
ARTICLE IN PRESS
JID: COMCOM [m5G; April 4, 2016;17:47]

Computer Communications 0 0 0 (2016) 1–13

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Taking Arduino to the Internet of Things: The ASIP programming

model

Gianluca Barbon

a , Michael Margolis b , Filippo Palumbo

c , d , Franco Raimondi b , ∗,
Nick Weldin

b

a LIG, University of Grenoble Alpes, Inria Grenoble - Rhône-Alpes, 655 avenue de l’Europe, 38330 Montbonnot, France
b Department of Computer Science, Middlesex University, The Burroughs Hendon, NW4 4BT, London, United Kingdom
c Institute of Information Science and Technologies, National Research Council, via G. Moruzzi 1, 56124, Pisa, Italy
d Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy

a r t i c l e i n f o

Article history:

Available online xxx

Keywords:

Arduino

MQTT

IoT

Service discovery

Communication middleware

a b s t r a c t

Micro-controllers such as Arduino are widely used by all kinds of makers worldwide. Popularity has been

driven by Arduino’s simplicity of use and the large number of sensors and libraries available to extend

the basic capabilities of these controllers. The last decade has witnessed a surge of software engineering

solutions for “the Internet of Things”, but in several cases these solutions require computational resources

that are more advanced than simple, resource-limited micro-controllers.

Surprisingly, in spite of being the basic ingredients of complex hardware–software systems, there does

not seem to be a simple and flexible way to (1) extend the basic capabilities of micro-controllers, and (2)

to coordinate inter-connected micro-controllers in “the Internet of Things”. Indeed, new capabilities are

added on a per-application basis and interactions are mainly limited to bespoke, point-to-point protocols

that target the hardware I/O rather than the services provided by this hardware.

In this paper we present the Arduino Service Interface Programming (ASIP) model, a new model that ad-

dresses the issues above by (1) providing a “Service” abstraction to easily add new capabilities to micro-

controllers, and (2) providing support for networked boards using a range of strategies, including socket

connections, bridging devices, MQTT-based publish–subscribe messaging, discovery services, etc. We pro-

vide an open-source implementation of the code running on Arduino boards and client libraries in Java,

Python, Racket and Erlang. We show how ASIP enables the rapid development of non-trivial applications

(coordination of input/output on distributed boards and implementation of a line-following algorithm for

a remote robot) and we assess the performance of ASIP in several ways, both quantitative and qualitative.

© 2016 Elsevier B.V. All rights reserved.

1

p

R

b

a

g

p

s

(

m

m

c

a

s

t

m

d

s

h

a

h

0

. Introduction

The Internet of Things (IoT) paradigm bases its success on the

ervasive presence around us of a variety of objects (such as

adio-Frequency IDentification, RFID tags, sensors, actuators, mo-

ile phones, etc.) which, through unique addressing schemes, are

ble to interact with each other and cooperate to reach common

oals [1] .

Surprisingly, in spite of being the basic ingredients of com-

lex hardware-software systems, there does not seem to be a

imple and flexible way to (1) extend the basic capabilities of
∗ Corresponding author. Tel.: +44 2084116338.

E-mail addresses: gianluca.barbon@inria.fr (G. Barbon), m.margolis@mdx.ac.uk

M. Margolis), filippo.palumbo@isti.cnr.it (F. Palumbo), f.raimondi@mdx.ac.uk (F. Rai-

ondi), n.weldin@mdx.ac.uk (N. Weldin).

p

a

b

o

o

ttp://dx.doi.org/10.1016/j.comcom.2016.03.016

140-3664/© 2016 Elsevier B.V. All rights reserved.

Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
icro-controllers, and (2) to coordinate inter-connected micro-

ontrollers in IoT scenario. Indeed, new capabilities are added on

 per-application basis and interactions are mainly limited to be-

poke, point-to-point protocols that target the hardware I/O rather

han the services provided by this hardware.

Several commercial off-the-shelf devices are available on the

arket, but usually they are tightly coupled with specific ven-

ors and require local gateways to export sensors and actuators as

ervices on the Web. Instead, by embracing the open source and

ardware principles, it is possible to offer a system easily modifi-

ble to suit the user needs and to be used as the basis for new

roducts in different scenarios. Micro-controllers such as Arduino

re used widely by all kinds of makers worldwide. Popularity has

een driven by Arduino’s simplicity of use and the large number

f sensors and libraries available to extend the basic capabilities

f these controllers. Using such an inexpensive device makes the
net of Things: The ASIP programming model, Computer Commu-

http://dx.doi.org/10.1016/j.comcom.2016.03.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comcom
mailto:gianluca.barbon@inria.fr
mailto:m.margolis@mdx.ac.uk
mailto:filippo.palumbo@isti.cnr.it
mailto:f.raimondi@mdx.ac.uk
mailto:n.weldin@mdx.ac.uk
http://dx.doi.org/10.1016/j.comcom.2016.03.016
http://dx.doi.org/10.1016/j.comcom.2016.03.016

2 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

i

n

t

t

o

t

p

i

c

h

s

e

s

t

t

b

(

m

w

s

w

[

e

i

t

u

p

s

m

c

o

f

v

p

t

p

p

(

d

m

“

s

l

i

o

w

[

o

o

f

c

B

r

m

a

s

i

n

p

v

t

u
installation and maintenance of a system easier. In this way, it is

possible to offer a system easily modifiable to suit the user needs

and to be used as the basis for new products in different scenarios.

A first approach using the Internet for interacting with real-

world resource-constrained devices was to incorporate smart

things into standardized Web service architectures (such as SOAP,

WSDL, UDDI) [2] or embedding HTTP servers into the devices.

However, in practice, this resulted to be too heavy and complex

for simple objects [3] . In order to face the problem of intercon-

necting several resource-constrained nodes among each other and

to the Internet, several communication protocols have been in-

troduced [4] . These protocols are inspired by machine-to-machine

(M2M) scenarios and share the same fundamentals of commu-

nication paradigms typical of standard computer networks. M2M

communications occur among machines (objects or devices) with

computing/communication capabilities without human interven-

tion [5] .

In this paper we present the Arduino Service Interface Pro-

gramming (ASIP) model, a new model that addresses the issues

above by (1) providing a “Service” abstraction to easily add new

capabilities to micro-controllers, and (2) providing support for net-

worked boards using a range of strategies, including socket con-

nections, bridging devices, MQTT-based publish–subscribe messag-

ing, discovery services, etc. We provide an open-source implemen-

tation of the code running on Arduino boards and client libraries in

Java, Python, Racket and Erlang. Our programming model allows to

tackle the heterogeneity that is a distinguishing feature of several

IoT applications; by heterogeneity we mean here hardware differ-

ences (different microcontrollers), performances/capabilities of dif-

ferent boards in terms of CPU power, memory, and storage, and

software heterogeneity (e.g., choice of programming languages).

We show how ASIP enables the rapid development of non-trivial

applications (coordination of input/output on distributed boards

and implementation of a line-following algorithm for a remote

robot) and we assess the performance of ASIP in several ways, both

quantitative and qualitative.

The rest of the paper is organized as follows. We review re-

lated work in Section 2 ; we introduce the ASIP model in Section 3 ,

describing the software architecture, the communication protocol

and the possible communication channels: serial, TCP, and MQTT

publish/subscribe messaging. We present a detailed experimental

evaluation of ASIP performance in Section 4 . In Section 5 , instead,

we give a qualitative evaluation by providing examples of how ap-

plications can be built on top of ASIP.

2. Related work

The emerging IoT scenario, exploiting the advances made in the

M2M field, enables the possibility of building a huge Service Ori-

ented Architecture (SOA) composed of several devices offering ser-

vices each other [2] . Existing application platforms use REST ar-

chitecture [6–14] as interfaces in order to expose their services.

The REST-style architecture consist of clients and servers. Clients

initiate requests to servers; servers process requests and return

the appropriate responses manipulating the resources. A resource

can be anything identified by URIs. REST uses the GET, PUT, POST,

and DELETE operations of HTTP to access resources. However, the

protocols used for RESTful architecture are not appropriate for re-

source constrained networks and devices [15] . The large overhead

of HTTP causes packet fragmentation and performance degradation

when dealing with M2M devices. Also, TCP flow control is not ap-

propriate for resource-constrained devices and the overhead is too

high for short transactions.

