review has been conducted that completely covers the
cost optimization SWFS approaches in cloud and grid computing. Conversely, other works
have emphasized the SWFS problem in cloud computing and grid computing [58–60]. Singh
and Singh [61] reviewed various SWFS algorithms and compared the algorithms according
to their type, objective criteria, and environment. In contrast, some reviews [62–64] only
focused on workflow scheduling in cloud computing.

In order to fully cover the body of knowledge of cost optimization problem of workflow
scheduling in cloud and grid computing, it is necessary to provide a complete review regarding
SWFS challenges, aspects, and parameters. Our prior work focused on cost-aware SWFS
challenges [65]. We have classified the challenges in cloud workflow scheduling by focusing
more on scheduling objectives and functionalities of workflow system architecture as well as
the QoS challenges. The current work aims at reviewing important aspects and parameters
compared to challenges presented in our previous work. As a result, it provides a complete
body of knowledge of cost optimization of SWFS in cloud computing. The following are
significant differences in our conducted works:

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

• Our prior work reviewed approaches on a broader workflow scheduling domain for
different types of workflow applications. However, the current work is specifically
focused on reviewing approaches for scientific workflow applications.

• Both works focused on cost optimization in the area of workflow scheduling in the
cloud computing. However, in our previous paper, we focused only on the cost chal-
lenges (i.e. system performance, system functionality and QoS). In contrast, the cur-
rent work determines more precisely the cost optimization aspects and parameters
specifically for SWFS.

• In our previous paper, we classified the profitability of cost challenges based on two
viewpoints: (i) service consumers, and (ii) service providers. However, the current
work classifies the profitability perspective based on the cost parameters of SWFS in
cloud and grid computing.

• The previous work explicitly reported QoS constraints of cost-aware workflow schedul-
ing. In contrast, the current work focuses on classifying the QoS constraints based on
two levels of consideration: (i) activity level, and (ii) workflow level.

To the best of our knowledge, no work has focused on providing a comprehensive classifi-
cation of cost optimization aspects of SWFS. Moreover, none of the researchers has focused
thoroughly on comparing cost optimization SWFS approaches in cloud and grid computing
environments. A comprehensive taxonomy is required to provide an in-depth understanding
of cost optimization aspects, parameters, constraints, and opportunities that can be useful
for future researchers.

Motivated by this, we extensively review cost aspects and parameters in SWFS, which
would help researchers and scientists by providing a thorough overview of current state-of-
the-art works that is beneficial in optimizing the cloud services of SWFS. The following are
newly targeted objectives in the current work:

• Focusing on cost optimization approaches (not challenges as provided in our prior
work) specifically in SWFS domain in cloud and grid computing.

• Comparing existing cost optimization SWFS approaches.

• Classifying SWFS aspects and cost parameters in cloud and grid computing.

• Highlighting potential future research issues in the context of SWFS aspects and
cost parameters.

1.2. Research methodology

It is important to note that this paper extensively reviews cost optimization SWFS ap-
proaches in cloud and grid computing. We have followed a systematic literature review
methodology to select most suitable papers in this area of research. Moreover, the adopted
methodology helped us to avoid missing any important paper(s), which otherwise would
probably be missed out if we used a simple survey strategy for selection of papers. First
of all, we formulated an initial set of research questions based on our research experience
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and discussions with field experts. Then the formulated research questions were refined
throughout the literature review to be presented in an unambiguous manner. The system-
atic literature review methodology was adopted by following the guidelines suggested by
Kitchenham [66] to ensure the selection of suitable papers.

1.2.1. Sources of information

We have widely searched various digital library sources to obtain a large pool of relevant
potential papers. The main goal of using the selected digital libraries was to make sure
that we do not miss out any of the relevant papers (as recommended by Dieste et al. [67])
rather than just focusing on workshop proceedings, conference proceedings and journals.
The following are the selected digital libraries that have been covered:

• ScienceDirect - Elsevier (https://www.sciencedirect.com)

• IEEE eXplore (https://ieeexplore.ieee.org)

• ACM Digital Library (https://www.portal.acm.org)

• Google Scholar (https://www.scholar.google.com)

• Springer LNCS (https://www.springer.com/lncs)

• Web of Science (https://www.isiknowledge.com)

1.2.2. Search criteria

The initial search criteria were devised by formulating a search query (as shown below)
and picking important terms, keywords and their synonyms based on our formulated research
objectives (i.e. papers should focus on cost optimization aspects and parameters for SWFS).
We joined the terms using logical operators, including (AND) and (OR), to formulate our
search query and searched on the title field. Note that we refined the query based on the
searching facility and conditions provided by the selected digital libraries.

[(workflow scheduling) AND ((cost optimization) AND (parameters) OR (metrics) OR
(aspects)) AND ((cloud computing) OR (grid computing)) AND ((approaches) OR

(models) OR (algorithms)) AND ((profitability) AND (service consumer) OR (service
provider) OR (Utility provider))]

Based on the suggestions of Kitchenham [66], we only considered and included the papers
written in English. The earliest selected primary study was published in 2004. Therefore,
we set the start year to 2003 in order to confirm that related studies within this area of
research would be included, and the last date was set to 2015. The initial search resulted in
collecting 1,043 potential papers.

1.2.3. Inclusion and exclusion criteria

This section presents the inclusion/exclusion criteria, which have been used to select
most relevant papers. Based on the objectives of this review, we formulated the following
inclusion criteria:
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• The papers targeting the main focus of our review including cost-optimization prob-
lems, parameters, and aspects in SWFS were selected for initial evaluation.

• The papers written in English were considered. It is mainly due to the fact that
English is regarded as a standard language in the research community. Moreover, to
the best of our knowledge, majority of reputed journals accept papers only written in
English language.

• The publication period starting from the year 2004 to year 2015 was considered since
scheduling of cloud and grid computing area emerged in the year 2004. The objective
was to provide the most up-to-date view in this field of research.

• The papers published in peer-reviewed journals, conferences, and workshop pro-
ceedings were selected since they have gone through quality evaluation process (i.e.
peer-reviewed by field experts).

• If a paper is published in two different venues with more and less similar contribu-
tions, then the latest and complete version of the paper is included. For instance, a
paper published in a conference whose extended version is later published in a journal.
In this case, we only included the journal version of the paper.

Similarly, we formulated and adopted the following exclusion criteria in order to exclude
irrelevant papers:

• The Grey literature (e.g., work in progress, workshop reports, and technical reports)
were excluded due to the lack of technical details. Moreover, there could be a threat
associated with Grey literature that no peer-reviewed process might have been adopted.

• The papers which do not cover cost optimization problems, parameters, and aspects
in SWFS in grid and cloud computing were excluded. This is because they do not
focus on the defined objectives of this review.

• The papers written in non-English languages were excluded.

• Duplicate papers found from different selected digital libraries were manually ex-
cluded to avoid reporting similar results.

• Papers published pre 2004 were excluded since they lack in covering grid and cloud
computing.

• Surveys, systematic literature reviews, and mapping studies were excluded since they
lack in presenting any new approach focusing on cost optimization problems in SWFS.

• Extended abstracts and short papers were excluded due to the lack of technical
details.

1.2.4. Selection strategy

In order to critically investigate potential papers, we involved three researchers by adopt-
ing a three-stage paper selection strategy, as shown in Figure 2.
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Stage 1: First of all, the potential papers (1043) were checked based on the title of the
collected papers to remove the duplication. We observed that there was a large number of
irrelevant papers due to conflict between the topics. For instance, scheduling term is related
to project management or could be relevant to other computational environments (e.g. utility
computing, parallel computing). Similarly, the term workflow is related to different types
of workflow applications, which are out of the scope of this survey (e.g. business workflow
applications). Finally, after Stage 1, we considered 317 papers.

Figure 2: Flowchart of research methodology.

Stage 2: In this stage, the abstracts of the considered papers were checked based on the
formulated research objectives. Therefore, we have classified the papers of various types (e.g.
original work, survey, systematic literature review, mapping study, and empirical study) into
two dimensions based on their research focus including cost optimization aspects and cost
optimization parameters. As a result, this left us with 147 papers, which target on the
focused dimensions.

Stage 3: In this stage, participating researchers read the full contents of the 147 papers.
Finally, they selected 34 papers, which satisfy the defined inclusion/exclusion criteria. We
used the final selected papers to create a classification based on the considered aspects and
parameters of cost optimization approaches.

This paper is organized as follows: Section 2 presents the relevant reviewed cost opti-
mization SWFS approaches. Section 3 presents the main aspects of cost optimization SWFS
approaches in cloud and grid computing. Furthermore, it provides an in-depth discussion for
each of these aspects. Section 4 categorizes the cost parameters into monetary and temporal
cost parameters. Special emphasis is given to the mathematical models used to calculate cost,
which may possibly affect a particular parameter of scientific workflow scheduling system.
The obtained results and findings are discussed in Section 5. Finally, Section 6 concludes
the review and presents useful open issues for future research.
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2. Reviewed cost optimization SWFS approaches

This section reviews relevant cost optimization Scientific Workflow Scheduling (SWFS)
approaches in cloud and grid computing. Table 1 presents the existing approaches, strengths
of the underlying optimization, and limitations for all considered approaches.

Table 1: Cost optimization SWFS approaches.

Approach Strength of underlying optimization Limitation

Market-oriented hi-
erarchical scheduling
strategy [3]

This strategy offers provisional exploration in market-based cloud
workflow structures. It assures suitable QoS requirements are im-
posed by users while decreasing the overall running cost of the
workflow system.

Provisional exploration is offered only in market-
based cloud workflow structures. There is a need
to consider utility structure.

Dynamic Constraint
Algorithm (DCA) [57]

User-friendly and is used to meet the requirements of the bi-criteria
scheduling issue in grid. DCA uses a two-phase heuristic algorithm
(primary and secondary), which has an extension for the knapsack
problem for multiple-optimal solution.

The authors concluded that this algorithm re-
quires a longer running time to satisfy the speci-
fied criteria.

