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Abstract—A parallel memetic algorithm for the NP-hard
vehicle routing problem with time windows (VRPTW) is
proposed. The algorithm consists of components which are
executed as parallel processes. A process runs either a heuristic
algorithm or a hybrid of a genetic algorithm and some
local refinement procedures. In order to improve the results,
processes co-operate periodically using a novel randomized
scheme. During each phase of co-operation processes exploit
their best solutions found so far. The purpose of the work
is to devise the parallel memetic algorithm which determines
the VRPTW solutions of the highest possible quality. The
experiments on Gehring and Homberger’s (GH) benchmarking
tests show that the algorithm achieves very good results. By
making use of it the best-known solutions to 171 out of 300
GH tests were improved.

Keywords-parallel memetic algorithm, parallel processes co-
operation schemes, genetic and local search algorithms, vehicle
routing problem with time windows

I. INTRODUCTION

The vehicle routing problem with time windows

(VRPTW) is an important NP-hard optimization problem.

It consists in determining the minimum cost routing plan

to deliver goods from a single depot to a set of customers.

The primary objective is to minimize the number of vehicles

used, and the secondary one is to minimize the total distance

traveled by the vehicles.

A number of approximate algorithms were proposed for

the VRPTW. The most effective approximate algorithms to

solve this problem rely on the construction heuristics, im-

provement heuristics and meta-heuristics. The construction

heuristics create a feasible solution by inserting customers

iteratively into the partial routes according to some criteria.

The examples of using them can be found in [18], [21].

The improvement heuristics modify a current solution by

executing local search moves to find better neighbor solu-

tions. The most successful applications of these heuristics

are described in [5], [17], [20]. The meta-heuristics usually

embed construction and improvement heuristics and their

examples can be found in [8], [9], [11], [19].

The memetic algorithms are built upon a population-based

search approach. They combine an evolutionary algorithm

for the global exploration of a solution space with a local

search algorithm for the local exploitation of solutions

already found [11]. The most efficient applications of the

memetic algorithms to the VRPTW have been proposed so

far in [1], [10], [14].

In this work a parallel memetic algorithm for the VRPTW

is proposed. The algorithm consists of components which

are executed in parallel as processes. A process runs either

a heuristic algorithm or a hybrid of a genetic algorithm (GA)

and some local refinement procedures. The edge assembly

crossover (EAX) operator for reproduction of solutions in

the GA is applied. In order to improve the final results

parallel processes co-operate periodically using a novel

randomized scheme. During each phase of co-operation

processes exploit their best solutions found so far. The

exploitation may involve the use of the EAX operator.

The purpose of the work is to devise the parallel memetic

algorithm which determines the VRPTW solutions of the

highest possible quality. In the experimental part of the work

the speedup of the parallel algorithm and quality of achieved

solutions on the MPI implementation of the algorithm are

investigated.

The remainder of this paper is arranged as follows.

Section II formulates the VRPTW problem. In section III the

parallel memetic algorithm is presented. Section IV contains

the discussion of the computational experiments. Section V

concludes the paper.

II. PROBLEM FORMULATION

The VRPTW is defined on a complete graph G = (V , E)

with a set of vertices V = {v0, v1, ..., vM} and a set of

edges E = {(vi, vj): vi, vj ∈ V , i �= j}. The node v0
represents a single depot and the set of nodes {v1, v2, ...,

vM} represents the customers to be serviced. With each

node vi ∈ V there are associated a load qi (q0 = 0),

a service time si (s0 = 0) and a time window [ei, li].
Every edge (vi, vj) has a travel distance dij and a non-

negative travel time cij . A feasible solution to the VRPTW

is the set of m routes in graph G such that (a) each route

starts and ends at the single depot, (b) every customer vi
belongs to exactly one route, (c) the total load of each

route does not exceed the maximum vehicle capacity Q, (d)
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1: // First stage - generating initial population of solutions
2: m← R(RM(0)); � m - minimum number of routes