To extend the REST architecture for resource-constrained de-

vices, a first solution presented in the literature is given by the

Constrained Application Protocol (CoAP) [16] . CoAP is a protocol
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
ntended to be used in simple devices allowing them to commu-

icate over the Internet. CoAP includes a subset of the HTTP func-

ionalities, optimized for M2M applications. It also supports mul-

icast, very low overhead, and asynchronous message exchanges

ver a user datagram protocol (UDP) [17] . However, also in CoAP,

he HTTP protocol is still present. It has not been designed to sup-

ort persistent communication and, even if Web Sockets have been

ntroduced in the recent draft of HTML 5 (offering a bidirectional

ommunication channel between client and server), they totally

ide the naming scheme that makes REST so powerful: every re-

ource having a standard unique identifier, the URI. The Web Sock-

ts approach results in non-standard solutions for manipulating re-

ources [18] . In order to support collaboration between devices,

here is the need to unify the naming scheme of smart objects and

he URIs. For this purpose, a new communication paradigm has

een presented in the literature based on the “publish–subscribe”

pub/sub) mechanism [19,20] .

Directed diffusion [21] is considered the earliest pub/sub com-

unication paradigm for WSN. It is a data-centric protocol in

hich named data is described by attribute-value pairs. The sub-

criptions are called interests and are broadcasted throughout the

hole WSN. Another early pub/sub middleware for WSN is Mires

22] . It is implemented on top of TinyOS [23] , an event-based op-

rating system for WSNs. In Mires each sensor advertises its top-

cs (e.g. temperature, pressure, luminosity, etc.) to the applications

hrough a sink node. A slightly different programming approach is

sed by TinyCOPS [24] , a component-based middleware that also

rovides a content-based pub/sub service to WSN that tries to

implify the composition of services through components (com-

unication protocol, supported data, and service extensions). Re-

ently, Object Management Group (OMG) has published DDS, an

pen standard for data-centric publish–subscribe middleware plat-

orms with real-time capabilities [25] . TinyDDS [26] is the adopted

ersion of OMG DDS for WSN, based on TinyOS. It is a lightweight

ub/sub middleware that allows applications to interoperate across

he boundary of WSNs and access networks, regardless of their

rogramming languages and protocols.

All of these solutions are strictly coupled with the hardware

latform and they usually need centralized hardware infrastructure

sink nodes or gateways) [27,28] . Also the MQTT protocol intro-

uced by IBM uses hierarchical topic based [29] publish–subscribe

echanism and facilitates the constrained devices by enabling

pushing” [30] data from the cloud rather than polling by con-

trained device for the data from the server. In this case the over-

ay infrastructure is a software component, the broker. The broker

s responsible for distributing messages to interested clients based

n the topic of a message. In the sensor domain, IBM has come up

ith yet another protocol MQTT for Sensor Networks (MQTT-SN)

31] which is designed in such a way that the protocol is agnostic

f the underlying networking services.

From the devices availability point of view, there are two types

f hardware platforms that can be connected to IoT service plat-

orms. One is off-the-shelf commercial products that are related to

ertain platforms, for example, Cosm consumer products [6] , io-

ridge [32] , NanoRouter [17] , MicroStrain Sensors [33] , and Digi

outers [14] . The second type is an open hardware (develop-

ent/hackable) platform that users can develop themselves, such

s Arduino [34] , mBed [35] , or Nanode [36] . Embracing the open

ource and hardware principles, it is possible to offer a system eas-

ly modifiable to suit the user needs and to be used as the basis for

ew products in different scenarios.

Different solutions have been proposed in order to bring the IoT

aradigm on the Arduino platform. In the healthcare field, a textile

ersion of the Arduino platform, called LilyPad [37] , has been used

o bridge wearable medical devices to IoT enabled infrastructure

sing a mobile device as gateway. In [38] , authors propose a model
net of Things: The ASIP programming model, Computer Commu-

http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 3

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

t

u

d

i

a

t

t

O

r

n

s

n

p

4

o

i

o

C

d

H

c

p

b

i

i

t

l

o

t

p

t

t

h

c

a

[

[

o

t

c

W

A

c

I

a

t

f

c

e

t

t

p

t

3

g

a

t

i

n

c

s

Fig. 1. ASIP simplified class diagram.

t

A

c

r

s

S

c

t

c

m

t

m

u

a

p

b

3

v

r

h

o

e

p

p

m

i

b

p

c

a

A

p

t

a

p

o enable the event reading and the controlling of electrical devices

sing a master controller that acts as a gateway that is a stan-

ard PC. In the energy monitoring scenario, [39] describes a non-

ntrusive load monitoring system for domestic appliances where

 web server is embedded on the Arduino board. These solu-

ions embed HTTP web servers on board that make easier to fetch

he exposed information in one-to-one client-server connections.

ur aim is to avoid the presence of local gateways or embedded

esource-consuming web servers, offering the possibility to coordi-

ate inter-connected micro-controllers through Internet providing

upport for networked boards with different strategies: socket con-

ections, bridging devices, and MQTT-based pub/sub messaging.

Pairwise evaluations and comparisons of HTTP, CoAP and MQTT

rotocols have been reported in the literature. For example, [40–

2] compares the performance of MQTT, CoAP, and HTTP in terms

f end-to-end transmission delay and bandwidth usage [41] and

n terms of energy consumption and response time [42] . Based

n their results, MQTT delivers messages with lower delay than

oAP when the packet loss rate is low, while, due to its con-

ensed header and small packet size, CoAP is more efficient than

TPP in transmission time and energy usage. Regarding the power

onsumption of the devices, there is a detailed experiment for

ower consumption comparison between HTTP and MQTT on mo-

ile devices [43] . The result shows that the MQTT protocol wins

n all tests, which include establishing, maintaining, and receiv-

ng/sending messages [44] . From these considerations, we choose

o implement a simple text-based service discovery mechanism to

et several resource-constrained microcontrollers to discover each

ther with their functionalities and to exchange messages among

hem.

From the programming model point-of-view, in order to ex-

ose sensors and actuators as services, the components connected

o the micro-controller need to be programmed individually to

ake into account both low-level implementation details and the

igh-level requirements of the application of which the micro-

ontroller is part. Several solutions have been proposed in order to

ddress the issue of abstracting low-level implementation details

45] . Most of them are tightly targeted to particular applications

46] or hardware platforms [23] . Instead of relying on a dedicated

perating system, in this paper we propose that sensors and ac-

uators are exposed by micro-controllers as services , so that more

omplex software applications can be built by composing them.

hen restricted to the Arduino platform, the closest protocol to

SIP is the Firmata protocol [47] , which enables a computer to dis-

over, configure, read and write a microcontrollers general purpose

O pins. However, ASIP has a smaller footprint than Firmata (using

round 20% less RAM). And uniquely, it supports high level abstrac-

ions that can be easily attached to hundreds of different services

or accessing sensors or controlling actuators. These abstractions

an decouple references to specific hardware, thus enabling differ-

nt microcontrollers to be used without software modification. Al-

hough ASIP is currently implemented for Arduino boards, the pro-

ocol is hardware agnostic. Moreover, as shown below, ASIP sup-

orts communication over TCP and MQTT, while Firmata is limited

o serial communication.

. The ASIP programming model

In this section we describe the Arduino Service Interface Pro-

ramming model (ASIP), which has been developed to simplify

nd accelerate the development of applications in the IoT. Applica-

ions for the IoT typically involve heterogeneous components, both

n terms of software and hardware. Machine-to-machine commu-

ications are the prevalent mechanism for coordination and exe-

ution of tasks. The ASIP programming model addresses this is-

ue, together with a mechanism to integrate with existing pro-
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
ocols such as MQTT. We note that, while providing a seemingly

rduino-specific solution, our programming model is generic and

an be implemented on top of microcontrollers with very limited

esources. Our choice for Arduino has been motivated by the open-

ource nature of the project and by the availability of hardware.

pecifically, ASIP builds upon the notion of “service” for micro-

ontrollers: a service could be a temperature sensor, a servo mo-

or, or any other input or output device connected to a micro-

ontroller. Each micro-controller can be controlled using textual

essages, and each micro-controller reports data using messages

o so-called clients . The core ASIP implementation running on a

icro-controller deploys one or more services: this enables the re-

sability of both micro-controller-specific code and of client code,

nd it opens the possibility of model-based development for com-

lex applications involving multiple micro-controllers, as described

elow.

