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Abstract Critical radius of insulation for a circular tube
subjected to radiative and convective heat transfer has
been studied analytically. It is assumed that condensation
or evaporation takes place inside the circular tube such
that the bulk fluid temperature inside the tube remains
constant. As the fluid is transported from one end to the
other, either an increase or decrease of heat transfer is
desired depending on the application. The variation of the
rate of heat transfer with respect to the variation of insu-
lation thickness is studied. It is found that an critical
insulation thickness may exist such that the heat transfer
between the fluid and the radiative environment becomes
a maximum. For certain special cases, explicit solutions to
the critical insulation thickness are obtained.

Nomenclature
A dimensionless radiation parameter, rerT3

f/k
b temperature ratio, T¥/Tf

hi heat transfer coefficient inside the pipe, W/m2K
h0 heat transfer outside the insulation, W/m2K
k thermal conductivity, W/mK
kw tube wall thermal conductivity, W/mK
q dimensionless heat transfer rate, 1

2pkTf

d _Q
dx

_Q rate of heat transfer, W
r radius, m
ri inner tube radius, m
r0 outer radius of insulation, m
Rtot total heat transfer resistance, mK/W
t thickness, m
tw tube wall thickness, m
Tf fluid bulk temperature, K
Ts outer insulation surface temperature, K
T¥ ambient temperature, K
x axial distance, m
e emissivity
k dimensionless convection parameter, hor/k

q dimensionless radius, r0/L
r Stefan-Boltzman constant
s dimensionless temperature, Ts/Tf

Subscripts
crit critical
max maximum
tot total

1
Introduction
Optimum distribution of a finite amount of insulation
material over a nonisothermal wall, in order to minimize
the total heat loss from the wall to the ambient was studied
by Bejan [1]. He showed that, in the case of a single-phase
stream suspended in an environment of different tem-
perature, uniform thickness of insulation for circular pipe
is the best insulation assuming that the outer radius of
insulation is greater than the critical radius. However, it is
known that when the insulation thickness is close to the
critical thickness value corresponding to the critical ra-
dius, heat transfer might be increased as a result of insu-
lation rather than reduction of heat transfer. On the other
hand, when the objective is to increase the heat transfer,
heat transfer enhancement methods such as extended
surfaces are used. A simple alternative to heat transfer
enhancement for certain applications could be using crit-
ical radius insulation.

Thermal design optimization, configuration, subject to
constraints is a very basic problem in research as well as in
thermal science education [2–4]. The motivation in pipe
insulation is often to minimize total costs. That is, the cost
of the insulation, its installation and maintenance as well
as the cost of the energy lost. Heat transfer principles and
cost information can be used in defining the overall cost
function that is to be minimized. All the size (volume,
weight) constraints related to manufacturing and instal-
lation must also be considered. One may wish to minimize
capital and operation costs as well as heat loss. Ito et al. [5]
applied multiple objective functions for the design analysis
of a piping system to minimize both the heat loss and the
amount of insulation used. In these types of problems, a
common approach is to sum all objective functions with
appropriate weighting factors, and minimize the resulting
composite function [6]. However, solving each of the
problems separately and using judgment in selecting the
solution for the composite problem seems to be a better
choice [7].
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Industrial plants and chemical processing plants in
particular contain intricate and costly piping configura-
tions. Piping systems are also encountered in many other
situations including water supply, fire protection, and
district cooling/heating applications. Uninsulated steam
distribution and condensate return lines are a constant
source of wasted energy. Heat loss from an uninsulated
pipe of 1 inch diameter and 10 m length through natural
convection and 25 �C bulk to ambient temperature dif-
ference is estimated to be 50 · 106 kJ/yr. Insulation can
typically reduce the energy losses by 90% and help ensure
proper steam pressure at plant equipment. Therefore, any
surface over 50 �C such as boiler surfaces, steam and
condensate return piping, and fittings should be insulated.
For proper insulation, however, the critical insulation
thickness must be taken into consideration so that no
surprises will be faced.

In the present study, the well/known concept of critical
radius for convection type of heat transfer analysis is ex-
tended to radiation heat transfer applications. In this re-
gard, a circular pipe through which fluid is transported
from one end to the other is considered. The outer surface
is subjected to both convection and radiation with the
surroundings. Possible critical radius for various para-
metric conditions is studied.