3: for j ← 1 to Npop do
4: σj ← RM(m); σj ← LocalSearch(σj);

5: end for
6: // Second stage - minimizing total travel distance
7: for Pi ← P1 to PN do in parallel
8: while not finished do � compute a generation of solutions

9: generate a random permutation r(j) ∈ {1, 2, . . . , Npop};
10: for j ← 1 to Npop do
11: σA ← σr(j); σB ← σr((j+1)%Npop);

12: if σA �= σB then
13: σbest ← σA;

14: for k ← 1 to Nch do
15: σch ← EAX(σA, σB);

16: σch ← Repair(σch); σch ← LocalSearch(σch);

17: if σch is feasible and Ftd(σch) < Ftd(σbest) then
18: σbest ← σch;

19: end if
20: end for
21: σr(j) ← σbest;

22: else
23: σA ← Perturb(σA);

24: end if
25: end for
26: finished← Cooperate();

27: end while
28: end for
29: return the best individual solution σbest in the population; � P1 returns σbest

Figure 1. Parallel memetic algorithm (PMA)

the service at each customer vi begins between ei and li.
The VRPTW is a bicriterion optimization problem with the

hierarchical objectives. A desired solution to the VRPTW

is a feasible solution with the minimum number of routes

(primary objective) and the minimum total travel distance

(secondary objective). As mentioned before, the VRPTW is

NP-hard. Therefore the purpose of this work is to construct

the parallel memetic algorithm which finds the VRPTW

solution of the highest possible quality. Let (m,D) represent

a solution α, where m is a number of routes and D is a

total travel distance of this solution. Then we say that a

solution β represented by (m1, D1) is of better quality, if

either m1 < m or (m1 = m and D1 < D).

III. PARALLEL MEMETIC ALGORITHM

The parallel memetic algorithm (PMA) consists of two

stages in which the number of routes and the total travel

distance are minimized independently (Fig. 1). In the first

stage (lines 1–5) the minimum number m of routes in the

VRPTW solutions is established. Furthermore, an initial

population of solutions consisting of m routes is generated

in each parallel process. In the second stage (lines 6–29)

employing these populations a solution with the minimum

total travel distance is found. In order to improve the

final results and accelerate convergence of computation, the

parallel processes executing the algorithm co-operate with

each other in both stages.

A. Route number minimization

At the beginning of the first stage of the PMA (line 2,

Fig. 1) the minimum number m of routes is established

by calling the parallel heuristic algorithm RM shown in

Fig. 2 [4]. The RM algorithm uses the EAX operator which

is performed in co-operation phases (line 18, Fig. 2). The

EAX operator creates offspring solutions by removing and

replacing edges in two parent solutions without altering

the orientation of edges1. The execution of the operator

takes TEAX(M) = O(M2) time, where M is a number

of customers in each parent solution [2]. The RM heuristic

1The EAX operator was first suggested for the traveling salesman
problem by Nagata and Kobayashi [15], and was afterwards adapted for the
capacitated vehicle routing problem by Nagata [12] and for the VRPTW
by Nagata and Bräysy [13], [14].
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1: function RM(m)

2: for Pi ← P1 to PN do in parallel
3: create an initial solution σ;

4: while not finished do � remove a randomly chosen route

5: initialize EP and penalty counters p[vj ] := 1, j = 1, 2, ...,M ;

6: while EP �= ∅ and not finished do � insert ejected customers

7: if Sfe
i (vr, σ) �= ∅ then

8: σ ← a new solution σ′ chosen randomly from Sfe
i (vr, σ);

9: else
10: σ ← Squeeze(vr, σ);

11: end if
12: if vr /∈ σ then
13: p[vr] := p[vr] + 1;

14: σ ← σ′ from Sej(vr, σ) with minimum Psum =
∑km

j=1 p[v
(j)
out];

15: add the ejected customers: v
(1)
out, v

(2)
out, ..., v

(km)
out to the EP;

16: σ ← Perturb(σ);

17: end if
18: finished← Cooperate();

19: end while
20: end while
21: end for
22: return the best solution σbest from all processes; � P1 returns σbest

23: end function

Figure 2. Parallel algorithm for minimizing the number of routes (RM)

algorithm includes N components which are executed in

parallel as processes P1, P2, . . . , PN (line 2, Fig. 2). The

algorithm starts with an initial solution σ in which each

customer is served individually by a single vehicle (line 3).