In summary, the ASIP model provides:

• A software architecture for code running on the micro-

controller.

• A textual protocol for messages exchanged between ASIP clients

and micro-controllers implementing the software architecture

mentioned above.

• A network architecture for the connection between micro-

controllers and client that can be written in several high-level

programming languages.

These various components are described in the sections below.

.1. Basics: software architecture

As mentioned above, at the core of ASIP is the notion of ser-

ice. We model it by means of the class AsipServiceClass (see

ight-hand side of Fig. 1). Each service, e.g. a distance sensor, must

ave a unique ID and it can reuse existing Arduino libraries devel-

ped specifically for the given component (sensor, shield, motor,

tc.) to obtain data from that component. Each service must im-

lement the following methods:

• begin() , to set up the service appropriately, for instance by

initializing the pins or by enabling interrupts.

• processRequest() , to process messages for the service dis-

patched by the class AsipClass , as described below.

If the service returns values, for instance in the case of a tem-

erature or distance sensors, then the service should also imple-

ent the method reportValues() . This method converts data

nto ASIP messages, using the syntax of ASIP messages described

elow. A number of services is already provided with the ASIP im-

lementation that we describe in this paper, but additional ones

ould be defined by implementing an AsipServiceClass to handle

ppropriate messages. It is assumed that all implementations of

SIP support at least the basic Input/Output ASIP service, which

rovides basic I/O operations at the pin level. On an Arduino board

hese operations include writing and reading values from digital

nd analog pins, thus permitting the control of LEDs or reading

otentiometer values.
net of Things: The ASIP programming model, Computer Commu-

http://dx.doi.org/10.1016/j.comcom.2016.03.016

4 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

Request explicit distance measurement:

Header Separator Tag Terminator

‘D’ , ‘M’ ‘\ n’

Request distance autoevents:

Header Separator Tag Separator Period Terminator

‘D’ , ‘A’ , Numeric value in milliseconds ‘\ n’

Reply:

Header Separator Tag Separator Distance in CM Terminator

‘D’ , ‘M’ , Numeric digits ‘\ n’

Fig. 2. ASIP messages: example of syntax for a distance service.

n

3

w

T

m

c

i

l

r

h

3

a

t

i

t

t

s

p

s

o

3

d

t

d

m

a
Service are put together in the class AsipClass (left-hand-

side of Fig. 1 . The AsipClass is the core of ASIP and is responsible

for managing services. The AsipClass on the microcontroller is con-

nected to a stream, which can be a serial channel, a TCP socket or

a MQTT pub/sub mechanism (please refer to the system architec-

ture described below for additional details). The AsipClass must

implement a run method that executes the main ASIP loop. Be-

fore the execution of the main loop, an initialization mechanism is

called to set up the communication streams. The main loop per-

forms the core operations to handle ASIP, acting like a dispatcher

of messages to/from services. First of all, it listens for incoming

messages, and redirects them to the proper service by recognizing

the service identifier in the ASIP message header. A particular set

of messages, called systems messages, are not handled though a

service but are processed through proper methods supplied by the

AsipClass. Moreover, the loop allows services to reply continuously

in case periodic status messages have been enabled, for instance to

report a distance reading at regular time intervals.

3.2. The syntax of ASIP messages

Messages exchanged between micro-controllers and clients are

plain text messages with a standard format. They can be divided

into command messages and event messages. The first are sent by

ASIP clients to micro-controllers, while the latter are sent on the

opposite direction by the micro-controller. ASIP messages consist

of an ASCII header, followed by ASCII character fields separated by

commas, and terminated by the newline character.

Command (or request) messages to a micro-controller begin

with a single character to indicate the desired service, followed by

a comma and a single character tag to identify the nature of the

request. Requests that contain a parameter are separated from the

tag with a comma. As an example, the message I,d,13,1 invokes

the service with ID I (typically, an Input/Output service), request-

ing an operation d (in this case it is a request to write on a digital

pin) with parameters 13 and 1. These parameters indicate, respec-

tively, pin 13 and the value 1 (high).

In the other direction, reply messages from the microcontroller

begin with one of the following characters:

• “@” defines an event message responding to a request or auto-

event. These messages are composed of three bytes following

the “@” character: a character indicating the service, a comma,

and the tag indicating the request that triggered this event re-

spectively.

• “ ∼ ” defines an error message reporting an ill formed request

or some other problems affecting the server. These messages

contain the service and tag associated with the error followed

by an error number and error string.

• “!” defines an informational or debug message consisting of un-
formatted ASCII text terminated by the newline character. i

Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
Some reply event messages have a payload with a variable

umber of fields with the following format:

• a numeric value that precedes the message body indicating the

number of fields in the body

• curly brackets used to indicate the start and end of fields in the

message body

• if a message contains sub fields, these are separated by a colon

(for instance, in case of analog pin mapping message)

• all numeric values are expressed as ASCII text digits and are

decimal unless otherwise stated.

Fig. 2 reports the syntax for a distance service.

.3. System architecture

Micro-controllers can be connected to clients in a number of

ay: directly using a serial connection (over USB), by means of

CP sockets, or using an MQTT-based publish/subscribe messaging

echanism.

Serial sockets and TCP connections are used in point-to-point

onnections, when a client has exclusive access to a device, for

nstance for controlling a robot. The MQTT-based architecture al-

ows sending and receiving data to and from multiple devices, thus

esulting useful in applications such as sensor networks (smart

omes, etc.).

.3.1. Serial connection

The serial connection uses the USB bus in order to connect to

 micro-controller from a computer. This is the basic configura-

ion for the ASIP architecture. The micro-controller must run an

mplementation of the AsipClass described above, with at least

he implementation of the Input/Output Service. Theoretically, on

he computer side of the connection, a simple serial monitor could

end instructions and read values being reported. In practice, ap-

lications are written in a high-level language to make use of the

ervices installed on the micro-controller. Various implementations

f the serial client exist for different languages:

• Java: https://github.com/fraimondi/java-asip

• Python: https://github.com/gbarbon/python-asip

• Racket: https://github.com/fraimondi/racket-asip

• Erlang: https://github.com/ngorogiannis/erlang-asip

.3.2. TCP and MQTT bridges

Before introducing the TCP and the MQTT architecture we intro-

uce the notion of bridge to address the issue of network connec-

ion for micro-controllers. Indeed, a micro-controller such as an Ar-

uino board needs an additional Ethernet or a wi-fi device to com-

unicate on a network. This device may be an Arduino shield, or

n external device. In the first case, the Arduino ASIP client sketch

ntegrates the code needed to talk to the shield. In the latter case,
net of Things: The ASIP programming model, Computer Commu-

https://github.com/fraimondi/java-asip
https://github.com/gbarbon/python-asip
https://github.com/fraimondi/racket-asip
https://github.com/ngorogiannis/erlang-asip
http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 5

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

i

r

i

n

m

I

f

t

c

m

a

m

p

2

f

E

t

t

A

b

3

a

c

m

p

t

c

a

i

i

t

n

n

m

t

c

v

n

3

v

t

c

t

t

s

t

e

d

t

t

s

C

a

p

t

a

3

a

p

c

t

n

b

t

a

h

f

t

n

i

s

M

v

i

t

c

t

s

t

f

l

o

s

s

a

s

t

t

t

t

c

a

I
nstead, the Arduino sketch can be connected using a standard se-

ial connection to the external device and it does not require mod-

fications. Thus, it is the external device that will take care of the

etwork communications. We call this kind of devices bridges .

The bridge logic is very simple: the bridge listens to incoming

essages from the network and routes them to the serial port.

n the other direction, the bridge listens to incoming messages

rom the micro-controller over its serial connection and it redirects

hem to the network interface. A bridge does not implement ASIP

lasses or services, because its only function is to permit the com-

unication between different transmission medium. In order to

void the presence of errors in the conversion between two trans-

ission channels, error checking can be implemented.

