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s u m m a r y

Managing water resources systems usually involves conflicts. Behaviors of stakeholders, who might be
willing to contribute to improvements and reach a win–win situation, sometimes result in worse condi-
tions for all parties. Game theory can identify and interpret the behaviors of parties to water resource
problems and describe how interactions of different parties who give priority to their own objectives,
rather than system’s objective, result in a system’s evolution. Outcomes predicted by game theory often
differ from results suggested by optimization methods which assume all parties are willing to act
towards the best system-wide outcome. This study reviews applicability of game theory to water
resources management and conflict resolution through a series of non-cooperative water resource games.
The paper illustrates the dynamic structure of water resource problems and the importance of consider-
ing the game’s evolution path while studying such problems.

� 2009 Elsevier B.V. All rights reserved.
Introduction Winner (AW) mechanism (Massoud, 2000), Alternative Dispute
The conflicts over water issues are not limited to sharing of
costs or benefits; a problem that have had many water scholars fo-
cused on. Conflicts also arise from social and political aspects of the
design, operation and management of water projects. When ana-
lyzing, operating or designing a complex water project, a decision
maker must ensure that the undertaking is not only physically,
environmentally, financially and economically feasible, but also so-
cially and politically feasible. This is challenging for engineers who
conventionally measure performance in economic, financial, and
physical terms. Optimization techniques, such as linear or dynamic
programming, can find the optimal values of the decision variables
in such terms. However, if not formulated correctly, they might fail
to provide insights into the strategic behaviors of the local, regio-
nal, and policy decision makers to reach an optimal outcome and
the attainability of such outcome from the status quo.

Interest in water resources conflict resolution has increased
over the last decades (Dinar, 2004) and various quantitative and
qualitative methods have been proposed for conflict resolution
in water resources management, including, but not limited to
Interactive Computer-Assisted Negotiation Support system (ICANS)
(Thiessen and Loucks, 1992; Thiessen et al., 1998), Graph Model
for Conflict Resolution (GMCR) (Kilgour et al., 1996; Hipel et al.,
1997), Shared Vision Modeling (Lund and Palmer, 1997), Adjusted
ll rights reserved.
Resolution (ADR) (Wolf, 2000), Multivariate Analysis Biplot (Losa
et al., 2001), and Fuzzy Cognitive Maps (Giordano et al., 2005).
Wolf (2002) presents some significant papers and case studies on
the prevention and resolution of conflict (using descriptive meth-
ods) over water resources.

Game theory provides a framework for studying the strategic
actions of individual decision makers to develop more broadly
acceptable solutions. However, game theory is not yet well inte-
grated into general systems analysis for water resources. Thus,
game theory’s value might remain unclear to the water resources
community due to lack of understanding its basic concepts. As with
other disciplines (e.g. economics, political science, social science,
computer intelligence, etc.) water scholars will become more inter-
ested in game theory as they come to realize its novel and useful
insights into water resources problems which are not obtainable
from conventional systems engineering methods. In general, game
theory results are closer to practice as this method better reflects
the behaviors of the involved parties, something often neglected
by conventional optimization methods for solving multi-criteria
multi-decision-maker problems.

This paper illustrates the utility of game theory in water sys-
tems analysis and conflict resolution by discussing the basic con-
cepts of game theory and presenting some simple two-by-two
water resource games. It is also discussed how the dynamic
structure of water resource problems and game evolution might
affect the behaviors of stakeholders in different periods of the
conflict.

http://dx.doi.org/10.1016/j.jhydrol.2009.11.045
mailto:kaveh@ucr.edu
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Game theory

Game theory is essentially the mathematical study of competi-
tion and cooperation. It illustrates how strategic interactions
among players result in overall outcomes with respect to the pref-
erences of those players. Such outcomes might not have been in-
tended by any player (Stanford Encyclopedia of Philosophy,
2006). Games are defined mathematical objects, consisting of a
set of players, a set of strategies (options or moves) available to
them, and specification of players’ payoffs for each combination
of such strategies (possible outcomes of the game). The payoffs
to players determine the decisions made and the type of the game
being played. If the payoffs sum up to zero or a constant then the
players have opposing interests and are playing a zero-sum-game
or a constant-sum game; whatever one player wins, the other
player loses. Non-zero-sum games, in which the sum of payoffs
does not equal zero or a constant, have more complications, and
sometimes more potential for cooperation.

Game theory can be used to predict how people behave, follow-
ing their own interests, in conflicts. In a typical game, decision
makers (players), with their own goals, try to outsmart one another
by anticipating each other’s decision. The game is resolved as a
consequence of the players’ decisions. Game theory analyses the
strategies players use to maximize their payoffs. A solution to a
game prescribes decisions the decision makers might make and de-
scribes the game’s outcome. Game theory was established in 1944
with the publication of von Neumann and Morgenstern’s ‘‘Theory
of Games and Economic Behavior” book, which mainly dealt with
quantitative game theory methods. After World War II, most schol-
ars worked on developing quantitative game theory methods; and
this trend still persists today (Hipel and Obeidi, 2005).
Why game theory?

A variety of methods have been proposed to handle strategic
conflicts (Li et al., 2004), including metagame analysis (Howard,
1971), hypergame analysis (Bennett, 1980; Wang et al., 1988), con-
flict analysis (Fraser and Hipel, 1984), the Graph Model for Conflict
Resolution (GMCR) (Kilgour et al., 1987; Fang et al., 1993), drama
theory (Howard, 1999), and the theory of moves (Brams, 1994),
all having game-theoretic roots (Kilgour, 1995). Game theory prob-
lems are often multi-criteria multi-decision-maker problems. To
solve such problems by conventional optimization methods, usu-
ally the problem is converted ultimately to a single-decision-ma-
ker problem with a single composite objective for the whole
system such as an overall economic or social welfare function or
a weighted constrained multi-objective function. Typically, perfect
cooperation among the decision makers to reach the system’s opti-
mal solutions is assumed. These decision makers are assumed to
contribute to optimizing the objective function without giving pri-
ority to their own objectives. However, in game theory each deci-
sion maker plays the game to optimize his own objective, knowing
that other players’ decisions affect his objective value and that his
decision affects others’ payoffs and decisions.