SaaS Cloud Partial
Critical Paths (SC-
PCP) [68]

The cost of workflow execution is reduced while the user-
determined deadline for the Software-as-a-Service (SaaS) frame-
work is met. Schedules workflow based on QoS using a PCP.

The IaaS and pricing for cloud processing frame-
works are not supported by this technique and
data transaction cost is unaffected.

Workflow Orchestra-
tor for Distributed
Systems Architecture
[5]

Extracts the disparities and encapsulates the QoS features offered
by the cloud and grid structure. Allows competent organizations
at moderate cost for batch queue with or without public resource
management.

The authors found that this model is deficient in
enhancing sequential resources possibly requiring
higher cost.

Partial Critical Path
Scheduling (PCP) [69]

The normalized workflow cost is decreased by creating a schedule
that minimizes the total workflow execution cost, while satisfying
a user-defined deadline with the total execution time for SLAs in
utility grids.

The authors reported that PCP exceeds the user-
defined deadline for small and medium-size work-
flow problems.

Compatibility of Hy-
brid Processor Sched-
uler [70]

Execution cost is lower since resources are chosen based on their
energy levels and various forms of applications concerning high pro-
cessing and storage space demands are characterized.

This method is only applicable for hybrid systems
and is based on resources. However, other per-
formance features, such as throughput, are not
considered.

Ant Colony System
(ACS) algorithm [71]

Algorithm focuses on solving the problems of large-scale WFS com-
putational grids. Seven heuristics for the Ant Colony Optimization
(ACO) approach have been designed based on the characteristics
of WFS in a Grid system.

It has been concluded that this algorithm does
not consider the service providers’ performance
while optimizing the user-preferred QoS parame-
ters.

Critical Path-based
Priority Scheduling
(CPPS) [72]

The approach outperforms the traditional fair-share scheduling pol-
icy commonly adopted in real systems. Deploys and executes a test
bed network by adopting an on-node scheduling policy, while im-
proving the workflow performance of the mapping scheme.

It was found that the CPPS model fails to achieve
optimized interaction between task mapping and
the scheduling scheme.

Dynamic resource
provisioning tech-
niques [73]

Achieved a cost-effective execution of scientific workflows by imple-
menting a just-in-time algorithm. This technique uses a combina-
tion of grid and cloud resources via dynamic provisioning of cloud
resources when grid resources are unavailable.

Each task is scheduled when it becomes ready by
implementing a just-in-time algorithm.

Time-cost tradeoff
workflow scheduling
algorithm [74]

Less completion time and lower cost meet requirements in practi-
cal applications, which can effectively meet users’ needs. Adopts
dynamic shared and autonomous resources in grid.

The authors concluded that the proposed algo-
rithm lacks support of some user-defined QoS
constraints, such as deadlines and budget.

Ant Colony Optimiza-
tion (ACO) [75]

Improves cloud service performance in terms of reliability, response
time, cost, and security. ACO utilizes a default rate to explain the
ratio of cloud system service providers that break the SLAs of the
WFS.

The authors did not consider the effect of QoS
constraints in SLA from the users’ perspective.

Genetic Algorithmic
(GA) [7]

Monetary cost is reduced, and at the same time, user budget con-
straints and execution time are reduced simultaneous with meeting
the user deadline constraint. Provides a dynamic search method by
offering high-quality solutions for a vast search area in polynomial
time by using the evolutionary principle.

The authors found that GA requires a longer run-
ning time than other heuristic techniques.

Low-cost rescheduling
policy [76]

Rescheduling is taken into consideration at a few, carefully selected
points during execution. This policy yields equally good perfor-
mance as policies that consider rescheduling for every DAG task at
lower cost.

It was reported that this policy focuses only
on minimizing computation and communication
time of Grid application in WFS without consid-
ering users’ budget.

Budget constraint
based workflow
scheduling [19]

Presents a cost-based scheduling heuristic to minimize execution
cost and time while meeting the user’s budget. This method adopts
GA to minimize grid workflow execution cost within a certain dead-
line.

It was observed that this model supports only
specific types of services and does not consider
duplication of critical tasks to meet users’ QoS
requirements.

Mixed-Integer Non-
Linear Programming
(MINLP) [77]

The main goal of this method is to satisfy users’ deadlines as well
as to improve failure rates and turnaround times. Focuses on the
global cost optimization problem for the entire grid workload of
WFS while minimizing the cost of utilizing grid resources.

It was observed through the conducted study that
this model is not efficient for large WFS prob-
lems.

Transaction inten-
sive cost-constraint
algorithm [78]

Aimed at minimizing cost while meeting user-determined deadlines.
This algorithm offers a graph of just-in-time cost relations during
workflow execution by utilizing intensive transaction settings as
well as considering the specified budget.

The authors mentioned that the service
provider’s performance is not considered in
this algorithm.

Multi-cost job routing
and scheduling [79]

An algorithm for polynomial complexity is provided. Resource
reservations are enhanced and the start time for data transmission
is identified as well as for task completion.

The communication and computational parame-
ters of monetary cost are not completely consid-
ered.

DAG-LOSS & DAG-
GAIN [80]

DAG-LOSS and DAG-GAIN use DAG scheduling as a fundamental
framework for WFS in grid applications. Satisfy budget constraints
while optimizing execution time.

It has been observed that this model necessitates
additional time to achieve the required budget.

Integer Linear Pro-
gramming (ILP) tech-
nique [81]

ILP utilizes two heuristic methods that are competent when dead-
lines are substantial. Reduces the monetary cost while addressing
the deadline determined by the cloud users in the SLA contract.

For manifold workflow scheduling, the authors
mentioned that this technique does not con-
sider the mechanism’s fault tolerance in a similar
group of resources.

Continued on next page
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Table 1 – continued from previous page
Approach Strength of underlying optimization Limitation

Multiple QoS of
Multi-Workflows
(MQMW) [82]

This model is used to minimize execution cost while prominently
enhancing scheduling success rates. Scheduling success rates are
prominently enhanced. It is designed for several workflows with
various QoS requirements.

According to the authors, MQMW is not appli-
cable for other QoS constraints such as execution
time, availability, etc.

Time and cost-
constraint scheduling
strategy [21]

This strategy is able to control the complexity of large-scale, con-
temporary computing, network services, and the integration of grid
computing towards a service-oriented technique. Applicable for dif-
ferent types of workflow applications, as it minimizes the overall
execution cost and time.

It is necessary to consider other performance cri-
teria for the service providers.

IC-PCPD2 and IC-
PCP [6]

The aim is to minimize the workflow execution cost while meet-
ing the deadline-constrained workflow. These algorithms present a
commercial cloud that involves the on-demand resource, homoge-
neous network, and framework of pay-as-you-go pricing.

IC-PCPD2 and IC-PCP ignore the privacy re-
quirements while considering the workflow’s
deadline.

Deadline-Markov De-
cision Process (MDP)
[83]

Execution costs are reduced as deadlines are met. Task partitions
and overall deadline assignments are prescribed for optimized plan-
ning of execution and efficient run-time rescheduling.

The authors reported that MDP lacks in achiev-
ing efficient run-time rescheduling.

Scalable-
Heterogeneous-
Earliest-Finish-Time
algorithm [84]

Execution time optimization is achieved while elastic runtime scal-
ability is attained. The authors mentioned that SHEFT is more
flexible than other cost-aware WFS models as it efficiently sched-
ules on-demand size of a workflow along with allocated resources.

Apparently this algorithm is deficient in indicat-
ing accurate runtime prediction, which acts as a
pre-requisite of scheduling.

Multi-objective Dif-
ferential Evolution
[17]

Provides flexibility of trade-off while calculating preference require-
ments. Furthermore, it selects WFS according to the requirements
of user-specified grid system QoS.

The authors considered only the distance criteria
to examine the algorithm’s performance.

Particle Swarm Opti-
mization (PSO) [18]

Is for designing a heuristic that utilizes PSO by formulating a
framework for task-resource mapping to reduce the overall com-
pletion cost. PSO incurs large amounts of data and execution cost.

The authors mentioned that the proposed al-
gorithm ignores the temporal cost of service
providers.

Multi-Constraint
Graph Partitioning
(MCGP)[85]

Reduces the cost of communication while minimizing the workflow
execution time. MCGP utilizes the partitioning DAG graph that
is applied for a complicated Cloud workflow. The time elapsed for
file size access from remote nodes is decreased as well.

The MCGP method does not consider the in-
put/output files of each job, which ultimately
affect the dynamic changes of workflow applica-
tions.

Hybrid Cloud Op-
timized Cost model
(HCOC) [4]

Improves WFS by making use of multicore resources and minimiz-
ing the monetary cost within a deadline while offering affordable
makespans to users. HCOC imparts sufficient processing power
by determining which resource ought to be leased from the public
cloud.

The authors mentioned that this model does not
consider the workflow execution time required by
a user in a single-level SLA contract.

Workflow-aware Pre-
processing Provision-
ing Dynamic Schedul-
ing (WPPDS) [86]

An elastic resource provisioning and task scheduling mechanism
have been proposed to perform scientific workflows and submit-
ted at unpredictable time in cloud. The aim is to finish as many
high-priority workflows as possible by considering the budget and
deadline aspects. The evaluation of this mechanism shows stable
performance with inaccurate parameters and task failure.

The approach should be tested within a real sci-
entific workflow environment by considering the
data communication cost and storage cost for ex-
ecuting larger workflows in cloud.

SciCumulus [13] A parallel technique to define the number and types of VMs and
to design the parallel execution strategy for a scientific workflow.
Model a cost based approach to satisfy the QoS and help deter-
mine an adequate configuration of the environment according to
restrictions imposed by service consumers.

The approach is lacking in providing a compre-
hensive evaluation environment in order to test
the total execution cost and execution time.

Dynamic Provisioning
Dynamic Scheduling
[31]

A series of adaptive scheduling algorithms for scientific workflows
cloud-based have been proposed to provide a dynamic dimension-
ing and vertical scaling during workflow execution to comply with
service consumers’ constraints. This work represents good perfor-
mance results by bringing opportunities for modifying the number
of VMs.