The attempts to decrease the number of routes in σ are then

made, until the total execution time reaches a specified time

limit TRM (lines 4-20).

The RM algorithm proceeds as follows. A randomly

chosen route is removed from the current solution σ and

the set of unserved customers from this route is used to

initialize the ejection pool EP (line 5). The pool holds all

customers currently missing from σ. The penalty counters

p[vj ] initialized to 1 (line 5) indicate how many times the

attempts to re-insert a given customer failed. Then, the

continuous attempts to insert the unserved customers into

the remaining routes are undertaken (lines 6–19) without

violating the capacity and time windows constraints. These

attempts are made until all customers from EP are inserted

into σ, or the execution time exceeds its limit. At first,

a customer vr is selected from EP and a set Sfe
i (vr, σ)

containing all possible insertions of vr into σ is formed.

If there exists at least one such solution then it is selected

randomly from this set (line 8), otherwise the squeezing of

σ is carried out (line 10). The Squeeze function temporarily

accepts an infeasible insertion of vr with the minimal value

of some penalty function Fp(σ), and a solution with the

smallest penalty is selected. Then, a number of local search

moves is carried out on this solution to restore its feasibility.

If the squeezing is not successful then the penalty counter

p[vr] is increased by 1 (line 13) and the ejections of pre-

viously inserted customers are performed (up to a limit km
of ejected customers). The set Sej (vr , σ) is formed, which

includes a number of solutions with various combinations of

ejected customers and vr inserted at different route positions.

A solution σ′ with the minimum sum of the penalty counters

is selected from Sej (vr , σ) (line 14) and it replaces the

current solution, while the ejected customers are inserted

into the EP (line 15). In order to obtain better diversification

of populations, the solution σ is perturbed by a number of

local search moves (line 16).

As mentioned earlier, at the first stage of the PMA

the initial population of Npop feasible solutions consist-

ing of m routes in every process is created (lines 3–

5, Fig. 1). A single execution of each of the refinement

functions LocalSearch, Perturb, Squeeze and Repair takes

O(M2) time [2]. Let TRM (N,M) denote the execution

time of the RM algorithm, where N and M are num-

bers of processes and customers, respectively. Then the

time taken by the first stage of the PMA (lines 1–5) is

T1(N,M) = TRM (N,M) +Npop(TRM (N,M) + cM2) =
O(TRM (N,M)+M2), for some constant c. It can be shown

[2] that the average execution time of the RM algorithm

is TRM (N,M) = O(M2.7 + N · M2) (the second term

corresponds to co-operation cost; see subsection III-B), thus
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Figure 3. Co-operation of parallel processes (σ
(init)
i - initial solution of Pi; σ

(j·δc)
i - j co-operation phase of Pi; δc - number of steps between

co-operations; r - number of co-operation phases; ⇒ - data transfer; ↓ - progress of process execution)

T1(N,M) = O(TRM (N,M)+M2) = O(M2.7 +N ·M2).

B. Co-operation of parallel processes

The processes co-operate periodically in both stages of

the PMA. In the first stage they co-operate every δRM

step of inserting the ejected customers (smaller δRM means

higher frequency of co-operation), and in the second stage

every δDM computed generation. At the beginning of each

co-operation phase (line 26, Fig. 1, and line 18, Fig. 2)

the master process2 P1 generates a random permutation of

process numbers and broadcasts it asynchronously to the

remaining processes. This permutation determines the order

in which processes co-operate in a given phase. Each co-

operation phase is started by process P1 which sends its best

solution found so far to process P2 (Fig. 3). Such a chain

of transfers continues in a pipeline fashion for the pairs of

processes (P2, P3), (P3, P4), . . . , until the last process PN

in a current permutation obtains the best solution from all

the processes. The co-operation scheme constitutes a ring,

thus this solution is sent back from process PN to P1.