Stable outcomes of the game predicted by game theory are not
necessarily Pareto-optimal. The main concern of players is to max-
imize their own benefit in the game knowing that the final out-
come is the product of all the decisions made. Game theory
provides more realistic simulation of stakeholders’ interest-based
behavior. The self-optimizing attitude of players and stakeholders,
represented in game theory, often results in non-cooperative
stakeholder behaviors even when cooperative behavior is more
beneficial to all parties. Game theory can help provide some plan-
ning, policy, and design insights that would be unavailable from
other traditional systems engineering methods.
Another advantage of game theory over traditional quantitative
simulation and optimization methods is its ability to simulate dif-
ferent aspects of the conflict, incorporate various characteristics of
the problem, and predict the possible resolutions in absence of
quantitative payoff information. Often non-cooperative game the-
ory methods can help resolve the conflict based on the qualitative
knowledge about the players’ payoffs (i.e. how the players order
(rank) different outcomes (ordinal payoffs)). This enables to handle
the socio-economic aspects of conflicts and planning, design, and
policy problem when quantitative information is not readily
available.

Through some simple examples of water resources conflicts,
this paper underscores the applicability of game theory for water
resources conflict resolution and leads to insights into generic
water resources problems.
Application of game theory to water resources conflict
resolution

In a water conflict, different interest groups or individuals can
be modeled as decision makers (players), where each decision ma-
ker can make choices unilaterally and the combined choices of all
players together determine the possible outcomes of the conflict.
Instead of unilaterally moving, decision makers also may decide
to cooperate or form coalitions leading to Pareto-optimal out-
comes. Game theory techniques provide an effective and precise
language for discussing specific water conflicts. A systematic study
of a strategic water dispute provides insights about how the con-
flict can be better resolved and may suggest innovative solutions.

Many researchers have attempted water conflict resolution
studies in a game-theoretic framework. Carraro et al. (2005),
Parrachino et al. (2006), and Zara et al. (2006) review game theo-
retic water conflict resolution studies. Game theory applications
in water resources literature cover a range of water resource prob-
lems, locations, solution methods, analysis types, and classifica-
tions (Tables 1–5). It may be possible to place some studies in
more than one table (under more than one category). However,
the main aspect of the study was considered for categorization.
So far, game theory has been applied for (1) water or cost/benefit
allocation among users (Table 1); (2) groundwater management
(Table 2); (3) water allocation among trans-boundary users
(Table 3); (4) water quality management (Table 4); and (5) other
types of water resources management problems (Table 5).

Non-cooperative game theory deals with non-cooperative
games in which players compete and make decisions indepen-
dently whereas cooperative game theory deals with cooperative
games in which groups or coalitions of players make decisions to-
gether and involves allocation of benefits from cooperation. Based
on previous game theory applications to water resource manage-
ment problems in the literature and Tables 1–5, one concludes that
cost/benefit allocation and cooperative game theory applications
have been more common among water resource researchers than
other applications and methods. This might be because bargaining
and cost sharing in cooperative game theory is easily understand-
able by water engineers as the solutions are sometimes similar to
solutions in optimization where the problem can be solved by hav-
ing a single objective function, which tries to address the conflict-
ing goals within the system, and a set of constraints. Nevertheless,
the increasing number of game theory researches by water schol-
ars in recent decades underscores the growing desire for applica-
tion of this methodology in resolving water conflicts. However,
there is still a lack of knowledge about the value of application of
game theory in water resources management and many water
scholars have not learned the basic concepts of game theory from
the work published outside the water area.



Table 1
Selected game theory applications for water or cost/benefit allocation among users in water resources literature.

Category 1: Water or cost/benefit allocation among users

Objective(s) Location Solution method Analysis
type

Game theory
classification

Citation

Fair allocation of water resource development costs to urban and agricultural sectors Japan Cooperative solution concept Quantitative Cooperative Suzuki and Nakayama
(1976)

Allocation of costs of a water resource development project among 18 municipalities Sweden Cooperative solution concepts Quantitative Cooperative Young et al. (1980)
Developing a method by Tennessee Valley Authority for apportioning costs of dam systems among

users
USA Cooperative solution concepts Quantitative Cooperative Straffin and Heaney (1981)

Allocation of benefits of wastewater reuse for irrigation project and formation of a hypothetical
inter-farm cooperation in water use for irrigation among farms

Israel Cooperative solution concepts Quantitative Cooperative Dinar et al. (1992)

Equitable distribution of income derived from regulated water after trade between farms Australia Cooperative solution concepts Quantitative Cooperative Tisdell and Harrison
(1992)

Analyzing the response of water supply organizations in Western U.S. (California) to rural-to-urban
water transfers

USA Cooperative solution concept Quantitative Cooperative Rosen and Sexton (1993)

Developing solutions to find the noxious facilities location (allocation of disutility between the
agents) based on equity principles

Hypothetical Cooperative solution concepts Quantitative Cooperative Lejano and Davos (1995)

Developing a framework for non-cooperative, multilateral bargaining and analysis of water policy
negotiations in California

USA Rausser–Simon non-cooperative model
of multilateral bargaining

Quantitative Non-
cooperative

Adams et al. (1996)

Evaluating schemes for allocation of joint environmental control cost among polluters in California USA Cooperative solution concepts Quantitative Cooperative Dinar and Howitt (1997)
Efficient and equitable allocation of impact fees for urban water systems among zones, user classes,

and demand types
Hypothetical Cooperative solution concepts Quantitative Cooperative Lippai and Heaney (2000)

Modeling negotiations over irrigation quotas, water price, and reservoir sizes among seven
aggregate players

France Rausser–Simon non-cooperative model
of multilateral bargaining

Quantitative Non-
cooperative

Thoyer et al. (2001) and
Simon et al. (2007)

Efficient sharing of a river among satiable agents (countries) Hypothetical Cooperative solution concepts Quantitative Cooperative Ambec and Ehlers (2008)
Equitable and efficient water allocation among users at the basin level Canada Cooperative solution concepts Quantitative Cooperative Wang et al. (2008)
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Three common 2 � 2 games are presented (Prisoner’s Dilem-
ma, Chicken, and Stag-Hunt) and their equilibria are introduced.
Then the corresponding water game is introduced and the insights
suggested from game theory are discussed. Also, Pareto-optimal
results are introduced to show how game theory results can differ
from the results of system engineering methods. This paper fo-
cuses on non-cooperative game theory and pure strategies. Study-
ing mixed strategies is out of the context of this paper (Mixed
strategies are when a player randomly selects pure strategies,
assigning probabilities to each strategy. A player who plays with
a pure strategy knows what to do in different situations and se-
lects a pure strategy with a probability of 1.).
Prisoner’s dilemma game