Lacks in considering the optimization of the ini-
tial virtual machine allocation. Also, this ap-
proach is unable to handle unpredictable work-
loads.

Cost-Effective Virtual
Machine Allocation
Algorithm within Ex-
ecution Time Bound
[87]

A two-step heuristic workflow mapping (scheduler) has been used
to maximize the resource utilization while minimizing the over-
head of the cloud. The delay of workflow execution has also been
considered to calculate makespan and guarantee the user required
deadline, to reduce the overhead of start-up and shutdown of a
virtual machine.

The authors have taken the VM launching over-
head variation as a key variable for designing re-
source allocation algorithms only. However, there
are several other constraints which should also be
considered (e.g. the predication of workload, QoS
requested by users)

Critical-Greedy (CG)
[54]

An algorithm (MED-CC) has been designed for workflow schedul-
ing problem to minimize end-to-end delay while meeting the
budget constraint. Furthermore, the authors have proposed a
Critical-Greedy algorithm using GAIN approach that only imposes
rescheduling process on dynamic critical tasks.

The reported experimental results prove the per-
formance benefits of the approach but not com-
pletely achieve the required cost optimization.

SO-Routine and MO-
Routine algorithm
[44]

Evolutionary approach based algorithm for multi-objective opti-
mization has been proposed as a solution to scheduling of SWF
applications. Also, the authors designed a novel representation of
two independent chromosomes, one for mapping and one for order-
ing.

This method is more time consuming than other
heuristic based approaches. The authors used
only two Amazon EC2-based clouds which are
not enough for evaluating a multi-cloud chal-
lenge.

3. Cost optimization aspects of SWFS

One of the major aims of SWFS is to reduce the overall cost of running the cloud workflow
system [3] especially for complex jobs like scientific workflow. The execution cost must be
taken into consideration when scheduling tasks into the resources [7, 19]. The running cost of
an application is minimized through the cost optimization scheduling policies [88]. Therefore,
several aspects need to be considered while scheduling the scientific workflow tasks. This
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section presents, a classification for aspects of cost optimization SWFS approaches in cloud
and grid computing. Figure 3 presents our classification of cost optimization aspects of
SWFS based on eight main classes: (a) computing environment, (b) optimization method,
(c) structural representation, (d) profitability, (e) scheduling technique, (f) workload type,
(g) optimization criteria, and (h) QoS constraints.

Figure 3: A classification of cost optimization aspects of SWFS.

In the following sub-sections, we briefly discuss each aspect of the presented classification.

3.1. Computing environment

The cost of executing a scientific workflow is usually affected by the computational en-
vironment due to the fact that it has direct impact on resource utilisation. For example,
scientists should select the computing environment based on their requirement which could
be related to the size of application, privacy of the used data and other QoS constraints
(e.g. budget, and deadline). Therefore, each computing environment has a different specifi-
cation, which ultimately affects the total cost of SWFS. In this paper, we consider four main
computing environments: (i) private cloud, (ii) public cloud, (ii) hybrid cloud, and (v) grid
computing.

Private cloud: due to data privacy limited budget constraints, most of the service con-
sumers select private cloud. The operation cost is usually not taken into consideration and
the resources’ usage cost is also not measured [4, 40]. The total cost of SWFS in the private
cloud model can normally be calculated by adding computation cost (i.e. computation time)
to communication cost (i.e. communication time).

Public cloud: this computing type is usually selected when service consumers need to
execute a large scientific workflow, which can not be executed locally. The total cost of
SWFS includes the cost per time unit of using cloud resources [73]. The communication cost
value of executing workflow in the public cloud is normally assumed to be zero, because of
the assumption that all resources are built into the same computational infrastructure.
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Hybrid cloud: this type of computing can give a flexible specification for the required
resources by service consumers. The scheduler is required to consider the load balancing
of submitted work in order to fully utilize the private and public cloud. However, this
model adds more complexity to the cost of the consumed services. Hence, the cost of SWFS
can be calculated by adding the SWFS cost in a private cloud to the SWFS cost in a
public cloud. Another hybrid cloud scenario is where the total cost of SWFS is defined as
data transfers from and to the cloud [5, 89]. The available bandwidth into the connected
processing resources of the hybrid cloud affects the makespan [9, 20, 31, 90]. Therefore, the
bandwidth cost for the hybrid cloud environment can be defined as the cost that the service
provider charges to service consumers per the amount of data transferred ($/GB).

Grid computing: this computing type is very similar to the other cloud computational
environments which is also used to provide an optimal solution to meet the service consumer
requirements by providing scalable, and flexible solutions for the considered scientific appli-
cations [3]. The total cost of SWFS in grid computing can be calculated by summing all the
used resources.

3.2. Optimization method

This aspect is considered one of the most important cost optimization aspects due to its
direct impact on task-resource mapping processes. Several methods (i.e. rule-based, search-
based, coverage-based) have been proposed in the literature to find an optimal solution
for the total cost of executing the SWFS in cloud and grid computing environments. The
heuristic methods have been widely used for the scheduling problem. The heuristic methods
efficiently determine the tasks’ order and schedule them according to the best performance
(in terms of effectiveness and accuracy) [80, 91]. On the other hand, meta-heuristic methods
(e.g. genetic algorithm) have also been effectively used to achieve improved performance
compared to other heuristic methods, but with some compromise on the execution time
[3, 68, 69].

3.3. Structural representation

Due to the complex nature of the scientific workflow application, the structural repre-
sentation is the first stage of any WfMS that is used to simplify the submitted scientific
activities to the scheduler. Several types of structural representation methods have been
adopted in the literature to represent the tasks’ dependency (precedence constraints) of
SWFS: (i) Graph-based modeling methods (i.e. DAG [50, 52, 92–95], Petri Nets [96, 97]),
and (ii) Language-based modeling tools (i.e. XML Process Definition Language (XPDL))
[98]. Notice that for each type of these methods, there are cost parameter representations
(e.g. computation cost, and communication cost). For instance, the DAG based method is
the most popular method used in the state-of-the-art approaches to estimate the execution
cost of different available resources for every task, which represents the overall computational
cost. In addition, the time to communicate data between resources is given, which represents
communication cost (e.g. bytes to transmit).
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3.4. Profitability

As shown in Figure 1, due to the importance of the cost optimization of SWFS in cloud
and grid computing for different WfMS users, in order to have a deeper understanding on
the proposed cost optimization approaches, we have classified the aim of the reviewed cost
optimization SWFS state-of-the-art approaches into two groups with respect to profitability:
(1) approaches whose main goal is the service consumers’ profitability, and (2) approaches
whose primary goal is the service providers’ profitability [3, 31, 71, 74, 88, 99]. The service
consumer represents a person or organization (which could be a scientist or researcher) that
uses the cloud computing services (i.e. Infrastructure as a Service (IaaS), Software as a
Service (SaaS) or Platform as a Service (PaaS)) in order to execute the scientific application
[100]. Conversely, the service provider represents a company or organization (which could be
any cloud service provider) that offers cloud computing services to service consumers (person
or organization) with different QoS constraints and prices [3, 6, 68].

When a cloud service consumer requests a service from the service provider, a vital
matter of reducing the leasing cost (for the service consumer) arises, while the contribution
to lower the overall execution cost of workflow (for the service provider) increases [73, 101–
103]. In contrast, for the service provider, the aim is to reduce the cost of leasing time of
the cloud resources [2, 4, 18, 69, 71, 73, 78]. Therefore, time optimization is profitable for
the service provider by reducing the cost of maintaining resources. Consequently, this gives
an advantage to cloud service consumers since it will reduce the cost of workflow execution
[104].

Recently, researchers have focused on the study of scientific workflow applications on
multi-cloud service provider. The implementation of multi-cloud service provider is more
complex which requires interoperability. For example, an application is hosted in Azure
Cloud (database server) and deployed on a web server on Amazon Cloud. Thus, results and
benefits of cloud adoption cannot be achieved, unless data and applications are integrated
across clouds properly [105]. As a solution, interoperability approaches should be used to
avoid lock-in of multi-cloud service provider. The interoperability perspective in technology
focuses on the resulting mission of compatibility or incompatibility between systems and
data collation partners. Therefore, several approaches such as mOSAIC [106] and RightScale
[107] have proposed software and frameworks to help organizations to manage and utilize
resources spanning on multi-cloud service provider. However, due to the above-mentioned
challenges, there is no SWFS approach that provides a generic solution to monitor full
stack challenge for multi-cloud service provider, from software development tools to run-
time control [105, 106, 108, 109]. Therefore, future researchers need to focus on optimization
of the cost-aware approaches of SWFS in cloud computing.

3.5. Scheduling technique

The scheduling technique represents the mechanism that the scheduler chooses to schedule
scientific workflow tasks which is strongly related to the cost of the utilized resources in
WfMS. Two types of techniques have been adopted in state-of-the-art cost optimization
SWFS approaches: (i) static technique, and (ii) dynamic technique.
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The static technique requires the scheduler to know in advance the characteristics of
all the scientific tasks, including their sizes, service demands and estimated execution cost.
Also, the static techniques are performed under two assumptions (i) the tasks arrive simul-
taneously to the resources, and (ii) the resource’s available time is updated after each task is
scheduled [70, 95]. The static technique can efficiently schedule large workflows on large data
centers. Another advantage is that it is easier to adapt a static technique based on sched-
uler’s perspective. Furthermore, it is more user friendly as the precomputed schedule allows
quoting a price for the computation. In addition, it allows the service consumers to choose
from multiple scheduling options according to the price and time constraints [110, 111].

The dynamic technique is more flexible than static scalability where scientific tasks are
dynamically available (continuous stochastic stream) for scheduling. However, it is more
complex than the static scheduling technique since it needs to update the system informa-
tion on the fly [70]. The main advantage of dynamic strategy is that it can be adopted
when a task set or a resource set is heterogeneous. For instance, not all tasks arrive simul-
taneously, or some resources are off-line at intervals [112]. The other advantage is that it
considers only few required parameters in advance. Due to the aforementioned advantages,
the dynamic scalability is more suitable for executing the on-demand workflow applications
in cloud environments.