Bridges can be implemented using different kinds of hardware

latforms. For the testing phase of this paper, the Raspberry PI

 has been used as hardware platform. However, lighter plat-

orms can be adopted [48] and we have successfully employed the

SP8266 chip, a lightweight SoC that features low power consump-

ion and includes a wi-fi antenna 1

Bridges can be employed both for TCP and for MQTT connec-

ions, as explained below. The Java and Python implementations of

SIP clients include bridges for TCP and for MQTT. The adoption of

ridges brings some advantages:

• a single board can be used by different clients;

• use of low cost devices instead of expensive Arduino shields

(like the Ethernet and Wi-Fi shields);

• use of devices with very low power consumption;

• reduction of the workload on the Arduino board.

.3.3. TCP

Connecting to an Arduino through TCP may require the

doption of a bridge, depending on how the micro-controller is

onnected to the network. A micro-controller implementing ASIP

essaging over TCP must have an IP address and a dedicated TCP

ort open to connections. Once a client opens a connection to

he address and port creating a socket, the exchange of messages

ontinues identically to the serial communication. In fact, client

pplications developed to work over serial communication can be

mmediately translated into TCP-based applications just by replac-

ng the client connection class. Code for TCP clients is provided in

he Java and Python repositories mentioned above.

Even if the micro-controller is limited to single connections,

othing prevents the client from opening connections to multiple,

etworked devices, thus enabling the coordination of networked

icro-controllers. Notice that sockets can be created even over in-

ernet, thus enabling the control of possibly very remote micro-

ontrollers. In addition, if an appropriate DNS record can be pro-

ided for each micro-controller, standard domain naming mecha-

isms can be used to identify boards and bridges.

.3.4. MQTT

ASIP messages can be exchanged using MQTT. The main ad-

antage is in the implementation of clients that need to connect

o multiple boards: instead of opening a socket for each micro-

ontroller, the client can simply subscribe and publish messages

o a broker. Similarly, MQTT bridges forward serial messages from

he board to publish actions for appropriate topics and route sub-

cribed messages to the serial channel. More in detail, we assume

hat each micro-controller is identified by a unique name and we

mploy the following scheme for topics:

• Messages from a specific board are published by the

board (or by its bridge) to the MQTT broker with topic
1 See https://github.com/michaelmargolis/mdx _ prototypes/tree/51145bd1347625

f9bc4e79b7eb11726f243a401/ASIP/Lua .

w

p

Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
asip/BOARDNAME/out , where BOARDNAME is the unique

identifier of the micro-controller.

• Messages to a specific board are published by clients to the

MQTT broker with topic asip/BOARDNAME/in .

In practical terms, an MQTT bridge for a board should subscribe

o topic asip/BOARDNAME/in and forward messages received on

his topic to the serial connection. The same bridge should publish

erial messages from the board to topic asip/BOARDNAME/out .
onversely, a client of a specific board should subscribe to topic

sip/BOARDNAME/out to receive messages from the board, and

ublish messages to asip/BOARDNAME/in to send messages to

he board.

Implementations of MQTT bridges and sample clients are avail-

ble in the Java and Python repositories.

.4. Service-level discovery mechanism

In order to let the devices know the presence of other devices

nd their embedded sensors/actuators exposed as services, we pro-

ose a service discovery overlay that exploits the MQTT proto-

ol capabilities. We follow the approach presented in [49] , where

he service discovery functionality is realized by intelligent buses,

amely the context , service and control buses. All communications

etween devices can happen in a round-about way, via one of

hem. Each of the buses handles a specific type of message/request

nd is realized by different kinds of MQTT topics. This approach

as been proven useful in different application scenarios, spanning

rom ambient assisted living [50] , mobile [51] , and energy moni-

oring [52] infrastructures.

In particular, as soon as a micro-controller is turned on, it an-

ounces his presence publishing a message containing his unique

dentifier on the service bus topic (asip/servicebus) and it

ubscribes to the same topic in order to be notified by the

QTT broker about existing (already announced) or new ser-

ices to be announced. In this way, all the devices can discover

ts presence and start to listen for its messages subscribing to

he relative context bus topic (asip/BOARDNAME/out). Micro-

ontrollers, if capable, can also accept commands, subscribing to

heir control bus (asip/BOARDNAME/in) and waiting for mes-

ages published by other micro-controllers/services on the same

opic. Fig. 3 shows an example of a possible interaction among dif-

erent micro-controllers (B1,...,B4) and a remote service trans-

ating MQTT topics to REST resources (the description of this kind

f service is out of the scope of this paper, see [18,44] for pos-

ible solutions). A micro-controller can also expose different sen-

ors/actuators as services (B4 in the figure announcing sensor S1
nd actuator S2). In the example, B4 announces itself and its sen-

ors/actuators publishing the relative identifiers on the service bus

opics:

PUBLISH asip/servicebus B4
PUBLISH asip/servicebus/B4 S1
PUBLISH asip/servicebus/B4 S2

hen, it starts publishing data from B4/S1 on the relative con-

ext bus topic and it subscribes to the context bus topic relative

o B4/S2 , waiting for incoming commands:

PUBLISH asip/B4/S1/out data
SUBSCRIBE asip/B4/S2/in

In the depicted example, micro-controllers B1 , B2 , and B3 are

onsumers of B4/S1 and they have already subscribed to the rel-

tive context bus topic, so they start receiving the required data.

n the meantime, the REST service exposes B4/S1 and B4/S2 as

eb resources and can send a command to the actuator B4/S2
ublishing on the relative control bus topic:
PUBLISH asip/B4/S2/in command

net of Things: The ASIP programming model, Computer Commu-

https://github.com/michaelmargolis/mdx_prototypes/tree/51145bd1347625df9bc4e79b7eb11726f243a401/ASIP/Lua
http://dx.doi.org/10.1016/j.comcom.2016.03.016

6 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

Fig. 3. An application scenario exploiting the service discovery functionality.

Fig. 4. Serial testing set-up.

t

o

t

t

o

l

o

w

fi

s

t
4. Quantitative evaluation

In this section we provide a quantitative experimental evalua-

tion of ASIP. In particular, we to assess the throughput (how many

messages per second can be sent?) and the latency (what is the

delay between a request and a response?) for the possible network

architectures described above: direct serial connection, TCP socket,

and MQTT publish/subscribe.

4.1. Throughput

In this work we define throughput for ASIP as the number of

messages per second that can be sent over a communication chan-

nel. Intuitively, this corresponds to the maximum frequency of up-

dates that can be achieved, for instance to control a robot.

4.1.1. Experimental set-up

Fig. 4 sketches our experimental set-up. At a high level, we use

a signal generator to generate periodic impulses that are received

by a micro-controller running ASIP on input pin 2. A client is con-

nected to the Arduino using one of the possible channels (serial,

TCP, MQTT) and it sets the value of output pin 13 according to

the value read on pin 2. We then use an external oscilloscope to

track the original signal entering pin 2 and the signal generated

by the ASIP client on pin 13 to make sure that the frequencies are

the same. If this is the case, then ASIP can process this number of

messages per second. More in detail, in Fig. 4 :

• The Arduino depicted on top acts as the signal generator by

emitting a signal on pin 9. The Arduino is running a simple

sketch that generates a periodic signal with a specific frequency

(in our sketch this value can be changed on-the-fly).

• The Arduino depicted on the lower part of the figure runs ASIP

and is connected to a client through pins 0 and 1.

• The Raspberry Pi runs ASIP client code, which could be written

in Java or in Python. Notice that the Raspberry Pi could be re-

placed by a laptop connected to the Arduino using a USB con-

nection, or it could be replaced by a bridge for TCP or MQTT,

which could in itself be a Raspberry Pi or an ESP 8266 chip.
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
• An external two-input oscilloscope (not depicted in the figure)

compares the signal generated by the Arduino depicted on top

with the signal generated on pin 13 of the Arduino depicted on

the bottom.