In Prisoner’s Dilemma two suspects have been put in prison by
police. The police do not have sufficient conviction evidence, and
so have separated the suspects to prevent them communicating.
The suspects are given an incentive to cooperate with the police.
Each prisoner has the option of confessing or remaining silent. If
one prisoner confesses while the other remains silent, the betrayer
will get a reward and goes free and the silent prisoner is convicted
and sentenced based on the other prisoner’s evidence. In this case,
the silent prisoner should stay in jail for a long period because of
the crime and his non-cooperative behavior. If both prisoners re-
main silent and do not confess they will be released after a short
time because of insufficient evidence for conviction. However, if
both parties confess they both serve sentences. In the latter case,
the period each prisoner stays in jail is shorter than the case in
which one prisoner should go to jail because of remaining silent
while the other prisoner confesses. The fundamental prisoner’s di-
lemma is whether to trust the silence of his colleague or to trust
the reduced sentence the police offer from betraying his colleague.

Fig. 1a shows the Prisoner’s Dilemma in a normal (matrix) form
with cardinal payoffs, representing the number of years each pris-
oner should serve in jail. Each cell has two values. The first value
(left) represents player 1’s payoff and the second value represents
player 2’s payoff. The strategies which yield the payoffs of each
cell are given in left of the table for the first player and on top
of the table for the second player. In this example, the lower the
payoff for a player, the better is the outcome for that player.
Fig. 1b represents Prisoner’s Dilemma in ordinal form. In this fig-
ure payoffs correspond to the rank of outcome (or payoff) for a gi-
ven player. The higher the rank, the more desirable is the
outcome.

In this game, the best payoff for a given player occurs when he
defects (betrays) and his opponent cooperates (remains silent),
providing the lowest payoff to the opponent. Both players prefer
the case when they both cooperate to the case in which both de-
fect and (C, C) is Pareto-inferior to (DC, DC) which is one Pareto-
optimal resolution of the game. However, the strictly dominant
strategy for each player is to confess (C), meaning that no matter
if the other player selects to confess or not, it is always better to
confess (4 > 3 and 2 > 1). Therefore, the outcome (C, C) which
has lower payoffs than the Pareto-optimal (DC, DC) for both play-
ers is the dominant strategy equilibrium and the most likely res-
olution of the game under the conditions of the game, most
importantly no communication. The outcome (C, C) is also a Nash
Equilibrium (Nash, 1950, 1951); given the options of other play-
ers, no player can do any better (improve his payoff) by changing
his strategy. Nash stability differs from Pareto-optimality. The for-
mer is about what is good for an individual without considering
what is good for the whole system and the latter is about what
is good for the system without considering the interests of the
individuals within the system. A state is Pareto-optimal where



Table 3
Selected game theory applications for water allocation among trans-boundary users in water resources literature.

Category 2: Water allocation among trans-boundary users

Objective(s) Location Solution method Analysis
type

Game theory
classification

Citation

International conflict over flooding of Ganges and Brahmaputra rivers India and Pakistan Mixed strategies and dominant
strategy selection

Quantitative Non-
cooperative

Rogers (1969)

Characterizing the negotiations of Columbia and Lower Mekong river basin
schemes

Canada, USA, Cambodia, Laos, Thailand,
and Vietnam

Metagame theory Quantitative Non-
cooperative

Dufournaud (1982)

Conflict over water diversions from the Great Lakes Canada and USA Dominant strategy selection Quantitative Non-
cooperative

Becker and Easter
(1995)

Deriving policy lessons useful for US–Mexico water negotiations and
institutions

Mexico and USA Cooperative solution concepts Analytical
discussion

Cooperative Fisvold and Caswell
(2000)

Developing a flexible water allocation rule which guarantees efficient (Pareto-
optimal) distribution of river (Ganges in this paper) flows to countries in a
river basin

Bangladesh and India Cooperative solution concepts Quantitative Cooperative Kilgour and Dinar
(2001)

Wastewater pollution emissions by riparian countries into the shared river Mexico and USA Differential game model Quantitative Cooperative
and non-
cooperative

Fernandez (2002,
2009)

Determining the shares and prices of water to be supplied for environmental
services in the Platte River

USA (Colorado, Nebraska, and Wyoming) Second price sequential auction Quantitative Non-
cooperative

Supalla et al. (2002)

Developing stable water allocations which encourage cooperation among the
countries riparian to Euphrates and Tigris

Iraq, Syria, and Turkey Cooperative solution concepts Quantitative Cooperative Kucukmehmetoglu
and Guldmen (2004)

Establishing baseline conditions for incentive-compatible cooperation regimes
in the Nile basin

Burundi, Congo, Egypt, Eritrea, Ethiopia,
Kenya, Rwanda, Sudan, Tanzania, and
Uganda

Cooperative solution concepts Quantitative Cooperative Wu and Whittington
(2006)

Providing insights into the conflict between Israel and the Arab nations over
the Jordan river and determining the most likely outcomes of the conflict

Israel, Jordan, Lebanon, Palestine, and
Syria

Graph Model for Conflict Resolution
(GMCR)/non-cooperative solution
concepts

Qualitative Non-
cooperative

Madani and Hipel
(2007)

Identifying the most likely outcome (division method choice) of the Caspian
Sea conflict and proposing some possible allocations

Azerbaijan, Iran, Kazakhstan, Russia, and
Turkmenistan

Fallback bargaining/social choice rules/
bankruptcy procedures/descriptive
modeling

Qualitative/
quantitative

Cooperative
and non-
cooperative

Sheikhmohammady
and Madani
(2008a,b,c)

Providing insights into the strategic behavior of the involved parties in the Nile
river conflict and determining the most likely outcomes of the conflict

Burundi, Congo, Egypt, Eritrea, Ethiopia,
Kenya, Rwanda, Sudan, Tanzania, and
Uganda

Graph Model for Conflict Resolution
(GMCR)/non-cooperative solution
concepts

Qualitative Non-
cooperative

Elimam et al. (2008)
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Table 4
Selected game theory applications for water quality management in water resources literature.