3.6. Workload type

Two types of workload methods, i.e. predicted mode and unpredicted mode, have been
adopted in SWFS approaches based on their method of loading the tasks to the scheduler
in cloud and grid computing. The workload type can affect estimation.

Predicted (batch mode): in predicted or batch mode (also referred as latter mode), the
tasks are first collected as a group of problems that are examined for scheduling at presched-
uled times (predefined moments). Thus, it is better to map the tasks for suitable resources
depending on their characteristics [70]. This enables the predicted mode to determine about
the actual execution time for a larger number of tasks [113]. One of the main advantages of
this mode is to maximize the throughput while minimizing the turnaround time (the time
between task submission and its completion) [114].

Unpredicted (on-line mode): unpredicted or on-line mode (also referred as former mode)
where tasks are scheduled to a resource as soon as they arrive for execution and there is no
waiting for the next time interval on available resources at that moment [70, 113]. In this
mode, each task is scheduled only once and hence the scheduling result cannot be changed.
Therefore, unpredicted mode is suitable for the scheduling scenarios where the arrival rate
is low [54, 113, 114].

3.7. Optimization criteria

In order to propose an optimal solution for SWFS problem, the total cost of executing
workflow tasks needs to be minimized.

The reviewed SWFS approaches can be classified into two main classes: (i) Single-
objective optimization based approaches, and (ii) Multi-objective optimization based ap-
proaches. In the literature, researchers have mainly focused on optimizing cost parameters
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only. Thus, the approaches which only consider execution cost or time (but not both) are
referred as Single-objective optimization based approaches, since they only target at optimiz-
ing the cost of SWFS problem. Some approaches have focused on minimizing the execution
cost [6, 68, 69, 75, 81, 115, 116], while other approaches have focused on the execution time
[5, 70, 79, 85, 117]. However, due to the rapid development of the provided computing ser-
vices (e.g. pay-as-you-go, and on-demand), many other constraints (e.g. QoS constraints)
should also be considered to optimize the cost of SWFS. Due to the above-mentioned reasons,
the complexity of the proposed approaches has increased to a great extent, which ultimately
demands to handle the trade-offs between the cost and other affected constraints. Never-
theless, a group of services may have the same requirements so they can complete similar
tasks or activities with different execution cost and time [74]. These approaches are referred
as Multi-objective optimmization based approaches. Therefore, majority of the recent ap-
proaches have adopted the hybrid and hyper techniques for the heuristics and meta-heuristics
methods to obtain an optimal solution.

3.8. QoS constraints

QoS has a major impact on SWFS in cloud and grid computing, since the success of
computational tasks heavily depends on the desired QoS levels [45, 69, 72, 118]. For multi-
objective problem, such as SWFS, there are several QoS constraints that must be taken
into consideration for a given service when designing an efficient WfMS in cloud and grid
computing [4, 119–121]. The service providers must consider satisfying the service consumers’
QoS requirements based on SLA. Therefore, for a scheduling process, the QoS has a direct
affect on each stage of a typical workflow instance.

Interested readers may consult our previous work [65] for complete definitions and details
about each of the QoS constraints in the content of cost-aware WFS. In this paper, we
have identified the QoS constraints for each of the reviewed cost optimization approaches in
Table 2 (as multi-objective optimization criteria). Furthermore, we have considered another
important QoS aspect, which is the way of handling the QoS constraints in SWFS approaches.
There are two methods to consider QoS for cost optimization SWFS approaches in cloud
and grid computing (Figure 4).

The first method is to allow the users to assign activity-level QoS constraints, and then
the overall QoS can be assessed by computing the QoS constraints of all individual activities
based on the specific QoS model. For example, a workflow reduction algorithm can be
employed to calculate the deadline for the entire workflow based on the desired execution
time of individual workflow activities [23, 69].

The second method is to assign QoS constraints at workflow-level where users need to
define the overall workflow QoS requirements, and then the workflow system uses automatic
strategies to assign local and activity-level QoS constraints to the workflow segments and
individual activities. For example, a deadline assignment approach such as Equal Slack and
Equal Flexibility [82] can be applied to determine the expected execution time of individual
activities based on the deadline for the entire workflow.

Table 2 provides a comparison of the proposed SWFS approaches based on the defined as-
pects: computing environment, optimization method, structural representation, profitability,
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Figure 4: Methods for considering QoS constraints.

scheduling technique, workload type, optimization criteria and QoS constraints.
The cost optimization aspects of SWFS (Table 1) can be classified based on the computing

environment aspects: (i) grid computing, (ii) private cloud, (iii) public cloud, and (iv) hybrid
cloud. The cost optimization SWFS approaches such as [17, 57, 69, 71, 74, 83] considered a
grid computing model to schedule the given workflow tasks. Alternatively, SWFS approaches,
including [18, 78, 84] employed a private cloud environment to execute the given workflow
tasks. Similarly, public cloud and hybrid cloud models have been considered by [3, 4, 68,
75, 81], approaches to optimally solve the SWFS problem respectively. In contrast, very few
approaches including [5, 72, 73] focused on utilizing the strengths of both cloud and grid
computing environments to provide a more cost-effective solution for SWFS problem. As
compared to private clouds, public clouds are more expensive in terms of communication
cost and execution time mainly due to the far-proximity of the resources. On the other
hand, considering hybrid model offers a highly flexible scalability feature due to the efficient
utilization of resources compared to standalone, public, and private cloud models.

The SWFS approaches can be categorized based on different aspects of optimization
method such as heuristic [5, 69], clustering [84], critical path [72], fuzzy [73], extended critical
activity [74], holt-winter’s method [77], greedy [70], market-driven [78], meta-heuristic [3, 6],
cloud WF exchange agent, mathematical modeling [83] and partitioning [85]. Majority of
the SWFS approaches focused on employing heuristic and meta-heuristic as an optimization
method. Meta-heuristic approaches achieved a better performance in terms of effectiveness
and accuracy at the cost of extended execution time compared to heuristic methods. The
structural representation parameter categorizes SWFS approaches into network routing [79],
DAG [57, 72, 77, 81], atomic task partitioner [21], and just-in time graph [78]. Majority of the
state-of-the-art SWFS approaches used DAG structural model to graphically visualize the
dependency among the SWFS tasks, especially focusing on the cost parameters (execution
time, and communication time).
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Table 2: A comparison on cost optimization aspects of SWFS.

Ref. Environment Method Structural Profitability Technique Workload Optimization criteria QoS constraints

[3] Hybrid cloud Meta-
heuristic

DAG Service consumer Static-
Dynamic

Unpredicted Multi-objective
(M/S)

Activity-level

[57] Grid Heuristic DAG Service consumer Static-
Dynamic

Predicted Multi-objective
(R/A)

N/A

[68] Public cloud Heuristic DAG Service consumer Dynamic Predicted Multi-objective
(D/M)

Activity-level

[5] Cloud &
Grid

Heuristic DAG Service provider Dynamic Predicted Multi-objective
(D/R/A/M)

Workflow-level

[69] Grid Heuristic DAG Service provider Dynamic Predicted Multi-objective
(D/M)

Workflow-level

[70] Private &
Public cloud

Greedy N/A Service provider Dynamic Predicted Single-objective N/A

[71] Grid Heuristic DAG Service consumer Dynamic Predicted Multi-objective
(B/D/R/M)

Activity-level

[72] Cloud &
Grid

Critical-
path
method

DAG Service provider Dynamic Predicted Multi-objective (M) N/A

[73] Cloud &
Grid

Fuzzy DAG Service provider Dynamic Predicted Multi-objective (M) N/A

[74] Grid Extended
critical
activity

DAG Service provider Dynamic Predicted Multi-objective
(D/M)

Workflow-level

[75] Hybrid cloud Heuristic DAG Service provider Static Unpredicted Multi-objective
(B/R/S)

Workflow-level

[7] Grid Heuristic DAG Service consumer Dynamic Predicted Multi-objective
(B/D/A/M)

Workflow-level

[76] Grid Heuristic DAG Service provider Dynamic Predicted Multi-objective (M) Activity-level
[19] Grid Heuristic DAG Service provider Dynamic Predicted Multi-objective

(B/M)
Workflow-level

[77] Grid Holt-
winter’s
method

DAG Service provider Static-
Dynamic

Predicted Multi-objective (D) Activity-level

[78] Private cloud Market-
Driven

Just-in-
time graph

Service consumer Dynamic Unpredicted Multi-objective
(B/D)

Activity-level

[79] Grid Heuristic Grid net-
work
routing

Service provider Dynamic Predicted Single-objective Activity-level

[80] Grid Heuristic DAG Service consumer Static Unpredicted Multi-objective
(B/M)

Workflow-level

[81] Public cloud Heuristic DAG Service consumer Static Predicted Multi-objective
(D/S)

Workflow-level

[82] Private cloud Heuristic DAG Service provider Dynamic Unpredicted Multi-objective (M) Activity-level
[21] Grid Heuristic Atomic

task parti-
tioner

Service provider Static-
Dynamic

Predicted Multi-objective
(B/D)

Workflow-level

[6] Private cloud Meta-
heuristic

DAG Service provider Dynamic predicted Multi-objective
(D/M)

Activity-level

[83] Grid Mathematical
modelling

DAG Service consumer Dynamic Predicted Multi-objective (D) Activity-level

[84] Private cloud Clustering DAG Service provider Dynamic Unpredicted Multi-objective (M) Workflow-level
[17] Grid Heuristics DAG Service consumer Static Unpredicted Multi-objective

(B/D/M)
Workflow-level

[18] Private cloud Heuristic DAG Service provider Dynamic Unpredicted Multi-objective (M) Activity-level
[85] Private cloud Partitioning DAG Service provider Dynamic Unpredicted Single-objective Activity-level
[4] Hybrid cloud Heuristic DAG Service provider Dynamic Unpredicted Multi-objective