2
Formulation of the problem
Consider the circular pipe through which a given fluid is
transported from one end to the other as shown in Fig. 1.
It is assumed that phase change (e.g. condensation) is
taking place in the pipe so that the fluid temperature Tf

remains constant. The inner and outer radii of the pipe are
ri and r, respectively. The thermal conductivity of the pipe
material is kw. Heat transfer takes place through the inner
convective heat transfer coefficient hi through the inner
surface of the pipe and outer combined (convective and
radiative) heat transfer coefficient ho through the outer
surface of the insulation. The thickness of insulation t is to
be optimized such that the heat transfer from the fluid
inside the tube to the environment at temperature T¥ is
made maximum.

The heat loss from the fluid to the environment per unit
length of pipe in Fig. 1 is

d _Q

dx
¼ 1

Rtot
ðTf � T1Þ ð1Þ

where the total thermal resistance is

Rtot ¼
1

2prihi
þ 1

2pkw
ln

r

ri

� �
þ 1

2pk
ln

ro

r

� �
þ 1

2proðho þ hrÞ
ð2Þ

in which ri = r – tw is the inner radius of pipe, ro = r + t is
the outer radius of insulation and the radiation heat
transfer coefficient is defined as

hr ¼
reðT4

s � T4
1Þ

Ts � T1
¼ reðT2

s þ T2
1ÞðTs þ T1Þ: ð3Þ

On the other hand, energy balance requires that

Tf � T1
Rtot

¼ Tf � Ts

1
2prihi
þ 1

2pkw
ln r

ri

� �
þ 1

2pk ln ro

r

� � ¼ Ts � T1
1

2proðhoþhrÞ
ð4Þ

The heat transfer per unit length of pipe therefore becomes

1

2pk

d _Q

dx
¼ Tf � Ts

Rc þ ln ro

r

� � ¼ Ts � T1
k

roðhoþhrÞ
ð5Þ

where the constant terms in the thermal resistance are
combined into

Rc ¼
k

rihi
þ k

kw
lnðr=riÞ: ð6Þ

The following dimensionless variables can be used

q ¼ ro

r
; s ¼ Ts

Tf
; q ¼ 1

2pkTf

d _Q

dx
ð7Þ

Thus, using equations (3),(4), and (5) in equation (7), the
dimensionless form of the heat transfer becomes

q ¼ 1� s
Rc þ ln q

¼ kqðs� bÞ þ Aqðs4 � b4Þ ð8Þ

where

k ¼ hor

k
; A ¼

rerT3
f

k
; and b ¼ T1

Tf
: ð9Þ

2.1
Optimization problem
The heat transfer in equation (8) is a function of q and s.
On the other hand q and s are inter-related as shown
also in equation (8). For possible extremum in heat
transfer q with respect to the insulation thickness q, the
first derivative of q with respect to q is set equal to zero.
Since from equation (8)

q ¼ kqðs� bÞ þ Aqðs4 � b4Þ ð10Þ

the first derivative is

dq

dq
¼ kðs� bÞ þ Aðs4 � b4Þ þ ðkqþ 4Aqs3Þ ds

dq
ð11Þ

On the other hand, the inter-relationship between q and
s according to equation (8) isFig. 1. Sketch of insulated circular duct
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1� s
Rc þ ln q

¼ kqðs� bÞ þ Aqðs4 � b4Þ ð12Þ

Therefore,

ds
dq
¼ � kðs� bÞ þ Aðs4 � b4Þ

1þ ð4As3 þ kÞðRc þ ln qÞ ð1þ Rc þ ln qÞ ð13Þ

Substituting equation (13) into equation (11) it can be
shown that

dq

dq
¼ kðs� bÞ þ Aðs4 � b4Þ½ � � 1� qð4As3 þ kÞ½ �

1þ qð4As3 þ kÞðRc þ ln qÞ : ð14Þ

Setting equation (14) equal to zero the critical insula-
tion thickness for the extremum heat transfer can be found

dq

dq

����
q¼qcrit

¼ 0 ð15Þ

since s = b is a trivial solution, therefore

qcrit ¼
1

4As3 þ k
ð16Þ

where s is obtained by substituting equation (16) into
equation (12). That is, s is the root of

1� s
Rc � lnð4As3 þ kÞ ¼

kðs� bÞ þ Aðs4 � b4Þ
4As3 þ k

ð17Þ

The heat transfer at the critical insulation thickness
given by equation (16) can be shown to be a maximum.
For this reason, equation (14) can be re-written more
conveniently as

dq

dq
¼ E� F

G
ð18Þ

where

E ¼ kðs� bÞ þ Aðs4 � b4Þ ð19Þ

F ¼ 1� qð4As3 þ kÞ ð20Þ

and

G ¼ 1þ ð4As3 þ kÞðRc þ ln qÞ ð21Þ

Now, the second derivative of heat transfer q with re-
spect to q is

d2q

dq2

����
q¼qcrit

¼ F

G

@E

@q

����
q¼qcrit

þ E

G

@F

@q

����
q¼qcrit

� EF

G2

@G

@q

����
q¼qcrit

ð22Þ

noting from equation (16) and (20) that Fjq¼qcrit
¼ 0. Thus,

:
d2q

dq2
jq¼qcrit

¼ E

G

@F

@q

����
q¼qcrit

¼ E

G
�ð4As3 þ kÞ � 12As2q

@s
@q

� 	����
q¼qcrit

ð23Þ

From equations (13),(19), and (21)