Category 4: Water quality management

Objective(s) Location Solution method Analysis type Game theory
classification

Citation

Determining the amount of contaminant removal and contaminant discharge by each pollutant such that the
polluters have the least loss

Hypothetical Non-cooperative solution
concept

Quantitative Non-cooperative Bogardi and
Szidarovsky
(1976)

Management of an aquifer which a multi-objective management goal Hungary Cooperative solution concept Quantitative Cooperative Szidarovszky
et al. (1984)

Developing an approach for surface water quality management considering the complicated regulatory
environment and the negotiations between the polluters and an authority

Czech
Republic

Bargaining model/extensive
form game

Quantitative Non-cooperative Sauer et al. (2003)

Modeling the strategies of phosphorus application, resulting in water contamination, by farmers of the Hopkins
basin

Australia Cooperative and non-
cooperative solution
concepts

Analytical
discussion

Cooperative and
non-cooperative

Schreider et al.
(2007)

Table 5
Selected game theory applications for other types of water resources management problems in water resources literature.

Category 5: Other types of water resources management problems

Objective(s) Location Solution method Analysis type Game theory
classification

Citation

Analysis of the economic potential of regional collaboration in water use in irrigation, based
on the efficiency and equitability conditions, under conditions characterized by a general
trend of increasing salinity

Israel Cooperative solution concepts Quantitative Cooperative Yaron and
Ratner (1990)

Systematic study of a conflict over the proposed bulk export of water from Canada Canada Graph Model for Conflict Resolution
(GMCR)/non-cooperative solution
concepts

Qualitative Non-cooperative Obeidi et al.
(2002)

Analyzing the stability of agreements on river water allocation between riparian countries
under climate change

Hypothetical Infinite repeated games Analytical
discussion

Non-cooperative Ansink and
Rujis (2008)

Analysis of the interaction of participating companies in an eco-industrial park seeking to
develop an inter-plant water integration scheme

Hypothetical Non-cooperative solution concept Quantitative Non-cooperative Chew et al.
(2009)

Finding cooperative bargaining solutions to negotiations among hydropower generators and
the environmentalists in the Federal Energy Regulatory Commission (FERC) hydropower
re-licensing process in the USA and exploring the climate change effects on FERC
negotiations

Hypothetical Cooperative solution concept Quantitative Cooperative game
theory

Madani (2009)
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Player 2 
DC  C 

Don’t Confess 

(DC) 
1,1  10,0 
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(a) cardinal  payoffs 

Player 2 
DC  C 

DC 3,3  1,4 
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1 

C 4,1  2,2 

(b) ordinal payoffs 

Fig. 1. Prisoner’s Dilemma.
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no other state exists where one player can do better without harm-
ing at least one other player. A state which is a Nash Equilibrium
might not be Pareto-optimal and vice versa. In the Prisoner’s Di-
lemma game at state (C, C), player 1 is not willing to change his
strategy from C to DC as 2 > 1. Similarly, player 2 will be worse
off by changing his strategy from C to DC. Given the strategy of
the opponent, no player is willing to change his strategy and (C,
C) is a Nash Equilibrium. However, state (C, C) is not Pareto-opti-
mal as both players can do better at state (DC, DC) which is one
of three Pareto-optimal outcomes of the game. (C, DC) and (DC,
C) are the other two Pareto-optimal outcomes, but (C, C) is only
Pareto-inferior to (DC, DC). State (DC, DC) is not a Nash Equilibrium
because both players can do better by changing their strategies
unilaterally (4 > 3).

As discussed, game theory solution might differ from the results
of conventional system optimization as game theory considers the
behaviors of the individuals in the problem and their self interests
rather than an objective for the system. In real world, results
gained by players are not always optimal for the whole system
as each player makes his own decision based on individual infor-
mation about the game and his own criteria. A player might be
unwilling to contribute to an overall optimization of costs or ben-
efits for the whole system. However, based on conventional system
optimization methods, usually a cost minimization or utility max-
imization objective function might be defined for a system and the
problem is solved as a single-decision-maker problem, assuming
all players are willing to follow the prescribed optimal solution.

Fig. 2 shows the ordinal payoff matrix for a groundwater game
with a Prisoner’s Dilemma structure in which two farmers tap a
shared a aquifer over a long period (say 25 years). A payoff (profit)
for each farmer is his revenues from crop sales minus pumping
costs. Each player must choose between the cooperative and
non-cooperative pumping rates with the non-cooperative rate
(pumping rate 2) exceeding (the cooperative rate (pumping rate
1). If both farmers pump at the lower rate the groundwater level
will not drop and the farmers can enjoy long-term low pumping
costs. However, both farmers pumping at the higher rate reduces
groundwater levels, increases pumping costs, and reduces profit,
eventually making pumping economically infeasible, and ending
irrigation and profits. Cooperative pumping increases profits for
both farmers. Getting ‘‘free ride” (letting others contribute and
benefit from their contributions without paying oneself) would
be the best outcome for each farmer. In that case, one farmer
pumps at the higher rate while the other one has committed to
pump at a lower rate. The free rider gains the highest payoff in this
situation due to pumping costs lower than the case in which both
farmers pump at the non-cooperative rate and higher crop sale
revenues than the cases in which he decides to cooperate. On the
other hand choosing a cooperative strategy while the other farmer
is willing to cooperate, results in the lowest payoff due to high
pumping costs and low crop revenues.

The optimal outcome of this game is (PR 1, PR 1) when both par-
ties pump at the lower rate (Loaiciga, 2004). However, game theory
suggests, each individual farmer finds the inferior PR 2 option as a
strictly dominant strategy. Therefore, (PR 2, PR 2) is the predicted
outcome based on non-cooperative game theory and in fact such
overpumping is typical for real unregulated aquifer systems. Lack
of trust and cooperative strategy enforcement (by controlling
pumping rates, metering, etc.) leads farmers prefer pumping at
the higher rate to increase short-run profits, a ‘‘tragedy of the com-
mons (Hardin, 1968)”. Cooperation becomes more difficult with
many pumpers from the aquifer.