(D/M)
Workflow-level

[44] Public cloud Meta-
euristic

DAG Service consumer
and Service
provider

Dynamic Predicted Multi-objective
(D/R/A)

Activity-level

[86] Private cloud Dynamic
program-
ming
algorithm

DAG Service provider Dynamic Predicted Multi-objective
(B/D)

Workflow-level

[13] Public cloud Heuristic VisTrails Service provider Dynamic Unpredicted Multi-objective
(R/A/S)

Activity-level

[31] Public cloud Heuristic DAG Service consumer Static and
Dynamic

Unpredicted Multi-objective
(B/D/R/M/S)

Activity-level

[87] Private cloud Heuristic DAG Service provider Dynamic Unpredicted Multi-objective
(D/R/A/M)

Workflow-level

[54] Public cloud Heuristic DAG Service con-
sumer and service
provider

Dynamic Predicted Multi-objective
(B/D/A/M)

N/A

Legends: B = Budget; D = Deadline; R = Reliability; A = Availability; M = Makespan; S = Service level agreement

The existing scheduling techniques have been classified into three parameters including
static [17, 75, 80] dynamic [54, 71, 72], and static-dynamic [3, 21, 77]. Dynamic scheduling
is efficient for a cloud computing environment due to its ability to handle the arriving tasks.
The selection of workload type mainly depends on the tasks arrival rate based on the defined
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suitability criterion between using predicted or unpredicted mode. The workload types
of SWFS approaches have been categorized into two mode, predicted [7, 71–74, 76], and
unpredicted [3, 18, 75, 80, 82, 84] modes.

4. Cost optimization parameters of SWFS

This section critically analyzes the devised classifications for cost optimization parameters
of SWFS in cloud and grid computing. A complete discussion on the sub-classification of
cost parameters including the monetary cost and temporal cost is presented in sub-sections
4.1.1 and 4.2.1. Finally, the section provides the correlations between the surveyed cost
optimization SWFS approaches and the profitability by extracting their association with
cost optimization parameters.

After analyzing the cost optimization parameters considered by researchers in the area of
SWFS in cloud and grid computing, it is found that the classification of the cost optimization
parameters is dependent on two types: (i) monetary cost parameters, and (ii) temporal cost
parameters, as shown in Figure 5.

Figure 5: A classification of cost optimization parameters of SWFS.

The scheduling approaches are supposed to estimate in advance whether a workflow will
be able to meet the requested constraints (e.g. deadline) or not [5, 122]. However, the
estimation process may be compromised due to uncertainty in task estimations especially
in the case of deadline-sensitive applications (e.g. weather forecasting). Also, the resource
providers find it hard to ensure the resource availability due to the variability and complexity
of the underlying resource characteristics and access policies. Researchers have considered
three parameters to overcome the aforementioned challenges: (i) Estimated Execution Time
(EET); (ii) Estimated data Transfer Time (ETT); and (iii) Estimated Finish Time (EFT)
[2, 5, 69, 73, 85, 89, 123, 124]. The scheduler needs to include these parameters in the
workflow definition to enhance the estimation process by considering the historical results.

Hence, it is crucial to recognize the parameters of the monetary cost and temporal cost,
and the inter-dependent parameters. The specific breakdown (sub-classifications) and details
on each of the monetary cost parameters are given in Section 4.1.1 and those of the temporal
cost parameters are presented in Section 4.2.1.

4.1. Monetary cost parameters

This section presents two main sub-sections including: Classification of monetary cost
parameters from the profitability aspect.
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4.1.1. Classification of monetary cost parameters

This section provides details on the sub-classification of monetary cost optimization pa-
rameters as shown in Figure 6: (i) the estimated execution cost, (ii) the cost of service offered
by the service provider, (iii) computation cost, (iii) communication cost, (iv) elasticity cost,
and (v) cost of data storage.

Figure 6: Sub-classification of monetary cost optimization parameters of SWFS.

4.1.1.1 Estimated execution cost

Estimated execution cost can be measured before the process of workflow scheduling, and
it assists the algorithm with decision making for scheduling tasks and data with the help of
the DAG graph partitioning of the workflow. The two main elements of estimated execution
cost are: (i) estimation of computation cost, and (ii) estimation of communication cost
[53, 85, 122]. The estimated execution cost represents the cost of processing a task at the
resource. In contrast, the estimated communication cost refers to the cost of sending the
required data along the edges of DAG from one resource to another based on the tasks’
dependencies.

4.1.1.2 Cost of service provided

Cost of service provided represents the cost of the service offered by the service provider as an
external cost to fulfill a service request to the service consumers, usually measured in dollars.
Every service provider may have particular strategies for task-level scheduling to optimally
use the system’s running cost at its own data center [3, 33, 34, 46]. It is essential to reduce
the total cost of application execution on the resources offered by the cloud service providers
such as GoGrid and Amazon [18]. The total cost of service provided by the service provider
can be calculated based on the cost of the services used by the workflow scheduler [57].
Therefore, workflow execution cost is the sum of the cost of each activity [74]. Additionally,
the cost of an application is defined by the summation of the costs of all selected service
instances [71].

4.1.1.3 Computation cost
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Computation cost is defined as the cost of using computing resources and is usually measured
in dollars per hour. The cost of computation is generally the user’s main concern [14, 32,
45, 125]. The computation cost of tasks on the host computer is inversely proportional
to the time spent on computing these tasks using the resources [3, 18]. For instance, the
computation cost of the public cloud is represented by the amount of money to be paid for
using the enterprise’s computation resources, which can be categorized based on different
computational specifications [18, 33, 46, 102].

The total cost of computing the workflow is also affected by the data size [18]. Thus,
decreasing the execution cost of running a workflow application on the cloud system is one
of the main reasons for lowering the total cost [3, 6, 81, 126].

4.1.1.4 Communication cost

Communication cost is defined as the cost of data transferred to/from a data-storage re-
source, and is usually measured in dollars per megabyte of data. Communication cost be-
tween resources as well as the dependency between tasks introduces high communication
cost, as data needs to be transferred from one resource to another [15, 127]. The commu-
nication cost is only applicable when two tasks have data dependency [125]. This produces
higher storage and transmission cost compared to the cost of running the data [18]. Never-
theless, the internal transfer of the data is free in many real clouds such as Amazon, so the
cost of data transfer is said to be zero in this model [6, 68]. Hence, there is no charge for
data transfers within the same service provider’s region [125]. As such, there is a significant
link between the cost of data communication and data allocation. It is essential to sched-
ule the computational tasks near the data and comprehend the moving cost of the work in
comparison to data movement (minimizing the cost of communication). Also, data must be
distributed over many computers, and computations must be steered towards the best place
for execution in order to minimize communication cost [8, 81].

4.1.1.5 Elasticity cost

Elasticity in resources provisioning to the service consumer’s computing environment is
one of the most important features of a cloud system. The cloud system is able to handle the
execution of complex computational tasks, which require powerful resources (e.g. machines
and storages). Thus, the cloud computing system is suitable to address the problems of
large-scale SWFS applications [128, 129]. In contrast, the elasticity of SWFS is bounded by
the number of resources requested by the scheduling algorithm [4]. Therefore, the SWFS
approaches need to make full use of the resources’ elasticity by providing an efficient resource
allocation within the lowest cost when tasks are completed earlier than the predicted time.
For instance, in a hybrid cloud system, the service consumer is required to efficiently utilize
the usage of public cloud resources that can be aggregated to the private resources’ pool as
necessary [46, 81, 130].

4.1.1.6 Cost of data storage
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Cloud Workflow Management System (WfMS) is required to deliver on-demand storage
services and processing power, due to the fact that the cloud WfMS has to deal with data
centers which can be clusters of commodity hardware [81, 131–134]. Executing a large
size of scientific workflow applications usually needs high performance computing resources
as well as massive storage [134]. The execution of a workflow task consists of three phases,
downloading of input data from the storage system, running the task, and transferring output
data to the storage system [46]. Therefore, for a cloud WfMS storing all the data generated
during workflow executions may cause a high storage cost [132, 135]. In order to reduce the
total cost of SWFS, the cloud workflow system requires a strategy that can reduce the cost of
the cloud WfMS by automatically storing only appropriate data in the cloud storage [81, 132,
134, 136]. Several strategies have been reported for cloud storage. For example, BigTable
includes Google File System (GFS), SimpleDB data cloud, and MapReduce infrastructure,
Amazon’s S3 storage cloud, EC2 compute cloud and Hadoop system.

4.1.2. Monetary cost parameters from profitability aspect

This section highlights the results related to the approaches, which represent the re-
lationships between profitability for the service consumers and the monetary models’ cost
parameters of cost optimization scheduling as shown in Table 3.

Table 3: Monetary cost parameters from the service consumers’ point of view.

A
p
p
r
o
a
c
h

E
s
t
im

a
t
e
d

e
x
e
c
u
t
io

n
c
o
s
t

C
o
s
t

o
f

s
e
r
v
ic

e
p
r
o
v
id

e
d

C
o
m

p
u
t
a
t
io

n
c
o
s
t

C
o
m

m
u
n
ic

a
t
io

n
c
o
s
t

E
la

s
t
ic

it
y

c
o
s
t

C
o
s
t

o
f

d
a
t
a

s
t
o
r
a
g
e

[78] x
[83] x x x x x
[80] x x x
[81] x x x
[3] x
[68] x x
[17] x x
[7] x x x
[71] x x
[69] x x x
[81] x
[19] x x x
[86] x x x x x
[13] x x
[31] x x
[87] x x x
[44] x x x x

From the service consumers’ profitability perspective (Table 3), some approaches have
considered the estimated execution cost as a strategy for planning the scheduling before the
scheduler allocates suitable resources based on their availability. Computation cost and com-
munication cost are frequently used during the scheduling process stage. This shows that
generally, the users of workflow applications are more concerned with the amount of money
they need to pay for the service. However, only few models consider the cost of data storage
in their approaches, which is potentially due to the need for using a private (locally) storage
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instead of using a storage that is provided by the service provider (remotely). Therefore,
service provider needs to consider providing more flexible storage services by keeping only
appropriate data in the cloud. For elasticity cost, there is a strong need for full use of the
resource elasticity by providing an efficient resource allocation within the lowest cost.