@s
@q
¼ �Eðln qþ Rc þ 1Þ

G
ð24Þ

Substituting equation (24) into equation (23) and orga-
nizing the resulting equation, we, after some lengthy
algebra, obtain

d2q

dq2

����
q¼qcrit

¼ � E

G2

����
q¼qcrit

1þ Rc � lnð4As3 þ kÞ
4As3 þ k

� 	

k2ð1� 2As2Þ2 þ 12Abs2ðAb3 þ kÞ

 �

ð25Þ

Some remarks on equation (25):

– Since k > 0, A > 0, and s > b, from equation (19), E > 0.
Thus, the first term in equation (25) is positive. That is,

ðE=G2Þ
��
q¼qcrit

> 0:

– For physically meaningful solution, qcrit > 1 fi 0 <
(4As3 + k) < 1 fi ln (4As3 + k) < 0. Noting that Rc > 0,
then, the second term in equation (25) is also positive.
That is,

1þ Rc � lnð4As3 þ kÞ
4As3 þ k

> 0:

– Since k > 0, A > 0, and b > 0, clearly, the third term in
equation (25) is positive. That is,

k2ð1� 2As2Þ2 þ 12Abs2ðAb3 þ kÞ > 0:

Therefore, equation (25) indicates that

d2q

dq2

����
q¼qcrit

\0 ð26Þ

This means that the heat transfer for q = qcrit is a maxi-
mum.

3
Results and discussion
Critical insulation thickness that will result in the maxi-
mum heat transfer is shown to exist in the previous sec-
tion. This insulation thickness is found to be a function of
A (representing radiation), k (convection), b (surrounding
to bulk fluid temperature difference) and Rc as can be seen
from equations (16) and (17). Some special cases are dis-
cussed in the following.

Case 1: Convection only:

A = 0 When the radiation is negligible, the critical insu-
lation thickness as given in equation (16) becomes

qcrit ¼ q1 ¼
1

k
¼ k

h0r
ð27Þ

This result is well known from the literature
[8, 9].The dimensionless outer surface temperature of the
insulation in this case is obtained explicitly using
equation (17) as
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s ¼ 1� bðln k� RcÞ
1� ðln k� RcÞ

ð28Þ

Using equation (10) the maximum heat transfer is evalu-
ated to be

qmax ¼ qjq¼q1
¼ 1� b

1� ln kþ Rc
ð29Þ

The locus of maximum heat transfer is obtained by elim-
inating from both equations (27) and (29)

qmax ¼
1� b

1þ ln q1 þ Rc
ð30Þ

For an optimum to exist, q1 > 1 i.e. k < 1. Therefore, for
the limiting case where q1 = 1 (i.e., zero critical insulation
thickness), the surface temperature becomes

sjq1¼1¼
1þ bRc

1þ Rc
ð31Þ

The corresponding heat transfer in this case is obtained to
be

qjq1¼1¼
1� b

1þ Rc
ð32Þ

The constant term Rc does not affect the qualitative
assessment of the optimization problem; therefore, the
value of Rc is set to zero in the following discussion for
convenience. Figure 2 shows the variation of heat transfer
as function of insulation thickness for several cases of
convection parameter k and b = 0.3. The cases where k < 1
are considered for which optimum solutions exist. The
locus of the maximum heat transfer is also added to the
figure in a dashed line.

Case 2: Radiation only: k= 0

In this case, radiation is considered to be the dominant
mode of heat transfer and therefore the convection mode

is neglected (k = 0). The critical insulation thickness in
this case, according to equation (16) is

qcrit ¼ q2 ¼
1

4As3
ð33Þ

where the corresponding outer surface temperature of the
insulation s is the root of

1� s
Rc þ lnðq2Þ

¼ 1� s
Rc � lnð4As3Þ ¼

s4 � b4

4s3
ð34Þ

Using equation (8), the maximum heat transfer in this
case becomes

qmax ¼ qjq¼q2
¼ 1� s

Rc � lnð4As3Þ ¼
s4 � b4

4s3
ð35Þ

The locus of maximum heat transfer in this case is very
difficult to express explicitly. However, one of the roots of
the following fourth order polynomial is the maximum
heat transfer for any critical insulation thickness.