If during a co-operation phase any process Pi receives

from its neighbor a solution of better quality (see sec-

tion II) then this solution replaces the current one in Pi.

Otherwise, the EAX operator is performed on a pair of

solutions (received and the current one in Pi) what results

in a child solution σch. If σch is not feasible, then the

local search moves are performed to restore its feasibility.

If the repair is successful then a child solution σch replaces

the current solution. The co-operation among processes is

carried out in order to improve the quality of a final solution

through the deeper exploration of the search space and

better convergence of computation. The randomized scheme

of co-operation allows for a more diverse reproduction of

solutions, since the EAX operator can be performed on a pair

of solutions of neighbor processes. One of these solutions is

2We distinguish process P1 calling it master. It decides on the order
in which processes co-operate. It also controls the execution time of
both stages of the algorithm by sending to processes the signal to finish
computation when this time elapses.

always the best achieved so far by a process. The way the

processes co-operate guarantees that after each co-operation

phase the master process P1 holds the best solution found

by all the processes.

Last but not least, non-blocking operations for data trans-

ferring are used to make the co-operation as fast as possible.

This is important because in the presence of limits imposed

on the execution time of the PMA (see subsection IV-A),

a fast scheme allows for more co-operation phases to be

carried out. At the end of each co-operation phase a process

has to wait for already started operations to be finished (all

communication operations are asynchoronous). During this

waiting time the process continues its work, e.g. creation

of a generation of solutions. As a result, computation is

overlapped with communication. A two-step procedure of

passing data between processes is also introduced. In the first

step, only a number of routes m or a total travel distance D
(depending on the PMA stage) is sent to a neighbor process,

along with the information whether a complete solution will

be sent in the second step. The complete solution is sent

only if m or D of solutions have decreased, comparing to

their values in the last co-operation phase. Clearly, a single

cooperation phase takes time TC(N,M) = O(N ·M2).

C. Distance minimization

The total travel distance is minimized in the second

stage of the PMA (lines 6–29, Fig. 1). To this aim the set

of processes P1, P2, . . . , PN , each executing a memetic

algorithm is run. The processes co-operate with each other

using the randomized co-operation scheme described in

subsection III-B. The main while loop of the memetic

algorithm contains the operations required to create a single

generation of solutions (lines 9–25), and to carry out the

co-operation phase (line 26). In each iteration a random

permutation of solutions is generated, so as to diversify the

search process (line 9). Then, parent solutions σA and σB

are selected (line 11). In order to avoid having the same

individuals in a population, some perturbing steps on σA

are performed in case when σA = σB (line 23). If these
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solutions are different, then solution σA is copied into σbest ,

which holds the best solution in a current iteration (line 13).

The EAX operator is carried out on solutions σA and σB ,

and a child solution σch is obtained. If it is not feasible,

then the repair is undertaken to fix the violated constraints

(line 16). In addition it is enhanced by a number of local

search moves which reduce the total travel distance (line

16). If a child solution σch has a smaller total travel distance

than the best solution σbest, then the latter is replaced with

σch (line 18). Note that processes P1, P2, . . . , PN co-

operate periodically every δDM step (line 26). In a step

a single generation of solutions is computed (lines 9–25).

The analysis shows [2] that the average execution time of the

second stage of the PMA is T2(N,M) = O(M2+N ·M2).
The time complexities of both stages of the PMA grow

linearly with the number of processes N . Therfore one may

expect that in the presence of execution time limits imposed

on the PMA (see subsection IV-A), when N increases,

a number of attempts to decrease a route number in the

RM algorithm, and a number of computed generations in

the second stage of the PMA will decrease. Most likely,

however, this will be compensated by co-operation of a

larger number of processes.