Table 4 indicates the relationship between the profitability for service providers and the
monetary cost parameters of cost optimization scheduling.

Table 4: Monetary cost parameters from the service providers’ point of view.
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[18] x x x
[72] x
[73] x
[84] x
[76] x x
[4] x x x x
[5] x x
[79] x x x
[6] x x
[85] x x x
[57] x x
[69] x x x x
[19] x x x
[86] x x x x x
[13] x x x x
[31] x x x
[54] x x x x
[44] x x x x

From the point of view of service providers’ profitability (Table 4), it is evident that
many approaches take the estimated execution cost into consideration [19, 69, 85]. The
purpose of this parameter is to measure the cost of the submitted workflow tasks, which
is estimated by the scheduler before the process of SWFS execution starts. There is a
small number of scheduling approaches dedicated to the cost of service provided as service
profit. This signifies that customers find the cost of the service provided very important.
In addition, the computation and communication cost parameters are widely applied to the
service category as the principal parameters representative of monetary cost.

4.2. Temporal cost parameters

This section discusses temporal cost parameters in terms of the profitability for the service
consumers and service providers.

The literature review points out that in order to achieve effective and efficient cost of ap-
plication data, the schedulers should minimize the total time taken for execution (makespan)
to reduce the total execution cost [7, 18]. However, the two aims (the cost of running a process
on a resource and the time expected for execution) are contradictorily related [17, 19, 57, 83].
In addition, the time taken for execution and cost of execution are the two normal restric-
tions in the ”pay-per-use” model of cloud computing [137]. Thus, faster resources are more
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costly and vice versa with slower resources. As a result, the scheduler has to face a time-cost
tradeoff in choosing suitable resources [6]. Besides, the cost of execution rises during longer
delays, as the scheduler switches the balanced tasks to more costly services to finish off the
balance of execution within the subscribed deadline [14, 32, 39, 42, 83, 138].

Besides, to calculate the cost of SWFS, it is significant to take into consideration all
the time intervals that each resource is utilizing for task processing and data transmission
[4, 7, 57].

4.2.1. Classification of temporal cost parameters

This section categorizes the temporal cost according to the scheduling stages (i.e. pre-
scheduling, during scheduling, and post-scheduling) as per needs of the scheduler.

Figure 7: Sub-classification of temporal cost optimization parameters of SWFS.

From the sub-classification of cost optimization parameters of temporal cost as depicted
in Figure 7, three scheduling stages are incorporated in the temporal cost: (i) pre-scheduling,
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(ii) during scheduling, and (iii) post-scheduling [6, 68]. The pre-scheduling stage covers the
earliest start time [4–6, 79, 89, 137], earliest finish time [6, 79], estimated data transfer time
[69], estimated execution time [6, 21, 69], estimated finish time [4, 21, 89], latest start time,
and latest finish time [2, 68, 69, 139] parameters. However, the during-scheduling stage in-
cludes the computation time, communication time, spare time, and ready time parameters.
On the other hand, the post-scheduling stage consists of the actual start time as well as
actual finish time.

4.2.1.1 Pre-scheduling stage

The following are the main parameters that need to be calculated before the scheduling
process to ultimately help the scheduler with scheduling decisions by estimating the temporal
cost.

Earliest start time (EST)

EST is defined as the earliest time to begin task computation, regardless of the actual
resource to process the task that can be decided on while scheduling [69, 79]. Nevertheless,
it is impossible to exactly measure EST in a heterogeneous environment, as a specific cloud’s
computation time of tasks differs within each resource [69]. Every task has a period and
should not be scheduled earlier than EST, and must end latest by the Finish Time [5].

The EST of each unscheduled task is described in the following equation [6, 68, 69]:

EST (tentry) = 0 (6)

The task tentry refers to the beginning of the workflow.

EST (ti) = maxtp∈tiParents {EST (tp) +MET (tp) + TT (ep,i)} (7)

where the minimum execution time of a task ti, MET (ti), refers to the task’s execution
time on a resource rjεR which has the minimum ET (ti, rj) among all the available resources.
ET denotes the estimated execution time of ti, and the tp is the parent task of ti, and ep,i
refers to the edge between the parent task node to the ti task node in DAG. TT denotes the
estimated data transfer time.

Earliest finish time (EFT)

EFT for each unscheduled task is the earliest time the task’s computation can finish [6, 68].
Thus, it is essential to first calculate the EST, and then calculate the EFT for each task in
the workflow prior to assigning it to the fastest resource [6]. EFT can be calculated with the
following equation :

EFT (ti) = EST (ti) +MET (ti) (8)

where the MET (ti) denotes the minimum execution time of a task ti.
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Estimated data transfer time (TT)

TT can be defined as the amount of data that needs to be transmitted along with the data
latency and bandwidth between services, which can be used to estimate the time it takes to
transfer the required data. For instance, TT (ei,j) is defined as the data transfer time of the
selected resource for ti and tj. Thus, TT represents the transfer cost of sending the required
data along ei,j from resource r (processing task ti) to resource n (processing task tj) [69].

Estimated execution time (ET)

ET refers to the computation time for every task in each resource according to the scheduler’s
estimation after initiating a job request execution [2, 69]. ET is usually influenced by a few
parameters (budget, total number of atomic tasks, tested configuration, and deadlines) [21].
Additionally, the ET for every resource differs based on task size [21]. An application is able
to provide an estimated execution time according to the available metadata of user requests,
unlike resource services [7].

Estimated finish time (ESHT)

ESHT refers to the estimated completion time of task computation by a particular resource.
Every task is scheduled to the resource with the lowest cost and earliest ESHT [70, 89].
ESHT can be calculated as follows [4]:

ESHT (ti, rk) = EST (ti, rk) + w(ti, rk) (9)

ESHT (ti, rk) represents the estimated finish time of task i in resource k, and, w(ti, rk)
represents the execution time of task i in resource k.

Latest start time (LST)

LST represents the difference between the latest finish time and estimated computation time
of the task [139].

LST (ti) = LFT (ti)−Dti (10)

where LST (ti) denotes the latest start time, LFT (ti) denotes the latest finish time, and
Dti is the estimated task duration.

Latest finish time (LFT)

LFT represents the latest time for finishing a computation task. LFT is beneficial in cal-
culating the required time for completing a workflow with respect to the user’s determined
deadline of a specific set of tasks [2, 6, 68, 137]. Thus, the LFT is an important algorithm
component as it receives a workflow as the input and attempts to seek the schedule that
minimizes cost, reduces the total cost of workflow and completes the task before the LFT.
LFT can be calculated using the following equation [6, 68]:

LFT (texit) = DD (11)

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where task texit refers to the ending of the workflow, and DD is the user-defined deadline.

LFT (ti) = mintc∈successors of ti {LFT (ti)− ET (tc, SS(ti))− TT (ei,j)} (12)

SS(ti) is defined as the resource selected for processing ti during scheduling. ET denotes
the estimated execution time and TT denotes the estimated data transfer time.

4.2.1.2 During scheduling stage

The following are the main parameters to be calculated during the scheduling process.

Computation time

The computation time represents the time that is required by the computational resources
to execute the workflow tasks. The main factor for every single resource is deciding the
execution cost of the task’s processing time [140]. Thus, it is up to the users to select the
most appropriate processing budget and time [74]. Workflow execution comprises the running
time of the tasks and data transfer in and out of the computation resource [140]. Note that,
communication cost and computation cost are inversely proportional to communication time
and execution time, respectively [7].

Communication time

Data transfer from one computer source to another is time consuming and the duration of
time is dependent on the amount of data that needs to be transferred between the correspond-
ing tasks. Moreover, it is not dependent on the services that execute them [6, 68, 141]. The
time for data transmission is dependent on the selected services and the service provider’s
bandwidth [69]. Nevertheless, the time for data transfer between two arbitrary tasks is con-
stant and not dependent on the selected services [68]. Therefore, if all workflow tasks are
scheduled at the same instance, the time for data transfer between them becomes zero, but
the time for data transfer outside of the tasks should be still taken into consideration [6].

Spare time

Spare time (also referred as Application Spare Time) represents the time difference between
the expected finish time (makespan) of the initial schedule and the deadline defined by the
user for the whole workflow [46, 114]. The distribution scheme of the spare time affects
the overall cost [46]. In order to guarantee the feasibility of the workflow execution when
the actual execution time of task changes to a certain extent from the predicted time, the
spare time is assigned to each workflow task based on its deadline. In the literature, two
main approaches, including critical-path-based allocation and recursive allocation have been
proposed for spare time allocation [49, 142].

Ready time
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Ready time is defined as the earliest time for the first task to be executed and this task is
computed based on the parent tasks [83]. The following equation is used to calculate the
ready time of task ti [19]:

readyT ime(ti) = maxtj∈piendT ime(tj) (13)

where pi is the set of parent tasks of ti, and endTime (tj) denotes the time required to
end the execution of task tj (deadline).

4.2.1.3 Post scheduling stage

The workflow manager examines the workflow by consulting the repository or database
containing the information linked to cost and performance records. The repository may also
contain historical information regarding the execution of past services requested by SaaS
clients and all their resource performance [81]. Thus, the user’s input on cost and time
will be considered for scheduling the next time around to ensure user satisfaction [78].A
major consideration in the execution of applications that are performance-driven is effec-
tive scheduling, such as cost-driven and dynamic workflow environments like a cloud [126].
Performance estimation for resource services is derived by utilizing current performance es-
timation techniques, for instance, historical [21, 143] and empirical data [68], and analytical
modeling [6] to predict the time taken for task execution on each discovered resource service
[4, 7, 19, 21, 68, 73, 77, 83]. In addition, the costs of communication and computation for
workflows are calculated from historical data of past filtered executions [4].