In many water sharing problems around the world non-cooper-
ative behaviors of the parties have lead to ‘‘tragedy of the
commons” outcomes despite the existence of cooperative Pareto-
optimal solutions. Game theory explains and predicts such situa-
tions, even without precise quantitative information. In the Pris-
oner’s Dilemma example, the game theory prediction was the
same for quantitative (Fig. 1a) and qualitative (Fig. 1b) values.
Thus, the results for any water resource problem with the same
structure will be the same as in non-cooperative game theory the
ranking of the outcomes matters more than the actual payoff val-
ues associated with outcome.

If the Prisoner’s Dilemma situation (game) is repeated more
than few times, communication is allowed, and/or parties trust
each other, the final resolution might be to cooperate (DC) to reach
the Pareto-optimal resolution. Similarly, in water resources con-
flicts with a Prisoner’s Dilemma structure, explaining the problem
to the parties and binding contracts or other forms of trust might
lead to cooperation and better solutions. Generally, in Prisoner’s
Dilemma games, the threat of defection by other players results
in non-cooperative behavior. By understanding the structure of
the game and predicting (or interpreting) the players’ behaviors
through game theory, it might be possible to find measures for
enforcing better resolutions by changing the payoffs which change
the structure of the game. For this groundwater game, if parties are
assured that the extractions are monitored and supervised by a
regulating agency and there is a penalty for defection from cooper-
ation, the defection threat is small, as non-cooperation is no longer
a strictly dominant strategy.

If the problem is changed so farmers who exceed the coopera-
tive pumping rate after committing to cooperation at the begin-
ning of the pumping period, lose their rights to pump, the
groundwater game’s structure changes to Fig. 3. Here, the payoffs
are changed based on the new regulation (and its enforcement).
Farmers can be assured that once they start cooperation the old
payoffs are no longer valid and game’s structure changes from Pris-
oner’s Dilemma (Fig. 2) to that shown in Fig. 3. In the new game,
cooperation is the strictly dominant strategy and state (PR 1,
PR 1) is the both Pareto-optimal and game theoretic resolution of
the game. The new game’s structure is not attainable before both
farmers agree to cooperate at the beginning, because regulation
agencies might not have the authority to cut water rights and force
the farmers to pump less than their rights.

Carraro et al. (2005) believe that many natural resource man-
agement issues have the characteristics of a Prisoner’s Dilemma
game: players’ dominant strategy is not cooperative, and the
resulting equilibrium is not Pareto-optimal. Similarly, most papers
dealing with sharing natural resources problems have made the
same assumption about the game to be the Prisoner’s Dilemma.
However, all common resource problems might not be Prisoner’s
Dilemmas (Sandler, 1992).

The conditions of a natural resource sharing problem might fa-
vor the possibility of cooperation (Taylor, 1987). Water resource
games are not necessarily rival (there might be multiple users
and usage by one user does not prevent simultaneous usage by
other users). Thus, coordination among the parties might be bene-
ficial to all and can create externalities. However, some water
resources games can be treated as anti-coordination games in which
the available resource is rival (the resource can only be consumed



232 K. Madani / Journal of Hydrology 381 (2010) 225–238
by one user), sharing the resource comes at a cost to users, and the
resource is not excludable (it is not possible to prevent a player
who does not pay for the resource from enjoying its benefits).
Identifying the structure of water resource games is essential as
the results can be misleading if wrong assumptions are made in
conflict modeling. For instance, characteristics of an anti-coordina-
tion water game cannot be captured if the conflict is modeled as
Prisoner’s Dilemma. Bardhan (1993) believes that the literature
usually jumps to the case of Prisoner’s Dilemma in case of free-rid-
ers. Sometimes, the player might not be able to reach his objective
on his own. Under that condition (Stag-Hunt game) a player coop-
erates when the other player also cooperates and defects when the
other one defects. In some common resource examples conse-
quences of defection might be so bad that a player prefers not to
defect if the other player defects (Chicken game) (Bardhan,
1993). Here, two non-Prisoner’s Dilemma water resource games,
useful for understanding water conflicts, are introduced to support
the fact that not all water resources games are Prisoner’s
Dilemmas.
Chicken game

In this game (Fig. 4) two drivers, heading toward a narrow
bridge from opposite directions, are driving toward each other.
The first driver to swerve (‘‘chicken” out) yields the bridge to the
other driver and loses. No driver entering the race wants to be
the chicken, but if no driver chickens out, both drivers might suffer
from the resulting crash. Being called a ‘‘chicken” is better than dy-
ing, but worse that winning, for both players. A tie occurs when
both players swerve. Under a tie, the players do not gain anything
and the fight is over protecting their prides. If their prides are more
important than their lives to them, they might both die proudly!
The payoff of each player in this game can be the value of the prize
at the end of the game or the utility from winning or losing the
game. The higher the payoff, the more preferred is the outcome.

The Chicken game has two Nash Equilibria in which one driver
loses and one driver wins, (DS, S) or (Win, Lose) and (S, DS) or
(Lose, Win), which are also Pareto-optimal. The third Pareto-opti-
mal resolution (S, S) or a tie, a socially optimal resolution, occurs
where the gain of each player exceeds the minimum gain in the
other two possible states (3 > 2 = minimum {2, 4}). This socially
and Pareto-optimal outcome (S, S) is not a Nash equilibrium and
might not occur when players make decisions based on self
interest.