IV. COMPUTATIONAL EXPERIMENTS

A. Settings

The PMA was implemented in C++ using the MPI

(Message Passing Interface) library. The computational

experiments were conducted on Galera supercomputer

(www.task.gda.pl/kdm/sprzet/Galera). The total execution

time of the PMA consists of three elements: T = TRM +
TPopGen + TDM , where TRM is the time for establishing

the minimum number of routes (line 2, Fig. 1), TPopGen the

time for creating the initial population (lines 3–5), and TDM

the time for the minimization of the total travel distance

(lines 7–29). The following execution time limits were set:

TRM = 10 min., TPopGen = 1 h and TDM = 3 h. The

experiments showed that the time TRM = 10 min. was

sufficient to find the best-known minima of route numbers

for GH tests in nearly 100% cases. The RM algorithm run

on 64 processors found those minima for 89% tests in time

less than 10 sec. So in most cases this time is negligible

as compared to the total execution time T of the algorithm.

In terms of generation of the initial population, its size was

fixed to Npop = 100 and the number of children in each

reproduction step was fixed to Nch = 20. In most cases

(96%) the time for finding a single member of the population

was at most 10 sec., for a total of 1000 sec. ≈ 17 min., i.e.

well below the limit of TPopGen = 1 h. However for 4% of

GH tests it was not possible to find the required number of

Npop = 100 solutions. In those cases the missing solutions

were obtained by means of the Perturb function applied to

solutions which were successfuly generated. The maximum

number of ejected customers (see subsection III-A) was set

to km = 4. The periods of process co-operations were set

to δRM = 100 and δDM = 2. Furthermore, the execution

of the algorithm was terminated when the best solution in

the population was not improved for the consecutive 100

generations.

The algorithm was run on the benchmarking tests by

Gehring and Homberger (GH) [7]. Six groups of tests were

designed to highlight several factors. The C1 and C2 groups

include the customers located in clusters, while in the R1

and R2 groups the locations are generated randomly. The

RC1 and RC2 groups contain a mix of random and clustered

customers. The groups C1, R1 and RC1 have smaller vehicle

capacities and shorter time windows than the groups C2,

R2 and RC2. The GH tests consist of five sets containing

M = 200, 400, 600, 800 and 1000 customers, with 60

instances in each set, resulting in 300 instances.

B. Speedup analysis

The speedup of the MPI implementation of the PMA

was examined on RC2 6 3 and C1 10 4 tests. The target

solutions were set to 11/9600 for RC2 6 3 and 90/40000

for C1 10 4, which should be reached in each test case

(in a/b, a stands for the number of routes and b for the

total travel distance). For these targets the execution times

of the PMA were recorded. Overall 60 experiments were

performed on each number of processors: N = 1, 8, 16,

..., 88, 96. The speedup was calculated as a ratio of the

average execution time of the PMA for N = 1 to the average

execution time of the PMA for a given N > 1, (Fig. 4). The

achieved speedup for the test RC2 6 3 was slightly worse

than for the test C1 10 4. For example, for 96 processors the

speedups were 44.71 and 50.21, respectively (the maximum

possible speedup in this case equals 96). Note that the

speedup comes from two factors. Firstly, a larger number

of processors searching the solution space simultaneously

reach a target solution faster than a single one. Secondly,

due to co-operation of processors a faster convergence to a

target solution is achieved. For both tests, the PMA obtained

larger speedupa for a small number of processors (8, 16).

The worse speedup for a larger number of processors can be

explained by the higher cost associated with the co-operation

and synchronization of processors. However, conducting

computation with a large number of processors is beneficial

in terms of higher quality of solutions.