Start time (actual)

Every task has four components: (i) serviceID, (ii) taskID, (iii) endTime, and (iv) startTime.
serviceID and taskID identify where each task is assigned to which resources. startTime and
endTime represent the allocated time frame on the resource for task execution [7, 76, 79].
The entire workflow completes based on parallel and serial constraints between the start and
finish times [74].

Once all tasks are scheduled, each task has a start time that is measured using the
deadlines of the parent tasks in the workflow [68]. There are two concepts of tasks’ start
times in the scheduling algorithms. The first concept is, supposing the start time is EST,
which is calculated prior to the workflow being scheduled; however, the real start time
concept is calculated after scheduling the tasks [6, 69]. It is helpful to compare the start
time estimated statically and the minimal spare time saved to determine rescheduling in the
future [76].

Finish time (actual)

This is the time actually used to complete task execution [72, 76, 80].
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4.2.2. Temporal cost parameters from profitability aspect

This section presents the results related to the relationship between the service consumers
of the cost optimization approaches and their temporal cost parameters (Table 5).

Table 5: Temporal cost parameters from service consumers’ point of view.
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[78] x
[83] x x x x x x
[80] x x x
[3] x x
[68] x x x x x
[17] x x
[7] x x x x
[71] x x
[69] x x x x x x x
[19] x x x x x
[86] x x x x x x
[87] x x x x x x x x x
[44] x x x

From the point of view of service consumers’ profitability (Table 5), several approaches
focus on measuring pre-scheduling parameters due to the significance of determining the
estimated execution time, which is required to fulfil the customer’s QoS attributes (i.e.,
deadline and makespan). Similarly, the monetary cost category, with computation time and
communication time, is extensively used during the scheduling process stage. Also, several
approaches measure the pre-scheduling stage. This shows that workflow application users
are more concerned about the waiting duration needed for the service to be accomplished
by resources. Only few approaches have considered the ready time and spare time.

Table 6 shows the results related to the relationship between the service providers of cost
optimization approaches and their temporal cost parameters.

From the point of view of service providers’ profitability (Table 6), most of the approaches
focus on calculating the pre-scheduling parameters. Therefore, it is crucial for the service
providers to identify the required execution time to schedule tasks to the available resources.

During the scheduling process stage, researchers have given more attention to determine
computation time and communication time parameters. Thus, the service consumer is con-
cerned about the waiting period required for resources to accomplish the service. Similarly,
in the service consumers’ category, there are not many approaches that consider the ready
time and spare time.
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Table 6: Temporal cost parameters from the service providers’ point of view.
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[70] x x x
[21] x x x x
[72] x x x x
[74] x x
[84] x x x
[76] x x x x x
[4] x x x
[5] x x x x x x
[79] x x x x x
[6] x x x x x x
[85] x x x
[77] x
[69] x x x x x x x
[19] x x x x x
[86] x x x x x x
[13] x x
[31] x x x x x x x
[54] x x x x x x x x x x
[44] x x x

5. Discussion and open issues

In this section, we discuss the presented results and findings from the plethora of the
current state-of-the-art cost optimization SWFS approaches and devised cost optimization
aspects, parameters and experimental assessment for SWFS approaches. The following sec-
tions explain the main observations that we have extracted from our analyses.

5.1. Cost aspects

Computing environment: Several cost optimization SWFS approaches (34%) used grid
computing. Note that the percentage indicates that grid computing is still an active area
of research. Furthermore, a large number of cost optimization SWFS systems (35%) imple-
mented or developed in the private cloud are used to present Software as a Service (SaaS)
issues. The advantage of utilizing the SaaS cloud model for experimentation purpose is
that, SaaS does not require any details about the computational infrastructure (Infrastruc-
ture as a Service) where the requests are being processed. Surprisingly, public cloud has
achieved less attention (22%) from researchers compared to other environments. Moreover,
we found that a small number of models (9%) focus on minimizing execution cost in the
hybrid cloud. This could be due to the difficulty of calculating the total cost for these mod-
els owing to the heterogeneity of communication aspects and load balance challenges among
resources (i.e. resource allocation, resource utilization and resource migration). Therefore, it
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is of paramount importance to focus on hybrid cloud for sharing the workflow management
system’s workload. In contrast, it might be possible in future to propose approaches that
combine the private and public (hybrid) cloud models to offer sufficient power for processing
to accomplish workflow in a specified execution timeframe.

Optimization method: Based on the frequency of optimization methods as reported in the
literature, we found that heuristic (57%), market-oriented (10%), and meta-heuristic (11%)
approaches have attained major attention of researchers compared to other optimization
methods. Heuristic approaches have the highest potential to compute more accurate results.
In contrast, market-oriented and meta-heuristic approaches are mainly used to achieve better
performance compared to the fast heuristic methods, but with little compromise on execu-
tion time. Therefore, designing a hybrid approach (by integrating the features of existing
heuristic and meta-heuristic search algorithms) certainly improves the scalability challenge
due to concurrent processing.

Structural representation: From studying the frequency of structural representations, it
can be clearly found that majority of the work (85%) have considered DAG or the modified
DAG model as the structural representation. The DAG is able to handle very complex cost
optimization workflow applications in grid and cloud computing systems. It shows the prece-
dence constraints relationship between the workflow tasks. However, only few approaches
(15%) that used different alternative structural representation methods have been adopted
(i.e. grid broker (6%), just in time (3%), atomic task partitioning (3%), and multiplier level
architecture (3%)). For future studies, there is a need to introduce a different kind of method
that is applicable to large-scale data (data-intensive) for SWFS.

Scheduling technique: From analyzing the frequency of scalability aspects reported in the
literature, it can be clearly found that majority of the work targeted dynamic approaches
(77%). This is due to the fact that the dynamic method requires prior knowledge about
the parameters. In contrast, some work (23%) has focused on the static methods for cost
optimization SWFS approaches.

Workload type: The predicted (batch mode) type of workload remains a key focus (62%)
of researchers in this cost aspect of SWFS. In contrast, some work (38%) has focused on
considering the unpredicted (on-line mode) type of workload. This is due to the ability that
batch mode offers to SWFS models by maximizing the throughput of the workload while
minimizing the turnaround time (the time between task submission and task completion).

Optimization criteria: Most of the reviewed approaches (91%) have focused on multi-
objective optimization, while only (9%) approaches targeted single-objective based optimiza-
tion. This is mainly due to the fact that SWFS contains multiple objectives and constraints
in cloud and grid computing environments.
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5.2. Cost parameters

From analyzing the monetary cost parameters from the point of view of service con-
sumers’ profitability and service providers’ profitability, surprisingly, few approaches have
considered the estimation of execution cost parameter. Yet, estimated execution cost is one
of the important challenges that requires the scheduler in handling the uncertainties of the
input of SWFS algorithms. The majority of the proposed approaches emphasize cost in
their approaches. This shows that there is a strong dependency between computation cost,
communication cost and the total monetary cost.

During the scheduling stage, several models consider the cost of a service offered by
service providers. This signifies that customers consider the cost of the service provider
highly important, which must be calculated as an external cost to fulfil a service request to
the service consumers. Only few models consider the cost of data storage in their approaches,
which is potentially due to private resource usage instead of using a service offered by service
providers. A large amount of work is to be expected to optimize data storage parameter
due to recent focus on the big data challenge. Similarly, future researchers can utilize the
resource elasticity (which plays a strong role in cloud) by providing an efficient resource
allocation within the lowest cost.

From analyzing the temporal cost parameters according to the point of view of service
consumers’ and service providers’ profitability, several approaches have focused on measuring
pre-scheduling parameters due to the significance of determining the estimated execution
time, which is required by the scheduler for handling the uncertainties of the input challenge
for SWFS algorithms. At the same time, it is very important for the service providers to
calculate the required execution time to schedule tasks to the available resources.

As during the scheduling process stage, the computation time and communication time
parameters are extensively used. This shows that workflow application service consumers are
more concerned about the time needed for the service to be accomplished by resources. This
also highlights that there is a direct relationship between computation time and communi-
cation time parameters. So, in order to examine cost performance of the cost optimization
SWFS algorithms, researchers should consider this relationship. From the pre-scheduling
stage, there are not many approaches that consider the ready time and spare time. Thus,
the scheduling approaches in the future study should adjust to the aforementioned cost
optimization parameters for the execution time of workflow process model.

Regarding the response time challenge in cloud, traditionally, cloud systems aim to
achieve better trade-off between performance (i.e. response time) and cost. The value
of the response time (the duration of a service between calling and return) is specified in the
service level agreement. In most cases, the service consumers of workflow application want
fast response times regardless of cost, application owners want fast response times with-
out spending too much money, and service providers seek to reduce the cost of running all
applications within their service agreements, regardless of ownership [110]. Thus, the chal-
lenge faced by a service provider is how to minimize the cost while maintaining the resource
utilization and low service response time [93, 143, 144]. SWFS approaches are required to
consider achieving the application’s submission time which is equal to the application exe-
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cution start time. For the aforementioned reasons, cloud service providers usually use the
auto-scaling mechanism to minimize the response time of customer requests to improve the
user experience [52, 138].

5.3. Qualitative comparison of cost optimization SWFS approaches

In order to assess the quality of cost-optimization based SWFS approaches, we followed a
qualitative methodology. The adopted methodology contains the following four main steps:

(i) formulating research questions,

(ii) identifying attributes and corresponding parameters from selected studies based
on the devised research questions,

(iii) extracting the parameters’ values for each defined attribute, and

(iv) constructing a comparative table.

In the first step of qualitative methodology, we formulated the following five research
questions:

• What types of experimental tools have been used or adopted in the selected studies?

• How many computational resources have been utilized in the selectect studies ?

• What types of computational resources have been used to conduct the experiment?

• What types of data set have been executed?

• What is the average data set size considered in the selected studies?