We used an oscilloscope in order to see the difference between

he wave generated by the wave generator and the resulting wave

btained after “travelling” through the ASIP network. This allowed

o have a visual feedback about the throughput, in order to check

he maximum rate allowed by ASIP. An example output for the

scilloscope is depicted in Fig. 5 . In this figure, the signal in the

ower part is the signal from the signal generator, while the signal

n top is the signal from the ASIP board (the drift between the two

aves is the latency, assessed separately in the section below). The

gure depicts a frequency for which the ASIP client can track the

ignal correctly, because the number of peaks is the same in both

races. When the frequency of the original signal increases above a
net of Things: The ASIP programming model, Computer Commu-

http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 7

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

Fig. 5. Oscilloscope output.

c

s

c

m

s

s

s

s

t

4

a

m

o

t

s

j

b

M

P

t

c

r

n

c

h

p

A

o

f

p

m

m

p

b

a

J

p

i

m

t

c

t

t

t

t

4

h

a

t

v

o

t

s

i

1

4

f

F

ertain threshold, the top wave fails to track the signal and misses

ome of the peaks.

Notice that the logic of the test is all performed in the ASIP

lient. The incoming signal from pin 2 is sent through an ASIP

essage from Arduino to the client. The client processes the mes-

age, reads the value and establishes the value of pin 13. Finally it

ends a message to the Arduino with the new value for pin 13. Es-

entially, the aim of this set-up is to replicate the behavior of the

ignal generator using ASIP. The parameters that can be varied are:

• Type of connection: serial, TCP or MQTT.

• Software for the ASIP client: Java or Python language.

• Hardware where the client is running: Raspberry Pi or other

machine. We have used a Macbook Pro and a Macbook Air (see

below for details).

• In the case of networked connection: hardware and software

configuration of the bridge.

• In the case of MQTT: broker location. Notice that we employ

MQTT QoS level 0 (“at most once”).

We report detailed experimental results in the following sec-

ion.

.1.2. Results

We present throughput experimental results separately for Java

nd for Python clients. The possible hardware configurations are:

• MacBook Pro: 2.4 GHz Intel Core i7, 16GB of RAM, running Mac

OS X 10.10.

• MacBook Air: 1.7 GHz Intel Core i5, 4GB of RAM, running Mac

OS X 10.8.

• RPi 2: Raspberry Pi, 900 MHz quad-core ARM CPU, 1GB RAM,

running the default Raspbian Linux image.

• Micro-controller: Arduino Uno running the default ASIP code

available at: https://github.com/michaelmargolis/asip

Additionally, in terms of network architecture for the experi-

ents, we employ the following abbreviations:

• MacBook Pro, MacBook Pro Air: the client and the TCP bridge

(or MQTT broker) all run on the same machine to which the

Arduino is connected using a USB cable.

• RPi 2: the client runs on a Raspberry Pi 2. In the case of TCP

or MQTT connections, the bridge or the broker run on a sep-

arate Raspberry Pi. The two Raspberry Pi are connected using

Ethernet cables and a router.
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
• RPi 2 bridge + MBP client: in this configuration the software

client runs on the MacBook Pro while the TCP bridge (or the

MQTT broker) runs on the Raspberry Pi. Connection is through

a router and Ethernet cables.

• RPi 2 bridge + MBA client: as above, but the client runs on the

MacBook Air.

• RPi 2 + MB broker: the MQTT broker runs on the MacBook Air

and the client runs on the Raspberry Pi.

Fig. 6 a presents the experimental for the assessment

f throughput using Java clients. In this set-up we employ

he code available at https://github.com/fraimondi/java-asip . The

erial library is provided by JSSC (https://code.google.com/p/

ava- simple- serial- connector/) while the MQTT library is provided

y the Paho Java client (https://eclipse.org/paho/clients/java/). The

acBook Pro runs Oracle JVM 1.8, the MacBook Air and Raspberry

i run Oracle JVM 1.6.

Fig. 6 b presents the experimental for the assessment of

hroughput using Python clients. In this set-up we employ the

ode available at https://github.com/gbarbon/python-asip . The se-

ial library is provided by pySerial (http://pyserial.sourceforge.

et/) while the MQTT library is provided by the Paho Python

lient (https://eclipse.org/paho/clients/python/). All experiments

ave been run using Python 2.7 but notice that the code is com-

atible with Python 3.

Discussion : The results presented in Fig. 6 a and b show that

SIP can achieve a rate of messages up to 200 messages per sec-

nd when the serial connection is used. In this case the limiting

actor is the CPU speed of the client. As expected, TCP and MQTT

erformance is inferior to direct serial communication, but it is still

ore than adequate even for applications that require continuous

onitoring, such as controlling a robot. The reduction in through-

ut is associated to the multiple communication layers introduced

y the network libraries. Java outperforms Python in all tests; we

rgue that this is caused by the better performance of the Oracle

VM and its Just-in-Time compiler with respect to the Python inter-

reter. Interestingly, the throughput for TCP and MQTT connections

s similar, with only minor differences in some circumstances. As

entioned above, MQTT connections are run at QoS level 0, and

herefore there is not guarantee of message delivery, while TCP

onnections have built-in retransmission and sequencing guaran-

ees. On the other hand, MQTT messaging allows broadcasting and

he easy deployment of sensor networks.

Overall, we consider these results extremely promising and, in

he case of serial connections, very close to the physical capacity of

he communication channel, as explained in the following sections.

.2. Latency

Testing for latency is performed using a single board. At a very

igh level, the test is performed by connecting an output pin with

n input pin on the board, and then writing an ASIP client that sets

he first pin to high and waits for a notification for the change of

alue of the second pin. The time difference between setting the

utput pin and measuring the change in the input pin is assumed

o be the latency.

Similarly to the throughput test, we perform an assessment for

erial connections (see Fig. 7 a) and for networked architectures us-

ng either TCP or MQTT (see Fig. 7 b).

For each one of the configurations described above we perform

00 tests and we take the average value.

.2.1. Latency results

As in the case of throughput, we perform latency measures both

or Java and for Python clients. The results for Java are reported in

ig. 8 a, while the results for Python are reported in Fig. 7 b.
net of Things: The ASIP programming model, Computer Commu-

https://github.com/michaelmargolis/asip
https://github.com/fraimondi/java-asip
https://code.google.com/p/java-simple-serial-connector/
https://eclipse.org/paho/clients/java/
https://github.com/gbarbon/python-asip
http://pyserial.sourceforge.net/
https://eclipse.org/paho/clients/python/
http://dx.doi.org/10.1016/j.comcom.2016.03.016

8 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

200

100

70

- - -

80 80

12

80 80

-

80 80

12

80

65

20

0

20

40

60

80

100

120

140

160

180

200

MacBook Pro MacBook Air RPi 2 RPi 2 bridge
 + MBP client

RPi 2 bridge
 + MBA client

RPi 2 bridge
 + MB broker

T
hr

ou
gh

pu
t [

m
sg

/s
]

Testbed configuration

Serial

TCP

MQTT

a

90

60

40

- - -

80

50

20

80

50

-

50 50

14

80

50

10

0

20

40

60

80

100

120

140

160

180

200

MacBook Pro MacBook Air RPi 2 RPi 2 bridge
 + MBP client

RPi 2 bridge
 + MBA client

RPi 2 bridge
 + MB broker

T
hr

ou
gh

pu
t [

m
sg

/s
]

Testbed configuration

Serial

TCP

MQTT

b

Fig. 6. Throughput for Java (a) and Python (b) clients with various testbed network configurations.

a

w

t

t

I

w

s

m

t

A

t

c

7

a

a

(

e

p

p

T

3

a

i

a

m

t

1

In nearly all case, with the exception of two configurations run-

ning on resource-limited Raspberry Pi, the latency remains below

15 ms. We consider these very positive results, as the physical

limitations of the serial communication channel introduce a la-

tency of approximately 6.7 ms. This figure is computed by consid-

ering that 32 ASCII characters are exchanged in the ASIP messages

for this application, by considering the additional bits required in

each serial frame, and by considering the serial speed of 57,600

baud.

It is interesting to notice that latency is only minimally affected

by the choice of the programming language and by the communi-

cation channel.

5. Qualitative evaluation

In this section we provide examples of how ASIP can be used

and extended: we present how a simple distributed application can

be built in Python, how a robot can be driven using a Proportional-

Integral-Derivative (PID) controller [53] using Java and, finally, we

show how to add a new service, both on the micro-controller and

on the client code.