C. Solutions quality analysis

In order to evaluate the quality of solutions of the PMA,

the algorithm was executed seven times on each GH test

instance using 64 processors. The best results obtained are

presented in Tab. I. The naming convention of tests needs

some clarification, e.g. test R2 4 3 denotes the 3rd test from

group R2 having 400 customers. The best achieved result for

this test is 8/5911.50. By making use of the MPI implemen-

tation of the PMA we improved, in a reasonable time, the
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Figure 4. Speedup S vs. number of processors N for tests RC2 6 3 and C1 10 4 (Ideal stands for the maximum speedup, i.e. equal to N )

solutions to 171 out of 300 GH tests, as compared to the

best solutions published on Sintef website [7] on January 30,

2013. The cumulative total distance (CTD) was calculated

to evaluate quality of solutions for the particular GH test

groups as a whole (Tab. II). Considering the percentage,

%B, of the CTD, it can be seen that the best results were

achieved for the GH test groups RC2 and C2 (85.86% and

96.42%) (the smaller CTD the better). The values of CTD

indicate that the PMA gives better results for the problems

with large vehicle capacities and wide time windows, and

for customers located in clusters.

V. CONCLUSIONS

The parallel memetic algorithm for the NP-hard vehicle

routing problem with time windows is presented. The ex-

periments on GH tests show that the algorithm achieves

very good results. We believe that this is due to the novel

scheme of process co-operation, which is the main contri-

bution of this work. In the scheme, processes are arranged

into a ring, however their order within the ring changes

randomly in consective phases of co-operation. During each

phase processes pass through the ring and exploit their

best solutions found so far. On these solutions the EAX

operator is performed, what is adventegous since the created

child solutions have likely even better quality than their

parents. The cost of co-operation is relatively small, because

in a single phase processes communicate only in pairs, as

opposed to a case when processes co-operate in larger groups

using all-to-all communication. Due to randomization these

pairs of co-operating processes changes from phase to phase,

what results in better diversifiaction of offspring solutions.

Clearly, the efficiency of the EAX operator and the memetic

computation paradigm also contribute to high quality of the

VRPTW solutions.
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3 18/2707.35 6/1775.08 18/3381.96 4/2880.62 18/3008.76 4/2601.87
4 18/2643.31 6/1703.43 18/3058.91 4/1981.30 18/2865.09 4/2038.56
5 20/2702.05 6/1878.85 18/4107.86 4/3366.79 18/3371.00 4/2911.46
6 20/2701.04 6/1857.35 18/3583.14 4/2913.03 18/3324.80 4/2873.12
7 20/2701.04 6/1849.46 18/3150.11 4/2451.14 18/3189.32 4/2525.83
8 19/2775.48 6/1820.53 18/2958.19 4/1849.87 18/3094.49 4/2295.97
9 18/2687.83 6/1830.05 18/3760.58 4/3092.04 18/3081.38 4/2175.04

10 18/2643.55 6/1806.58 18/3306.21 4/2654.97 18/3006.93 4/2015.61

400 customers
1 40/7152.06 12/4116.14 40/10372.31 8/9210.15 36/8626.23 11/6682.37
2 36/7695.55 12/3930.05 36/9009.64 8/7606.75 36/7984.53 9/6180.62
3 36/7075.98 11/4018.22 36/7898.63 8/5911.50 36/7579.90 8/4930.84
4 36/6816.71 11/3720.51 36/7322.16 8/4241.47 36/7348.34 8/3632.43
5 40/7152.06 12/3938.69 36/9304.56 8/7136.90 36/8265.36 8/6710.12
6 40/7153.45 12/3875.94 36/8450.80 8/6122.60 36/8190.19 8/5766.61
7 39/7417.92 12/3894.16 36/7673.40 8/5018.53 36/7965.04 8/5360.34
8 37/7347.23 12/3789.89 36/7291.25 8/4021.86 36/7775.24 8/4793.06
9 36/7045.55 12/3865.65 36/8782.08 8/6400.10 36/7767.43 8/4551.80