After that, we identified several attributes and the corresponding parameters from se-
lected studies based on the devised research questions. In total, six attributes were extracted:
(a) name of the used tool, (b) type of tool, (c) number of computational resources, (d) type
of resource (based on Amazon instance specifications as a standard [145]), (e) type of work-
flow application, and (f) size of workflow tasks. Note that researchers have considered a
variety of computational resources, such as virtual machines, servers, and super computers,
depending upon the selected tool and computational environment.

Next, we defined a varying set of parameters for each extracted attribute. For instance,
regarding the type of tool attribute, two main parameters, including real-world experiment
and simulator, have been used to map the obtained results of a particular study. Similarly,
we defined three scales for task size attribute (i.e., small (<100 tasks), medium (100-1000
tasks), and large (>1000 tasks)). Subsequently, we developed a comparative table to map
the attributes and corresponding parametrs (see Table 7). Note that the columns of the ta-
ble represent the identified attributes, while rows represent a particular parameter for each
selected approach.
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Table 7: Qualitative comparison results of cost optimization SWFS approaches.

Ref. Name of tool Type of tool No. of resources Type of resource Type of SWFA Tasks Size

[3] SwinDeW-C based on
Hadoop

Real-world exper-
iment (empirical
study)

30 t2.medium, t2.large Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small-Medium

[57] Invmod, Austrian Grid,
and Water Balance Sim-
ulation Model ETH
(WaSiM-ETH)

Simulator (open
source) and Real-
world experiment
(Case study)

16 M3.large, M3.extra-
large

parallel, random,
and CSTEM

Medium

[68] Developed tool in Java Simulator 9 t2.small, t2.medium,
t2.large, S3

Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small-Medium-
Large

[5] TeraGrid Batch experimen-
tation (empirical
study)

10 t2.small, t2.medium,
t2.large

Lead (weather),
Motif (storm-
surge), Scoop
(flood-plain
mapping), Ncfs
(time-sensitive)

Large

[69] GridSim and DAS-3 Simulator (open
source)

272 t2.small, t2.medium,
t2.large

Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT.

Small-Medium-
Large

[70] CloudSim Simulator (open
source)

9 t2. micro, t2.small,
t2.medium, t2.large

Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small

[71] Project scheduling prob-
lem library

Real-world exper-
iment (Empirical
study)

10 t2.small, t2.medium,
M4.large

10 types of scien-
tific WFs

Medium-Large

[72] Fair-share scheduling pol-
icy in C++

Simulator, and real-
world experiment
(Case study)

6 t2.medium Weather research
and forecasting
(WRF) Climate
modeling work-
flow structure

Small-Medium-
Large

[73] ASKALON, GroundSim,
and Eucalyptus middle-
ware in Java

Simulator (open
source)

5 M1.large, C1.xlarge Wien2k, Invmod,
and meteoRG

Medium

[74] Developed tool Real-world experi-
ment

3 N/A serial and parallel Small

[75] Developed tool in Java Simulator 10 t2.medium Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small-Medium-
Large

[7] GridSim and GridSim In-
dex Service (GIS)

Simulator (open
source)

15 N/A neuro-science,
EMAN, pro-
tein annotation
Montage

Small

[76] Rescheduling policy Simulator (open
source)

8 N/A Fork-Join,
Laplace equa-
tion solver, FFT

Small-Medium

[19] GridSim and GridSim In-
dex Service (GIS)

Simulator (open
source)

4 t2.small, t2.medium
and service type
(Align wap and
Reslice)

neuro-science
workflow, Hybrid
structure, protein
annotation

Small

[77] ICENI, GridSim toolkit,
Mixed-Integer Non-linear
programming (MINLP),
NEOS Server, and SBB
MINLP optimiser

Simulator 24 M3.large, M3.extra-
large

N/A Large

[78] SwinDeW-C based on
Hadoop

Simulator 8 N/A Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small-Medium-
Large

[79] Phosphorus network and
CloudSigma

Simulator 3 C4.8 extra-large N/A Large

[80] Developed tool Real-world experi-
ment

3 N/A FFT, Fork-Join,
Laplace, Random
DAGs

Medium

[81] Java and IBM ILOG
CPLEX Optimizer

Real-world experi-
ment

4 M3.2 extra-large Montage fork-join
DAG

Small

[21] IEEE 118-node, UDDI,
WSDL, GonQoS, and
CFM1

Real-world experi-
ment (Case study)

8 t2.micro N/A Small-Medium

[6] Developed tool and Ama-
zon EC2

Simulator (open
source)

10 t2.small, t2.medium,
t2.large

Montage, cyber-
Shake, Inspiral,
Sipht, Epige-
nomics

Small-Medium-
Large

[83] GridSim, and GridSim In-
dex Service (GIS)

Simulator (open
source)

15 N/A pipeline, paral-
lel and hybrid-
Align wap and
reslice

Small

Continued on next page
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Table 7 – continued from previous page
Ref. Name of tool Type of tool No. of re-

sources
Type of resource Type of SWFA Tasks Size

[17] Developed tool Real-world experi-
ment

10 N/A Gauss–Jordan
Algorithm, LU
decomposition,
Laplace Trans-
form

Small-Medium

[18] JSwarm package, and
Amazon CloudFront

Real-world exper-
iment (Empirical
study)

3 t2.small, t2.medium,
t2.large

N/A Large

[85] Pwrake workflow system,
InTrigger Kore, Gfarm dis-
tributed file system in
Ruby language

Real-world exper-
iment (Empirical
study)

8 M4.extra-large, M4.10
extra-large

Montage 2MASS Large

[4] Amazon Elastic Compute
Cloud

Real-world exper-
iment (Empirical
study)

3 t2.small, t2.large, M4.
extra-large

Montage, AIRSN,
CSTEM, LIGO-1
and LIGO-
2, Chimera-1,
Chimera-2, me-
dian filter image
processing

Small-Medium

[44] Pegasus 4.0, and Condor
7.8

Simulator (open
source) and Real-
world experiment
(Empirical study)

20 C1.extra-large, S3 Montage, cyber-
Shake, Inspiral,
Sipht, Epige-
nomics

Small-Medium-
Large

[146] SwinDeW-C, and Hadoop Real-world exper-
iment (Empirical
study)

8 N/A Montage, cyber-
Shake, Inspiral,
Sipht, Epige-
nomics

Small-Medium-
Large

[86] AMS Real-world exper-
iment (Empirical
study)

5 t2.small, t2.medium,
t2.large

Stable, On-and-
Off, Crowing,
Bursting

Small-Medium-
Large

[13] SciCumulus Developed tool in
Java

8 M4.extra-large DNA sequences Small-Medium

[31] CloudSim Simulator (open
source)

9 t2.small, t2.medium,
t2.large

Montage, Cy-
berShake, Epige-
nomics, LIGO
and SIPHT

Small-Medium-
Large

[87] Developed tool in C++ Real-world experi-
ment (Test cases)

15 t2.medium N/A small-Large

[54] CloudSim Simulator (open
source)

9 t2.small VM-Amazon EC2 Small-Medium-
Large

Table 7 presents the comparison results of selected approaches. It can be clearly seen
that researchers have mainly considered simulator based tools compared to the real-world
experimentation. Availability of tools justifies this trend, since standard data set in terms
of open source is easily available than real-world experimentation. Regarding the number of
resources attribute, several types and specifications were utilized due to the need for hetero-
geneous computational resources. It is evident that majority of the cost-optimization SWFS
approaches used a large size of resources due to the nature of some Scientific Workflow Ap-
plication (SWFA). As for the type of SWFA, several types have been used such as Montage,
CyberShake, Epigenomics, LIGO, and SIPHT [147]. Moreover, the considered applications
supporting different types of tasks dependencies (e.g., process, pipeline, data distribution,
data aggregation, or data redistribution). Notice that not all the approaches have considered
the three scales of tasks (i.e. small, medium, large). Therefore, to effectively measure the
performance of cost optimization SWFS approaches, it is important to consider these three
scales of workflow tasks.

6. Conclusion

The cost optimization of Scientific Workflow Scheduling (SWFS) especially in cloud and
grid computing remains an important challenge for both service consumers and service
providers. The current work analyzes the cost optimization problem for SWFS in cloud
and grid computing. After careful selection of the relevant papers in this field of study, we
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identified the cost optimization aspects of SWFS that should be considered while scheduling
workflows in cloud and grid computing. We introduced two classifications (i.e. aspects and
parameters) of cost optimization SWFS, which is one of the major contributions of this work.
The proposed classifications aimed at providing a solid foundation for developing an econom-
ical SWFS approach that meets the demands of future workflow applications. We classified
the related works according to the devised classifications and identified a correlation between
cost optimization parameters and profitability of SWFS. Besides, we presented the relevent
cost and time formulas, which are used to determine the overall SWFS cost considering a
number of relevant cost parameters. Moreover, we provided several recommendations for
developing a cost optimization scheduling approach.

From the detailed analyses, we found that majority of cost optimization SWFS ap-
proaches considered various aspects of SWFS: heuristic methods (57%), grid computing
(34%), directed acyclic graph (85%), dynamic technique (77%), and predicted workload
(62%). Regarding the QoS constraints, there is a variety of research focus such as privacy,
response time, reliability, and security. From the parameters aspect, most of the proposed
approaches have applied temporal and monetary cost parameters during various stages of
SWFS. In contrast, researchers have paid more attention to profitability from the point of
view of service providers than the service consumers.

It is evident from the observed trends related to SWFS that researchers are mainly fo-
cusing on large-scale data intensive applications for evaluation purpose. The other research
direction could be on proposing a generic multi-objective scheduling approach with lower
complexity. However, considering trade-off between many constraints can significantly in-
crease the complexity of scheduling process. Therefore, future research should focus on
proposing hybrid approaches by considering the strengths of heuristics and meta-heuristics
optimization methods. Similarly, high accuracy is required in estimating the execution cost
and time to reduce the level of uncertainty of required inputs to the scheduler, by proposing
more optimal scheduling for the real-time applications. Furthermore, this work could lead
researchers to develop more generic cost optimization scheduling approaches in cloud and
grid computing environments.
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