In the Chicken game the strictly dominant strategy is to play ex-
actly the opposite of what the other player does. Similar to the
Prisoner’s Dilemma game, each player wants to get a free ride
and the cooperative or agreeable mutual solution ((S, S) in Chicken
and (DC, DC) in Prisoner’s Dilemma) is not stable since each player
is willing to refrain from it. However, these two games differ in
that if both players decide to get free ride, the resulting outcome
is the worst for both players in Chicken (DS, DS) while the resulting
outcome in Prisoner’s Dilemma (C, C) is suboptimal, but not the
worst for both players.
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Fig. 2. Groundwater exploitation game with ordinal payoffs.
Chicken games are rare in the water resources literature as most
water resources sharing problems have been treated as coordina-
tion games and modeled as Prisoner’s Dilemma. An example of
an anti-coordination water resources game is the Iran–Afghanistan
Conflict on Hirmand (Helmand) River at time of the Taliban regime
in Afghanistan. The Hirmand River flows from Afghanistan to Iran
and is important for agriculture in both countries as well as the
survival of Hamun (Hamoun) Lake, an internationally recognized
marshland in Iran’s Sistan-va-Balouchestan Province. Although
there is an allocation agreement between the two countries since
1972, Iran is still struggling to receive its share from the river.
The conflict between the two countries has not been resolved
and the situation is sometimes exacerbated by droughts and polit-
ical instability in Afghanistan. When the Taliban were in power in
Afghanistan, this regime was unwilling (or could not afford) to pay
the operations and maintenance (particularly sediment removal)
costs for the Kajaki Reservoir in the Afghan territory. As a result
Hrimad River dried up below the dam affecting agriculture and ur-
ban water supply in both sides of the border, and Hamoun’s Lake
and its ecosystem were dying. While the Afghans have responsibil-
ity to maintain the reservoir system and secure Iran’s share of the
river, since the Taliban was not doing so, the Iranians thought of
fixing the system on the other side of their border. During this per-
iod, the conflict’s structure was similar to a Chicken game (Fig. 5).
Both sides could benefit from performing the required mainte-
nance services. Payoffs for each country were equal to their urban,
agricultural, and environmental benefits minus the maintenance
cost paid. The values shown in Fig. 5 are ordinal. Apparently, each
side was willing to get a free ride, and spend less (minimize costs)
and make more (maximize revenues). The status quo of the game,
(DP, DP), in which no party would pay for the maintenance was the
worst outcome, due to high urban agricultural, and environmental
losses. The two equilibria of this game were (DP, P) and (P, DP) in
which one party would pay the maintenance costs. The game is a
Chicken game, and although being socially and Pareto-optimal,
the cooperative outcome (P, P) is not a Nash Equilibrium. In this
conflict, the Iranians chose to chicken out and sent teams to bring
the system back to operation. Although, the final result was not
ideal for the Iranians (no free ride), the cost of defection (DP) for
them was so high, that they preferred not to pay (P) when they
found the Afghans were willing to defect (not paying).

A good tactic in a Chicken game is to reduce one’s options and
feasible outcomes of the game by signaling intentions (plans)
clearly to the opponent(s) early in the game. The sent signal by a
party should be strong, aggressive, and ostentatious to convince
the other party that defection (DS or DP) is not the right choice.
In the Chicken game one driver pretentiously can handcuff his
hands behind his back before entering his car, lock his steering
wheel in a straight position before the game starts, or throw the
steering wheel out of the window early in the game, to force the
other player to swerve. Other examples of such behavior within a
Chicken’s structure are a food striker who sews his lips shut, a pro-
tester who has locked himself to an object, a programmed security
system which explodes the property it protects if someone tries to
trespass, or a nuclear doomsday device which is programmed to
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Fig. 3. Groundwater game with penalties for defection after starting cooperation.
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explode in case of invasion (‘‘Doctor Strangelove”). In case of the
Iran–Afghanistan Conflict on Hirmand, it was obvious to the Irani-
ans that the Taliban were unwilling or unable to cooperate under
any condition. The Shia Muslim Iranians had never recognized
the Sunni Muslim Taliban as the legal government of Afghanistan
and the two governments had no political relations. The ongoing
wars among Afghan parties also made the Taliban politically and
economically unstable. The aggressive behavior of Taliban bene-
fited the Afghans as a clear signal from the Taliban side, and the
Iranians preferred to chicken out to pay for maintenance.

Unlike Prisoner’s Dilemma in which parties lose together, the
Chicken game has one winner and one loser. The Chicken game’s
structure and payoff values leave no incentive for cooperation. In
water resources problems with a Chicken game structure, one
might promote cooperation by increasing the penalty for defection
(non-cooperation). For instance, for a conflict between two farmers
over paying the maintenance costs of the pumps and irrigation
channels which they both use (Fig. 6a), a higher authority with a
superior power (such as a farmers union or an irrigation district)
can impose extra charges on farmers who do not pay maintenance
costs, and so promote cooperation and prevent defection (Fig. 6b).
Without penalties (Fig. 6a), each farmer prefers to get a free ride
and not pay, leading to the system’s demise. In that case, each
farmer prefers not to defect prefers to cooperate when the other
farmer defects (does not cooperate) and to defect when the other
farmer does not defect. However, if defection has costs (high en-
ough penalties) (Fig. 6b), a player is not interested in getting free
ride, cooperation becomes a strictly dominated strategy, and the
cooperative resolution (P, P) becomes a dominant strategy (and
Nash) equilibrium.
Stag-Hunt (assurance) game

In this game (Fig. 7) two individuals who are out hunting can
choose between hunting a stag together and a hare individually,
without knowing the other player’s choice. A stag has the highest
payoff for both players (half of a stag’s value goes to each hunter)
but can be hunted only when both players cooperate. Instead, each
player can choose to hunt a hare on his own which has a lower
payoff. The worst case for a given player occurs when he chooses
to hunt a stag (cooperation) and the other player chooses to hunt
a hare (defection).

Table 6 reviews the characteristics of the three games intro-
duced so far. Similar to Prisoner’s Dilemma, Stag-Hunt is a coordi-
nation game and the two games might be confused. In both games
the cooperative resolution is Pareto-optimal and the non-coopera-
tive Pareto-inferior resolution is a Nash Equilibrium. However, un-
like Prisoner’s Dilemma, the Stag-Hunt has no strictly dominant
strategy (3 > 2 but 1 < 2) and the game has one more Nash equilib-
rium. Unlike Chicken, in which each player does the opposite of the
other player, in the Stag-Hunt, each player’s interest is to do ex-
actly as the other player. Although a Stag-Hunt does not look like
a dilemma, game theory finds it as a dilemma and predicts that
players do not always cooperate to reach the only Pareto-optimal
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Fig. 4. Chicken game with ordinal payoffs.
resolution (S, S). In practice, sometimes, players might choose
not to cooperate, perhaps due to lack of trust, which results in a
Pareto-inferior result (H, H) for the game. So, the game can be also
called a ‘‘Trust Dilemma (Grim et al., 1999)”.