5.1. Building a distributed application

In this section we build a simple distributed application to coor-

dinate two Arduino boards connected to the network using MQTT.

In particular, an input button is connected to a board, and a LED is

connected to the other board. Each board employs a Raspberry Pi

as a bridge to connect to an MQTT broker, as depicted in Fig. 9 . The
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
im of the application is to turn on the LED on the second board

hen the input button is pressed on the first board. The logic of

he application is implemented by an ASIP client (not depicted in

he figure). We assume that the Arduino boards have the standard

/O service installed and that there is an MQTT broker in the net-

ork with IP address 192.168.0.1.

From a practical point of view, the developer needs to in-

tall ASIP on the two Arduino boards from https://github.com/

ichaelmargolis/asip , set up the two Raspberry Pi using either

he Python or the Java MQTT bridges and, finally, implement an

SIP client. This client can run on a machine or on one of the

wo Raspberry Pi depicted in the figure. Excerpts for a Python

lient are presented in Listing 1 . This client defines a class (line

) composed of two boards of class SimpleMQTTBoard (lines 10

nd 11), whose implementation is provided by the Python library

vailable on github. Each board needs to be connected to a Broker

specified on line 42) and is identified by an ID. After initializing

nvironment variables (lines 13–17) and setting the pins to appro-

riate modes (lines 22 and 23), the logic of the application is im-

lemented in the loop of the main class between lines 29 and 39.

he loop simply reads the state of the input pin on board1 (line

1). If the state has changed, then the state of the LED is changed

ppropriately (lines 36 or 38).

Notice how the communication mechanism is abstracted in this

mplementation. The physical location and the connection mech-

nism is irrelevant for the logic of the application in the main

ethod: the only modification required to support a serial connec-

ion (or a TCP connection) is the definition of the boards on lines

0 and 11.
net of Things: The ASIP programming model, Computer Commu-

https://github.com/michaelmargolis/asip
http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 9

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

Fig. 7. The hardware set-ups used for latency testing: (a) serial connection and (b) TCP and MQTT connection.

f

5

a

m

f

t

a

T

W

a

t

r

c

o

f

t

i

a

J

t

s

l

e

C

w

t

o

a

n

i

1
The expected performance in terms of latency and throughput

or this kind of applications has been discussed in Section 4 .

.2. Controlling a robot

In this section we show how a robot can be controlled over

 TCP connection. In particular, we present the code to imple-

ent a line following algorithm for the Middlesex Robotic Plat-

orm (MIRTO) [54] . For the purposes of this example, we employ

hree infrared sensors mounted under the robot and we exploit the

bility of controlling each wheel individually to the desired speed.

he line to follow is a strip of black electric tape on a white table.

hen the infrared sensors are on the white surface they report

 value close to 0, while when the sensors are perfectly on black

hey report values close to 10 0 0. Any value in the 0–10 0 0 range

epresent a partial overlap of the sensor with the black tape.

The robot is equipped with a bespoke PCB using an Atmel 328P

hip, compatible with an Arduino Mini. The chip runs a version

f ASIP including, in addition to the standard I/O service, services

or infrared sensors and for wheel control. The Arduino code for

his robot is available at https://github.com/michaelmargolis/asip

n the sketch called mirto.ino . The ASIP client for this service

re available at https://github.com/fraimondi/java-asip in the class

MirtoRobot.

The idea of a proportional-integral-derivative controller (PID) is

hat an error can be computed from the reading of the infrared

ensors. The greater the error, the farther away the robot from the

ine. We set a target speed and the correction of this speed, for

ach wheel, is proportional to three components:
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
• The current error (Proportional component)

• The rate of change of the error (the Derivative component)

• The sum of the errors so far (the Integral component).

This is normally capture by the following formula:

(t) = K p e (t) + K i

∫ t

0

e (τ) dτ + K d

d

dt
e (t)

here C (t) is the correction at time t , e (t) is the error computed at

ime t and K p , K i , K d are the coefficients for the three components

f the correction mentioned above.

Excerpts from the Java implementation for the PID algorithm

re presented in Listing 2 . The key points here are:

• Line 6 sets up a TCP connection to a bridge at IP address

192.168.0.1. This is the IP address of the Raspberry Pi running

on the robot.

• The values of the infrared sensors are read at lines

10–12. The method getIR is provided by the class

JMirtoRobotOverTCP that is available at https:

//github.com/fraimondi/java-asip .

• The values of the infrared sensors are used at lines 16, 20 and

21 to compute, respectively, the current error and the correc-

tion to be applied to the motors.

• The speed of each wheel is updated at line 23 with the method

setMotors , which is provided by JMirtoRobotOverTCP.

The Java code can be run on a client connected to the same

etwork to which the robot is connected. A typical line follow-

ng algorithm performs smoothly at a frequency of approximately

0 Hz, which can be easily achieved given the results presented
net of Things: The ASIP programming model, Computer Commu-

https://github.com/michaelmargolis/asip
https://github.com/fraimondi/java-asip
https://github.com/fraimondi/java-asip
http://dx.doi.org/10.1016/j.comcom.2016.03.016

10 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

10.9 10.6
12.2

- - -

11.9
10.2

14 12.9 13.4

-

11.5 11.9
14.8 14.1 13.7

38.4

0

5

10

15

20

25

30

35

40

45

50

MacBook Pro MacBook Air RPi 2 RPi 2 bridge
 + MBP client

RPi 2 bridge
 + MBA client

RPi 2 bridge
 + MB broker

La
te

nc
y

[m
s]

Testbed configuration

Serial TCP MQTT
a

11.1 11.1
13.2

- - -

11.4 11

14.8 13.8 13.5

-

13.6 13

16.44 16.5
15

45

0

5

10

15

20

25

30

35

40

45

50

MacBook Pro MacBook Air RPi 2 RPi 2 bridge
 + MBP client

RPi 2 bridge
 + MBA client

RPi 2 bridge
 + MB broker

La
te

nc
y

[m
s]

Testbed configuration

Serial TCP MQTT
b

Fig. 8. Latency for Java (a) and Python (b) clients with various testbed network configurations.

Fig. 9. Button and LED application.

i

p

K

5

t

t

r

t

m

i

t

n

a

e

f

t

p

t

i

p

4

c

v

u

A

Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
n the previous section for throughput. A video of this exam-

le is available at this link: https://www.youtube.com/watch?v=

H _ 3766gNcM .

.3. Adding new services

We conclude this section by showing how ASIP can be extended

o include new services that are not yet available in our implemen-

ation. Adding a new service typically involves building code that

uns on the Arduino and client code. In this section we show how

he distance service can be implemented. The first step is to imple-

ent the class AsipServiceClass reported in Fig. 1 . A possible

mplementation is reported in Listing 3 .

This code implements the class asipDistanceClass , ex-

ending asipServiceClass . As a result, the class inherits a

umber of methods required to communicate over a stream etc.,

nd it only needs to implement the actual service to be deliv-

red. Concretely, in Listing 3 this means defining a unique ID

or the service (used in the constructor at line 4) and defining

he commands that can be sent to the service in the method

rocessRequestMsg , as exemplified at line 18 where the dis-

ance service implements a response to the command ‘M’ by call-

ng method reportValues which, in turn (line 27) calls the

rivate method getDistance . This private method (lines 31–

7) is the method that implements the actual service and in the

ase of other services it may employ specific libraries for a ser-

ice, such as for controlling wheels. By compiling this code and

ploading it to the micro-controller it is now possible to send

SIP messages of the form D,M : these will be captured by the
net of Things: The ASIP programming model, Computer Commu-

https://www.youtube.com/watch?v=KH_3766gNcM
http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 11

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

Listing 1. Python example code for two boards connected using MQTT.

Listing 2. Java ASIP implementation for a PID line following robot.

p

s

s

o

4

o

Listing 3. C++ code for the distance service.

Listing 4. Java client for the distance service (excerpts).

p

c

T

h

J

a

p
rocessRequestMsg method that, in turn, will generate a re-

ponse of the form @D,e,1,{0:42} meaning that this is a mes-

age from a Distance service reporting a distance event; there is

nly one distance sensor attached and that its current reading is

2 cm. Additional sensors can be added without any modification

f the code, see line 26 in Listing 3 .
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
Typically, clients are extended to support the new services de-

loyed on the micro-controller. As an example, Listing 4 shows ex-

erpts from the Java client for the distance service described above.

he full code is available in the file DistanceService.java at

ttps://github.com/fraimondi/java-asip .