10 36/6869.82 11/3833.90 36/8156.40 8/5791.79 36/7655.50 8/4280.79
600 customers

1 60/14095.64 18/7774.16 59/21412.22 11/18214.90 55/17231.05 14/13324.93
2 56/14163.31 17/8264.91 54/18972.64 11/14817.98 55/16135.53 12/11555.51
3 56/13777.81 17/7528.11 54/17229.91 11/11224.81 55/15425.99 11/9461.25
4 56/13563.30 17/6924.42 54/15997.90 11/8042.38 55/14883.65 11/7141.71
5 60/14085.72 18/7575.20 54/20133.02 11/15096.20 55/16912.68 11/13066.52
6 59/16345.44 18/7471.17 54/18358.93 11/12577.36 55/16787.63 11/11933.88
7 58/14816.55 18/7512.07 54/16941.41 11/10114.29 55/16369.30 11/10773.25
8 56/14487.58 17/7596.28 54/15852.44 11/7655.51 55/16198.94 11/10047.86
9 56/13715.48 17/7958.26 54/19047.80 11/13377.56 55/16122.07 11/9599.28

10 56/13661.85 17/7255.85 54/18179.64 11/12253.47 55/15897.65 11/9078.79
800 customers

1 80/25184.38 24/11662.08 80/36889.96 15/28114.25 72/33412.03 18/20981.14
2 72/27189.16 23/12286.65 72/33023.10 15/22797.63 72/30272.08 16/18183.64
3 72/24516.10 23/11411.53 72/29910.18 15/17839.00 72/28404.90 15/14512.94
4 72/23914.01 23/10850.36 72/28160.50 15/13307.72 72/27395.14 15/11102.47
5 80/25166.28 24/11425.23 72/34051.67 15/24285.89 72/31420.09 15/19136.03
6 79/28665.57 23/13150.63 72/31476.28 15/20563.41 72/31240.49 15/18151.67
7 77/26492.64 24/11370.84 72/29356.48 15/16837.74 72/31007.16 15/16883.26
8 74/26595.85 23/11303.24 72/28077.76 15/12855.02 72/30289.94 15/15818.98
9 72/24653.26 23/11726.45 72/32814.47 15/22402.79 72/30479.51 15/15359.99

10 72/24218.37 23/10989.13 72/31645.81 15/20494.35 72/29969.74 15/14468.66
1000 customers

1 100/42478.95 30/16879.24 100/53762.92 19/42219.21 90/46743.83 20/30278.50
2 90/42509.62 29/17126.39 91/49819.61 19/33586.49 90/44720.62 18/26677.87
3 90/40356.18 28/16884.08 91/46136.08 19/25309.46 90/42886.30 18/20177.96
4 90/39641.46 28/15743.88 91/43402.31 19/18182.09 90/41841.87 18/15820.37
5 100/42469.18 30/16561.57 91/53971.76 19/36335.72 90/45949.78 18/27269.46
6 99/44108.34 29/16920.33 91/48615.92 19/30247.98 90/45799.43 18/26965.51
7 97/44806.73 29/17882.42 91/45383.56 19/23381.36 90/45361.67 18/25317.29
8 94/41853.36 28/18343.01 91/43072.25 19/17598.63 90/44791.07 18/24010.00
9 90/41006.16 29/16442.47 91/51093.89 19/33131.99 90/44882.70 18/23341.21

10 90/40229.20 28/15988.21 91/49423.01 19/30656.00 90/44391.00 18/22372.41
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Table II
PERCENTAGE OF OBTAINED CUMULATIVE TOTAL DISTANCE (CTD) VS. WORLD-BEST CTD FOR GH BENCHMARK GROUPS (NEW WORLD-BEST

RESULTS ARE MARKED IN BOLDFACE)

C1 C2 R1 R2 RC1 RC2 Avg
200 100.19% 100.00% 99.37% 100.00% 100.03% 99.80% 99.90%
400 100.07% 98.70% 99.64% 99.32% 100.27% 97.28% 99.21%
600 98.86% 95.75% 100.49% 98.83% 99.92% 78.09% 95.32%
800 97.51% 97.17% 99.20% 98.77% 92.60% 66.87% 92.02%
1000 94.71% 90.48% 99.72% 99.54% 99.47% 87.27% 95.20%
Avg 98.27% 96.42% 99.68% 99.29% 98.46% 85.86% 96.33%
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