A water resources example with a Stag-Hunt structure is shown
in Fig. 8. In this game two littoral countries share a lake. Each coun-
try has one river flowing into the lake. As a result of high evapora-
tion and reductions in seasonal flows of the two rivers from
upstream consumptive use, the lake is drying up, becoming salty,
and its ecosystem is deteriorating. For the lake and its ecosystem
to survive, both countries must increase water releases to the lake
by a specific amount (say 40%). Because of high evaporation, an in-
crease in flow only by one country cannot solve the problem. The
payoff of each country is the environmental benefit from increas-
ing the inflow to the lake minus the revenue lost from decreasing
upstream consumptive use (even if calculation of environmental
benefits in monetary values is not possible, parties still are able
to rank the possible outcomes). If both countries reduce consump-
tive use upstream and increase releases to the lake, the environ-
mental benefits will exceed the revenue losses from reduced
upstream consumption. However, if only one country increases
its release to the lake, the lake’s problem is partially solved, the
environmental benefits will be minimal, and that country’s payoff
will decrease from revenue losses from decreased upstream use.
The game has two equilibria, cooperative (I, I) and non-cooperative
(DI, DI).

In the Trust Dilemma, if players trust each other, there is no risk
of failed cooperation and the players will cooperate. However, in
practice, non-cooperation is a risk-free strategy, leading to an out-
come which is not the best, but better than the worst in absence of
trust to the other players. Based on this finding within a Stag-Hunt
structure: the rowers of a boat stop rowing or row slower to min-
imize their energy loss, when they suspect other rowers are not
rowing effectively, although if everyone rows at the same rate, boat
speed is higher; stockholders might sell their stocks individually
when the company is not performing well and there is a risk of
other stockholders selling their shares, although they could do bet-
ter if they all keep their stocks or sell their shares together; or
countries build nuclear weapons when there is a risk that other
countries develop nuclear weapons, although they all agree and
know that the world would be safer without nuclear weapons.

Generally, there is no tendency to free ride in a Stag-Hunt game
as the payoff for non-cooperation is insensitive to what the other
player does. Therefore, if one player observes signs of cooperation
from the other party, he will cooperate. Similar to a Prisoner’s Di-
lemma, repetition of a Stag-Hunt game can help increase trust
among the parties and leading to a Pareto-optimal resolution. In
the presented water conflict, however, the parties might not have
a chance to repeat the game many times to find if other players
are trustworthy. Instead, negotiations and clear cooperative signals
will be helpful in reaching the Pareto-optimal resolution (I,I).
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Fig. 5. Iran–Afghanistan Conflict on Hirmand (Helmand) River at the time of
Taliban regime in Afghanistan.
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Fig. 6. Maintenance costs game.

Table 6
Characteristics of the introduced two-by-two games.

Prisoner’s
Dilemma

Chicken Stag-Hunt

Strictly dominant strategy Non-
cooperation

– –

Dominant strategy Non-
cooperation

– –

Nash equilibrium Non-
cooperative

Non-cooperative Cooperative

Non-cooperative
Dominant strategy

equilibrium
Non-
cooperative

– –

Pareto-optimal outcome Cooperative Cooperative Cooperative
Non-cooperative

Classification Coordination
game

Anti-coordination
game

Coordination
game
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Evolution of game structure (dynamic games)

Generally, in the course of modeling conflicts, modelers should
be careful about identifying the game conditions and how these
conditions could change. Changes in the conflict can change the
payoff functions and values of players over time. Changing game
conditions can alter the game’s structure, its equilibria, and the re-
sults provided by game theory. Beside the modeler, players should
be aware of the game’s course of evolution and changing condi-
tions. Early knowledge of changing game structure might lead to
different behaviors by players to reduce risks of future lower
payoffs.

Water problems often evolve over time. Knowledge of the
changing payoff functions and water problem’s structure is essen-
tial for finding reasonable solutions and useful insights into the
problem. In a water resource example, two farmers share a newly
built irrigation system and each has the options of paying the
maintenance costs of the system and not paying. Fig. 9 shows
how payoffs for each player change over time for the four possible
outcomes of this game ((P, P), (P, DP), (DP, P), (DP, DP)). Since the
example problem is symmetric, the payoffs are the same for both
players. The first strategy in parentheses belongs to player i and
the second belongs to player j – i where i, j 2 N = {Farmer 1, Farmer
2}. Table 7 shows how payoffs, varying with time, have been calcu-
lated. At the beginning (Period 1) the farmers can pay for the re-
quired system’s minimal maintenance costs, but, there is no risk
of failure at this stage, so the payoff of the player who pays the
maintenance cost is equal to his share from the maintenance cost
(if both players pay, the cost is divided equally). Since there is no
risk of irrigation system failure, the player who pays nothing, has
a payoff of zero during the first period. If no maintenance is per-
formed over time, maintenance costs and the risk of system failure
increase. In Period 2, risk of failure grows and the risk of revenue
losses for each player is less than half of the maintenance cost if
no farmer pays the maintenance cost. When one farmer alone pays
the maintenance cost, his payoff is the entire maintenance cost
while the other farmer has a zero payoff because the system gets
fixed and there will be no risk of failure. If no farmer spends on
maintenance, the risk of economic loss becomes more than half
of the maintenance costs in the third period and more than the to-
tal maintenance costs in the fourth period. The risk of economic
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Fig. 7. Stag-Hunt Game with ordinal payoffs.
loss is half of the maintenance cost at Point A and equal to the total
maintenance cost at Point B.

Fig. 10 and Table 8 show how the structure of the irrigation sys-
tem’s maintenance game evolves over time. As a result of the
changing problem structure, the equilibria and the Pareto-optimal
outcomes of the game change. During Periods 1 (Fig. 10a) and 2
(Fig. 10b) and at Point A (Fig. 10c) DP is a strictly dominant strategy
and (DP, DP) is the dominant strategy equilibrium, the only Nash
equilibrium, as well as a Pareto-optimal outcome. In Period 2 and
at Point A, the problem has other Pareto-optimal outcomes, but
since they are not equilibria, game theory suggests that farmers
are unwilling to share the maintenance costs at this point. At point
A (P, P) and (DP, DP) are socially optimal outcomes. However,
based on a Nash solution (stability definition) outcome (P, P) is
not a possible resolution of the conflict. In Period 3 (Fig. 10d) the
problem finds a Prisoner’s Dilemma structure. DP is still the strictly
dominant strategy and (DP, DP) is the dominant strategy and Nash
equilibrium as well as the Pareto-inferior outcome. Although (DP,
DP) is Pareto-inferior to (P, P) where the farmers share the cost,
parties might decide not to pay any cost in this period. At point
B (Fig. 10e), DP is a dominant (not strictly dominant) strategy
(3 > 2 and 1 = 1) and there are three Nash equilibria ((DP, P),(P,
DP), and (DP, DP)), two of which are Pareto-optimal ((P, DP) and
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Fig. 8. Neighboring countries with a common environmental problem game.
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Fig. 9. Payoff of player i during the irrigation system’s maintenance conflict.