As in the case of the code running on the micro-controller, the

ava class extends a superclass that provides most of the methods

lready. The new subclass only needs to implement the method to

rocess responses, see line 15. This new class is then ready to be
net of Things: The ASIP programming model, Computer Commu-

https://github.com/fraimondi/java-asip
http://dx.doi.org/10.1016/j.comcom.2016.03.016

12 G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

[

used in conjunction with ASIP applications. Notice how the devel-

oper only needs to implement the specific feature of a service and

can re-use all the networking infrastructure.

6. Conclusion

In this paper we have introduced the Arduino Service Inter-

face Programming model (ASIP). This is an infrastructure that com-

prises:

• a software architecture to manage micro-controllers as clients

of higher-level languages;

• a language for messages exchanged over a range of communi-

cation channels between micro-controllers and clients;

• a communication and network architecture that can be based

on direct serial (USB) links, TCP sockets, and MQTT pub-

lish/subscribe messaging.

We have provided a concrete implementation for Arduino

micro-controllers and libraries for a range of programming lan-

guages. All our source code has been released as open source. We

have performed an extensive assessment of the performance of the

ASIP infrastructure using Java and Python clients both direct se-

rial connections and over networked connections. The results ob-

tained are very encouraging and show that latency and throughput

are adequate for controlling precise navigation of a robot over a

wireless network. Besides performance consideration, we have pro-

vided a qualitative evaluation showing how applications can be de-

veloped by exploiting the existing libraries using only a few lines

of code and delegating the communication and coordination issues

among microcontrollers to the underlying ASIP infrastructure.

For the future, we are currently working on the implementa-

tion of ASIP bridges based on the ESP8266 chip. While this paper

has focused on the practical implementation for Arduino micro-

controllers, we remark that the service model described is inde-

pendent from the actual micro-controller hardware. The only re-

quirement is that the micro-controller should support a communi-

cation stream and support execution loops.

From a system and software engineering point of view we

consider this work a first step in the direction of model-based

development for complex applications involving multiple micro-

controllers. Our aim is to enable automatic code generation from

our service model, working in the direction of verification and cer-

tification activities for complex domains [55] .

References

[1] L. Atzori , A. Iera , G. Morabito , The internet of things: A survey, Comput. Netw.
54 (15) (2010) 2787–2805 .

[2] D. Guinard , V. Trifa , S. Karnouskos , P. Spiess , D. Savio , Interacting with the
SOA-based internet of things: Discovery, query, selection, and on-demand pro-

visioning of web services, IEEE Trans. Serv. Comput. 3 (3) (2010) 223–235 .

[3] D. Guinard , V. Trifa , F. Mattern , E. Wilde , From the internet of things to the
web of things: Resource-oriented architecture and best practices, in: Proceed-

ings of the 2011 Architecting the Internet of Things, Springer, 2011, pp. 97–129 .
[4] Z. Sheng , S. Yang , Y. Yu , A. Vasilakos , J. Mccann , K. Leung , A survey on the IETF

protocol suite for the internet of things: Standards, challenges, and opportuni-
ties, Wirel. Commun. IEEE 20 (6) (2013) 91–98 .

[5] J. Kim , J. Lee , J. Kim , J. Yun , M2m service platforms: Survey, issues, and en-

abling technologies, Commun. Surv. Tutor. IEEE 16 (1) (2014) 61–76 .
[6] Cosm, https://cosm.com , Accessed: 2016-01-29.

[7] ThingSpeak, https://www.thingspeak.com/ , Accessed: 2016-01-29.
[8] Nimbits, https://www.nimbits.com/ , Accessed: 2016-01-29.

[9] Everything, http://evrythng.com/ , Accessed: 2016-01-29.
[10] Oneplatform by Exosite, http://exosite.com/ , Accessed: 2016-01-29.

[11] Axeda Platform, http://www.axeda.com/ , Accessed: 2016-01-29.
[12] SensorCloud, http://www.sensorcloud.com/ , Accessed: 2016-01-29.

[13] NeuAer, http://www.neuaer.com/ , Accessed: 2016-01-29.

[14] iDigi Device Cloud, http://www.digi.com/ , Accessed: 2016-01-29.
[15] W. Colitti , K. Steenhaut , N. De Caro , B. Buta , V. Dobrota , Rest enabled wireless

sensor networks for seamless integration with web applications, in: Proceed-
ings of the Eighth IEEE International Conference on Mobile Ad hoc and Sensor

Systems (MASS), IEEE, 2011, pp. 867–872 .
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
[16] Z. Shelby , K. Hartke , C. Bormann , The constrained application protocol (CoAP),
RFC 7252 (2014) 1–112 .

[17] Sensinode, Accessed: 2016-01-29.
[18] M. Collina , G.E. Corazza , A. Vanelli-Coralli , Introducing the QEST broker: Scal-

ing the IoT by bridging MQTT and rest, in: Proceedings of the Twenty-third
IEEE International Symposium on Personal Indoor and Mobile Radio Commu-

nications (PIMRC), IEEE, 2012, pp. 36–41 .
[19] P.T. Eugster , P.A . Felber , R. Guerraoui , A .-M. Kermarrec , The many faces of pub-

lish/subscribe, ACM Comput. Surv. (CSUR) 35 (2) (2003) 114–131 .

[20] T. Sheltami , A. Al-Roubaiey , A. Mahmoud , E. Shakshuki , A publish/subscribe
middleware cost in wireless sensor networks: A review and case study, in:

Proceedings of the Twenty-eighth IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), IEEE, 2015, pp. 1356–1363 .

[21] C. Intanagonwiwat , R. Govindan , D. Estrin , J. Heidemann , F. Silva , Directed dif-
fusion for wireless sensor networking, IEEE/ACM Trans. Netw. (ToN) 11 (1)

(2003) 2–16 .

[22] E. Souto , G. Guimarães , G. Vasconcelos , M. Vieira , N. Rosa , C. Ferraz , J. Kelner ,
Mires: A publish/subscribe middleware for sensor networks, Pers. Ubiquitous

Comput. 10 (1) (2006) 37–44 .
[23] P. Levis , S. Madden , J. Polastre , R. Szewczyk , K. Whitehouse , A. Woo , D. Gay ,

J. Hill , M. Welsh , E. Brewer , et al. , Tinyos: An operating system for sensor
networks, in: Proceedings of the 2005 Ambient Intelligence, Springer, 2005,

pp. 115–148 .

[24] J.-H. Hauer , V. Handziski , A. Köpke , A. Willig , A. Wolisz , A component frame-
work for content-based publish/subscribe in sensor networks, in: Proceedings

of the 2008 Wireless Sensor Networks, Springer, 2008, pp. 369–385 .
[25] O. OMG , Data Distribution Service for Real-Time Systems, Technical Report,

Technical Report OMG Available Specification formal/07-01-01, OMG, 2006 .
[26] P. Boonma , J. Suzuki , Self-configurable publish/subscribe middleware for wire-

less sensor networks, in: Proceedings of the Sixth IEEE Conference on Con-

sumer Communications and Networking Conference (CCNC), IEEE Press, 2009,
pp. 1376–1383 .

[27] A. Castellani , N. Bui , P. Casari , M. Rossi , Z. Shelby , M. Zorzi , Architecture and
protocols for the internet of things: A case study, in: Proceedings of the Eighth

IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), IEEE, 2010, pp. 678–683 .

[28] Q. Zhu , R. Wang , Q. Chen , Y. Liu , W. Qin , Iot gateway: Bridgingwireless sensor

networks into internet of things, in: Proceedings of the Eighth IEEE/IFIP In-
ternational Conference on Embedded and Ubiquitous Computing (EUC), IEEE,

2010, pp. 347–352 .
[29] U. Hunkeler , H.L. Truong , A. Stanford-Clark , MQTT-SA publish/subscribe pro-

tocol for wireless sensor networks, in: Proceedings of the Third International
Conference on Communication Systems Software and Middleware and Work-

shops (Comsware 2008), IEEE, 2008, pp. 791–798 .