½1� qmaxðRc þ ln q2Þ�4 � 4qmax½1� qmaxðRc þ ln q2Þ�3

� b4 ¼ 0 ð36Þ

For an optimum to exist, it is required that

q2 > 1; i:e:; A\
1

4s3
ð37Þ

Therefore, in the limit where q2 = 1, the surface temper-
ature of the pipe with zero insulation thickness, denoted as
s2, is found to be the root of

1� s2

Rc
¼ s4

2 � b4

4s3
2

ð38Þ

where equation (38) is obtained by setting q2 = 1 in
equation (34). The heat transfer in this case becomes

qjq2¼1¼
1� s2

Rc
¼ s4

2 � b4

4s3
2

ð39Þ

where s2 is the root of equation (38).
Figure 3 shows the variation of heat transfer as function

of insulation thickness for several cases of radiation
parameter A and b = 0.3. The cases where A\ 1

4s3 �� >are
considered for which optimum solutions exist. The locus
of the maximum heat transfer is also added to the figure in
a dashed line.

Case 3: Space Applications: k= 0 and b = 0

In an environment with zero surrounding temperature and
no convection, the critical insulation thickness, according
to equation (16), is

qcrit ¼ q3 ¼
1

4As3
ð40Þ

where the corresponding outer surface temperature of the
insulation s is the root of

1� s
Rc þ lnðq3Þ

¼ 1� s
Rc � lnð4As3Þ ¼

s
4

ð41Þ
Fig. 2. The variation of heat transfer as function of insulation
thickness for several cases of convection parameter k with no
radiation and b = 0.3
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Maximum heat transfer in this case becomes

qmax ¼ qjq¼q3
¼ 1� s

Rc � lnð4As3Þ ¼
s
4

ð42Þ

and the locus of maximum heat transfer is obtained to be

qmax ¼
1

4þ Rc þ ln q3

ð43Þ

For an optimum to exist in this case q3 > 1, i.e., A\ 1
4s3 :

Therefore, in the limit where q3 = 1 (zero insulation
thickness), the corresponding outer surface temperature,
denoted as s3, of the pipe is

s3 ¼
4

4þ Rc
ð44Þ

where equation (44) is obtained by setting q3 = 1 in
equation (41). The heat transfer for this particular case
becomes

qmax ¼
1

4þ Rc
: ð45Þ

Figure 4 shows the variation of heat transfer as function
of insulation thickness for several cases of radiation
parameter A. As for the previous case, values of A\ 1

4s3 are
considered for which optimum solutions exist. The locus
of the maximum heat transfer is also added to the figure in
a dashed line.

In all the three cases discussed above, the critical
insulation thickness decreases as the parameter of con-
vection k or that of the radiation A increase as shown in
Fig. 5. On the other hand, it is clear also from Fig. 5 that

Fig. 3. Variation of the heat transfer as function of insulation
thickness for several cases of radiation parameter A with no
convection and b = 0.3

Fig. 4. Variation of the heat transfer as function of insulation
thickness for several cases of radiation parameter A with no
convection and b = 0

Fig. 5. Variations of the critical insulation thickness and the
maximum heat transfer as function of convection k and the
radiation A parameters

Fig. 6. The variation of the critical insulation thickness as
function of k and A for b = 0.3
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the maximum heat transfer increases as both the convec-
tion and radiation parameter increases.

Figures 6 and 7 show the variation of the critical
insulation thickness and maximum heat transfer, respec-
tively, as function of k and A. The critical insulation
thickness is found to increase as both convection and
radiation decreases. On the other hand, the maximum heat
transfer decreases when convection or radiation decreases,
as expected. This is due to the increase of the critical
insulation thickness.

4
Conclusions
The following conclusions can be derived from the present
study.

1. A critical radius of insulation can be found for circular
tube subjected to radiative and convective heat transfer
environment provided that certain constraints are
satisfied.

2. The critical radius of insulation increases when either
the convection or radiation decreases. Therefore, the
existence of the critical radius depends on both the
convection and radiation parameters. As the critical
insulation radius increases for low convection and
radiation heat transfers, it becomes feasible to use
critical radius of insulation for heat transfer enhance-
ment only for high convection or radiation heat
transfer environment.

3. The maximum heat transfer is a function of radiation
and convection parameters. For the increase of both
the radiative and convective parameters, the maximum
heat transfer also increases.

4. Due to the nonlinear nature of the problem, the solu-
tion for the critical radiation is obtained by numerical
means, however, explicit analytical solutions are ob-
tained for certain special cases.
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