Table 7
Possible outcomes and descriptions of payoffs in the irrigation system’s maintenance
conflict.

Outcome (Si, Sj)
Si,Sj 2 S = {P, DP}

Payoff Ci(t), Cj(t)

(P, P) Ci(t) = Half of the total maintenance cost
Cj(t) = Half of the total maintenance cost

(P, DP) Ci(t) = Total maintenance cost
Cj(t) = 0 (There is no risk of revenue loss to player j
due to the system’s failure when player i pays for the
maintenance)

(DP, P) Ci(t) = 0
Ci(t) = Total maintenance cost

(DP, DP) Ci(t) = Risk of revenue loss to player i due to the
system’s failure
Cj(t) = Risk of revenue loss to player j due to the
system’s failure
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(DP, P)). (P, P) is another Pareto-optimal outcome of the game. (DP,
DP) is Pareto-inferior to all three Pareto-optimal outcomes. Game
theory suggests that a player with a lower risk tolerance might de-
cide to take care of the maintenance costs at this stage. If the play-
ers have the same risk tolerance, they will end up in not paying any
cost and enter Period 4 of the game (Fig. 10f), which has the Chick-
en structure. In this period one player will chicken out and take
care of the maintenance costs to avoid high revenue losses from
system failure.

The conflict problem changes significantly with each state. If the
evolution of the problem is considered, game theory provides use-
ful insights to explain players’ behavioral changes. Thus, it is
important to recognize the correct stage of the problem for model-
ing. If the problem is not modeled correctly and the problem’s evo-
lution is not considered, results might be wrong or misinterpreted.
By analyzing different stages of the irrigation system’s conflict it
was found why players might avoid paying or sharing the mainte-
nance costs at the early stages for not ending up in paying high
amounts later on, something which might be interpreted as irratio-
nal behavior if the conflict’s evolution path is not considered.

The optimal solution of the irrigation system’s game is to share
the maintenance cost from the start. However, players may not
have a clear understanding of the problem, how the structure of
the game might evolve, how long they will be involved, and the
risk tolerance of other players. Sometimes, players have short fore-
sight and make their decisions based on the current conditions,
without considering the future changes. If a player is aware of
the changing structure of the game and sure that he will eventually
chicken out because the opponent has a higher risk tolerance or is
more aggressive, he might decide to pay all maintenance costs
from the start to avoid high costs in the future. On the other hand,
a player with perfect foresight about the future and a high-risk tol-
erance might be willing to prolonging the game and reach the last
period (Chicken stage) to force the other player to chicken out and
take care of the maintenance cost.
Conclusions

Game theory can provide insights for understanding or resolving
water conflicts which often are multi-criteria multi-decision-makers
problems. It sometimes can reflect and address different engineer-
ing, socio-economic, and political characteristics of water resources
problems even without detailed quantitative information and
without a need to express performances in conventional economic,
financial, and physical terms. Game theory can predict if the opti-
mal resolutions are reachable and explain the decision makers’
behavior under specific conditions. The stakeholders’ decisions
and behaviors might seem to be irrational from the system engi-
neering perspective, but game theory can explain how decision
makers’ rational behavior, trying to maximize their own objectives,
might result in overall Pareto-inferior outcomes.

By simple examples of 2 � 2 water resources games, it was dis-
cussed how game theory results might not be optimal for the
whole system and how decision makers can make decisions based
on self interests and the problem’s current structure. The examples
presented here are very simple. The water resource conflicts may
not be so simple in practice. However, understanding the basic
concepts of game theory allows for modeling complicated water
resource problems to gain valuable insights into strategic behav-
iors of the stakeholders. Non-cooperative game theory can handle
real world conflicts in absence of accurate quantitative informa-
tion, where only ordinal information is available, which is a great
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advantage of game theory over conventional systems engineering
methods.

Although, most water conflicts (games) have been previously
modeled as Prisoner’s Dilemma, simple presented examples of
games with different structures and characteristics (i.e. Chicken
and Stag-Hunt) support the idea that not all water resources games
are Prisoner’s Dilemma. It was also discussed how the structure of
the games might be changed by third parties and regulating agen-
cies to promote Pareto-optimal resolutions to water conflicts con-
sidering the non-cooperative behaviors of the stakeholders.

Water resource problems often change over time. The evolution
of a game’s structure should be considered while studying water
resource conflicts. By understanding a game’s evolution, a more
realistic interpretation of the stakeholders’ behaviors can be
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Fig. 10. Irrigation system’

Table 8
Characteristics of the irrigation system’s maintenance game at different stages.

Period 1 Period 2 Point A

Strictly dominant strategy DP DP DP

Dominant strategy DP DP DP

Nash equilibria (DP, DP) (DP, DP) (DP, DP)

Dominant strategy equilibrium (DP, DP) (DP, DP) (DP, DP)

Pareto-optimal outcomes (DP, DP) (P, DP), (DP, P), (DP, DP) (P, P), (P, DP), (DP,
provided. An example showed how the structure of the problem
evolves from the status quo based on decisions made by stakehold-
ers in different stages of the game. In that example, the self-opti-
mizing and non-cooperative characteristics of the players over
time resulted in a final undesirable structure under which even
the cost of cooperative resolution was much higher than the cost
of non-cooperation (losing or paying all the costs individually)
early in the game. Sometimes, decision makers have imperfect
foresight and an unclear understanding of the game’s conditions
and other players’ characteristics (e.g. risk attitude, cooperative
tendency, aggression level, etc.). Providing information about the
evolving structure of the problem and the risk of undesirable fu-
ture outcomes (high costs) in the future might help change behav-
ior and decisions to reduce overall losses.
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Period 3 Point B Period 4

DP – –

DP DP –

(DP, DP) (P, DP), (DP, P), (DP, DP) (P, DP), (DP, P)

(DP, DP) (DP, DP) –

P) (DP, DP) (P, P), (P, DP), (DP, P) (P, P), (P, DP), (DP, P) (P, P), (P, DP), (DP, P)
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