
Computer-Aided Design 79 (2016) 36–47
Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Reconsideration of T-spline data models and their exchanges using
STEP
Wenlei Xiao a,b, Yazui Liu a, Rui Li a, Wei Wang a, Jianmin Zheng c, Gang Zhao a,b,∗

a School of Mechanical Engineering & Automation, 100191 Beihang University, Beijing, China
b MIIT Key Laboratory of Aeronautics Intelligent Manufacturing, 100191 Beihang University, Beijing, China
c School of Computer Engineering, 639798 Nanyang Technological University, Singapore

a r t i c l e i n f o

Article history:
Received 27 January 2016
Accepted 4 June 2016

Keywords:
T-spline
Data model
STEP
Data exchange

a b s t r a c t

T-spline is a new approach to define freeform surfaces with relatively less control points than NURBS
and is able to represent a model using a single surface without joining errors. Whereas, the complexity
of T-spline data models leads numerous difficulties in its programming, which hinders the research and
development of T-spline technologies. In addition, the data exchange of T-spline models still remains
on a primitive level, and no standardized data format has been published so far. This article gives a
reconsideration to the existing T-spline definitions, and proposes a set of redesigned data models which
have much more understanding conveniences to both human and computer. Moreover, STEP-compliant
datamodels are designed using the proposed T-splinemodels to standardize their data exchange between
different CAx systems. The combination of T-spline with other product models in ISO 10303 makes
it convenient to exchange the versatile resource data in a hybrid neutral file. A prototype system is
developed for the validation purpose, which consists of a TSM-to-STEP convertor, a STEP parser and a
T-spline kernel. Using the developed prototype system, one can automatically convert a Rhino system
exported TSM file to a STEP file in the P21 format, which can be then parsed using the STEP reader and
processed by the T-spline kernel. Some testing examples show that the proposed data models are much
more efficient in processing and exchanging the T-spline data.

© 2016 Published by Elsevier Ltd.
1. Introduction

T-spline has attracted great interests from researchers since
its emergency in 2003 [1]. Comparing to NURBS, it has great ad-
vantages of less control points, localized refinement and tessella-
tion operations [2,3] and isogeometric analysis [4,5]. In addition,
T-spline has shown its progressively powerful modeling functions
comparing to NURBS, especially after Rhino© releases the T-spline
plug-in [6]. The success of T-spline kernel in Rhino has shown an
optimistic prospect on integrating T-spline into other CAx systems.
For example, a CAD system can provide to the users another mod-
eling method via T-spline, a CAE system can introduce a new ba-
sis for isogeometric analysis [7,8], a CAM system may support a
novel path planning ability to generate a five-axis machining path
for a whole part directly [9], and a CNC system could use a T-spline

∗ Corresponding author at: School of Mechanical Engineering & Automation,
100191 Beihang University, Beijing, China.

E-mail address: zhaog@buaa.edu.cn (G. Zhao).

http://dx.doi.org/10.1016/j.cad.2016.06.004
0010-4485/© 2016 Published by Elsevier Ltd.
model as its precisely defined workpiece part for object-oriented
and inspection based closed-loop manufacturing [10], which as
well obeys the concept of STEP-CNC [11–13]. Therefore, it can be
considered that more andmore CAx systems will provide this new
modeling method in the future. Regarding the prosperous devel-
opment of T-spline, it will grow up to be a necessity to exchange
T-spline models between different CAx systems, just alike the req-
uisite of other conventional B-Rep models. In order to fulfill this
request, Rhino© has recently unfolded a text-based TSM (T-spline
Mesh) file format [14] for storing its exported T-spline data. How-
ever, the practical use has proved that the analyticity of TSM is a
long way from satisfactory for complex data exchange. Developers
generally just have to spend a lot of time and efforts in develop-
ing a data parser, before they really can import a T-spline model
generated by Rhino©. In order to solve this dilemma, the standard-
ization of T-spline models has to be implemented before miscella-
neous customized definitions flood the research and development
fields.

Standardized T-spline models must be compact for storing,
flexible for data defining, and reversible for indexing, as data

http://dx.doi.org/10.1016/j.cad.2016.06.004
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2016.06.004&domain=pdf
mailto:zhaog@buaa.edu.cn
http://dx.doi.org/10.1016/j.cad.2016.06.004


W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 37
(a) A T-mesh example. (b) Pre-image of the T-mesh.

Fig. 1. A T-mesh example and its pre-image.
structures of T-spline are muchmore complex than that of NURBS.
C. Asche et al. proposed a set of efficient data structures for
T-splinemodeling [15], which rely on the half-edge data structures
in the CGAL geometry library [16], whereas the obtained results
are still on a primary level, for they still use the conventional two-
layer T-spline datamodels (the T-mesh and its pre-image). Lin et al.
introduced the extended T-mesh data structures thatmake it more
easier for computation, but brings many redundant data [17]. Very
few more research literatures can be found on the similar topic.
The majority of T-spline researchers are obliged to develop their
own T-spline kernel from scratch without enough consideration
on the efficiency and operability. This status has hindered the
development of T-spline for a long time, and drove many new
researchers away.