[30] M. Franklin , S. Zdonik , Data in your face: Push technology in perspective, in:
ACM SIGMOD Record, 27, ACM, 1998, pp. 516–519 .

[31] A. Stanford-Clark , H.L. Truong , MQTT for sensor networks (MQTT-S) protocol
specification, Int. Busi. Mach. Corp. (2008) 1–28 .

[32] ioBridge - Connect things, http://iobridge.com/ , Accessed: 2016-01-29.
[33] Lord sensing MicroStrain, http://www.microstrain.com/ , Accessed: 2016-01-29.

[34] Arduino, http://www.arduino.cc/ , Accessed: 2016-01-29.
[35] ARMmbed, http://mbed.org/ , Accessed: 2016-01-29.

[36] nanode, http://www.nanode.eu/ , Accessed: 2016-01-29.

[37] LilyPad Arduino Main Board, https://www.arduino.cc/en/Main/
ArduinoBoardLilyPad/ , Accessed: 2016-01-29.

[38] H.G. Cerqueira Ferreira , E. Dias Canedo , R.T. De Sousa , IoT architecture to en-
able intercommunication through REST API and UPnP using IP, ZigBee and ar-

duino, in: Proceedings of the Ninth IEEE International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob), IEEE, 2013,

pp. 53–60 .

[39] P. Barsocchi , E. Ferro , F. Palumbo , F. Potorti , Smart meter led probe for real–
time appliance load monitoring, in: Proceedings of the 2014 IEEE SENSORS,

IEEE, 2014, pp. 1451–1454 .
[40] A. Al-Fuqaha , M. Guizani , M. Mohammadi , M. Aledhari , M. Ayyash , Internet of

things: A survey on enabling technologies, protocols, and applications, Com-
mun. Surv. Tutor. IEEE 17 (4) (2015) 2347–2376 .

[41] D. Thangavel , X. Ma , A. Valera , H.-X. Tan , C.K.-Y. Tan , Performance evaluation

of MQTT and COAP via a common middleware, in: Proceedings of the Ninth
IEEE International Conference on Intelligent Sensors, Sensor Networks and In-

formation Processing (ISSNIP), IEEE, 2014, pp. 1–6 .
[42] W. Colitti , K. Steenhaut , N. De Caro , B. Buta , V. Dobrota , Evaluation of con-

strained application protocol for wireless sensor networks, in: Proceedings of
the Eighteenth IEEE Workshop on Local & Metropolitan Area Networks (LAN-

MAN), IEEE, 2011, pp. 1–6 .

[43] S. Nicholas, Power Profiling: HTTPS Long Polling vs. MQTT with SSL on An-
droid, http://stephendnicholas.com/archives/1217/ , Accessed: 2016-01-29.

44] H.W. Chen , F.J. Lin , Converging MQTT resources in ETSI standards based M2M
platform, in: Proceedings of the 2014 IEEE International Conference on Inter-

net of Things (iThings) and Green Computing and Communications (Green-
Com), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, 2014,

pp. 292–295 .

[45] P. Derler , E. Lee , A.S. Vincentelli , et al. , Modeling cyber-physical systems, Proc.
IEEE 100 (1) (2012) 13–28 .

[46] M. Quigley , K. Conley , B. Gerkey , J. Faust , T. Foote , J. Leibs , R. Wheeler , A.Y. Ng ,
ROS: An open-source robot operating system, in: Proceedings of the 2009 ICRA

Workshop on Open Source Software, 3, 2009, p. 5 .
net of Things: The ASIP programming model, Computer Commu-

http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0001
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0002
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0003
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0004
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0005
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0005
https://cosm.com
https://www.thingspeak.com/
https://www.nimbits.com/
http://evrythng.com/
http://exosite.com/
http://www.axeda.com/
http://www.sensorcloud.com/
http://www.neuaer.com/
http://www.digi.com/
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0006
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0036
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0007
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0008
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0009
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0010
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0011
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0012
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0013
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0014
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0015
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0016
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0017
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0018
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0019
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0037
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0037
http://iobridge.com/
http://www.microstrain.com/
http://www.arduino.cc/
http://mbed.org/
http://www.nanode.eu/
https://www.arduino.cc/en/Main/ArduinoBoardLilyPad/
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0020
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0021
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0022
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0023
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0024
http://stephendnicholas.com/archives/1217/
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0025
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0026
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0027
http://dx.doi.org/10.1016/j.comcom.2016.03.016

G. Barbon et al. / Computer Communications 0 0 0 (2016) 1–13 13

ARTICLE IN PRESS

JID: COMCOM [m5G; April 4, 2016;17:47]

[

[

[

[

[

[

[
[47] H.-C. Steiner , Firmata: Towards making microcontrollers act like extensions of
the computer, in: Proceedings of the 2009 New Interfaces for Musical Expres-

sion, 2009, pp. 125–130 .
48] M. Quigley , K. Conley , B. Gerkey , J. Faust , T. Foote , J. Leibs , R. Wheeler , A.Y. Ng ,

ROS: An open-source robot operating system, in: Proceedings of the 2009 ICRA
Workshop on Open Source Software, IEEE, 2009, pp. 1–6 .

49] F. Palumbo , J. Ullberg , A. Štimec , F. Furfari , L. Karlsson , S. Coradeschi , Sen-
sor network infrastructure for a home care monitoring system, Sensors 14 (3)

(2014) 3833–3860 .

50] F. Palumbo , P. Barsocchi , F. Furfari , E. Ferro , AAL middleware infrastructure for
green bed activity monitoring, J. Sens. 2013 (2013) 1–15 .

[51] F. Palumbo , D. La Rosa , S. Chessa , GP-M: Mobile middleware infrastructure for
ambient assisted living, in: Proceedings of the 2014 IEEE Symposium on Com-

puters and Communication (ISCC), IEEE, 2014, pp. 1–6 .
Please cite this article as: G. Barbon et al., Taking Arduino to the Inter

nications (2016), http://dx.doi.org/10.1016/j.comcom.2016.03.016
52] P. Barsocchi , E. Ferro , L. Fortunati , F. Mavilia , F. Palumbo , EMS@ CNR: An en-
ergy monitoring sensor network infrastructure for in-building location-based

services, in: Proceedings of the 2014 International Conference on High Perfor-
mance Computing & Simulation (HPCS), IEEE, 2014, pp. 857–862 .

53] K.H. Ang, G. Chong, Y. Li, Pid control system analysis, design, and technol-
ogy, IEEE Trans. Control Syst. Technol. 13 (4) (2005) 559–576, doi: 10.1109/TCST.

2005.847331 .
54] K. Androutsopoulos , N. Gorogiannis , M.J. Loomes , M. Margolis , G. Primiero ,

F. Raimondi , P. Varsani , N. Weldin , A. Zivanovic , A Racket-based robot to teach

first-year computer science, in: Proceedings of the Seventh European Lisp
Symposium, 2014, pp. 54–61 .

55] RTCA, DO-178C, software considerations in airborne systems and equipment
certification, 2011.
net of Things: The ASIP programming model, Computer Commu-

http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0028
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0038
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0029
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0030
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0031
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0032
http://dx.doi.org/10.1109/TCST.2005.847331
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://refhub.elsevier.com/S0140-3664(16)30074-3/sbref0034
http://dx.doi.org/10.1016/j.comcom.2016.03.016

	Taking Arduino to the Internet of Things: The ASIP programming model
	1 Introduction
	2 Related work
	3 The ASIP programming model
	3.1 Basics: software architecture
	3.2 The syntax of ASIP messages
	3.3 System architecture
	3.3.1 Serial connection
	3.3.2 TCP and MQTT bridges
	3.3.3 TCP
	3.3.4 MQTT

	3.4 Service-level discovery mechanism

	4 Quantitative evaluation
	4.1 Throughput
	4.1.1 Experimental set-up
	4.1.2 Results

	4.2 Latency
	4.2.1 Latency results

	5 Qualitative evaluation
	5.1 Building a distributed application
	5.2 Controlling a robot
	5.3 Adding new services

	6 Conclusion
	 References