Under those considerations, this paper conducts great efforts
on T-spline data modeling using an object-oriented data mod-
eling framework. The conventional T-mesh data structure is de-
composed into the parametric, topological and Cartesian layers
(so called three-layer models), which have great advantages in
storing, accessing and operating the T-spline data. Object-oriented
T-spline data models are redesigned to obtain more conveniences
to both human and computer, and the STEP-compliant data ex-
change format is subsequently derived using the EXPRESS model-
ing language [18], and programmed using the SDAI method [19].
The conventional ISO 10303 standard is thereby extended. Us-
ing the STEP standard, NURBS has been successfully modeled, and
widely used in the forms of AP203 or AP214 files for CAD data
exchanges between different CAx systems. Although STEP has re-
garded NURBS as the major modeling method for freeform sur-
faces [20,21], the strive on modeling T-spline using STEP extends
the compatibility of the STEP standard to manifold CAD models,
let alone the numerous advantages of T-spline against NURBS [1].
If the T-spline models can be supported together with B-Rep mod-
els, the data exchange ability can be significantly enhanced and the
exchange errors can bemanaged in a reasonablemanner. Since the
geometric data models are the base for other applications and im-
plementations, the addition of T-spline extends and changes the
way of many other STEP-compliant CAx applications as well.

2. Reconsideration of T-spline data models

This section studies the data structures of T-spline. Firstly,
a brief review of T-spline and T-mesh is taken to discuss the
complexities and difficulties in handling the existing T-spline data
models. Secondly, a set of redesigned T-spline data models are
proposed, which organize the T-spline data structures into three
layers. The data structures are described and discussed using a
simple T-spline example.
2.1. Review of T-spline and T-mesh

Recently, most researches have defined a T-spline surface by
means of a control grid called T-mesh [2,22], which provides
information in both Cartesian and parametric spaces (control
points in the Cartesian space and the pre-image in the (s, t)
parametric space). This definition is basically extended from that
of the tensor-product B-spline surfaces, which uses a rectangular
grid of control points. In order to describe the parametric space,
the pre-image of a T-mesh is presented as an attachment to the
T-mesh. Fig. 1 shows a so designed T-mesh and its pre-image.
These definitions reluctantly work for the theoretical description,
whereas bring a lot of troubles in theory understanding, data
exchanging and software programming. The difficulties imply that
the introduced T-mesh from the control grid of B-spline is not
sufficient for many extraordinary properties of T-spline. There
are essentially three major drawbacks in the existing T-mesh
definitions:

(1) T-mesh contains not only Cartesian but also parametric data,
which bring great complexities in operating the data structures.

In order to calculate the equation of a point based T-spline
(instead of grid based) [1]

P(s, t) =

n
i=1

PiBi(s, t)wi

n
i=1

Bi(s, t)wi

(1)

there are two vital variables that need to be determined in
advance: Pi and Bi(s, t). Wherein, Pi are the control points, and
Bi(s, t) are the basis functions given by

Bi(s, t) = Nm
i0 (s)N

n
i0(t) (2)

where Nm
i0 and Nn

i0 are the mth and nth B-spline basis functions
associated with individual knot vectors in s and t directions.
Usually m = n = 3, so that they become cubic B-splines. Thus,
to specify a T-spline, one must provide a pair of knot vectors for
each control point.

An intuitive approach is to store a pair of knot vectors in each
control point of the T-mesh. However, this approach consumes
additional storing space for redundant data, as most knot vector
components are the same in adjacent control points. Moreover, the
locality of T-spline causes difficulties in determiningwhich control
points should be involved in calculating a specified parametric
coordinate (s, t). This is because the T-spline equation (Eq. (1))
is point based rather than grid based, so that the involved
control points cannot be easily determined from the T-mesh grid,
especially when multiple knots occur in the T-mesh.

(2) The complexity of the pre-image of a T-mesh is ignored
significantly, although it contains the most abundant information.



38 W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47
Table 1
Terminologies defined in the T-mesh.

Terms Descriptions

Vertex A coordinate (s, t) in the parametric space.
Edge Determined by start and end vertices.
Face Surrounded by a loop of oriented edges.
Point The location of a vertex in the Cartesian space.
Wedge A square of vertices.

Fig. 2. Definition of the vertex multiplicity as four wedges in the TSM file
format [14].

Table 1 provides a summary of terminologies defined in the
T-mesh.

The pre-image of a T-mesh, without even a proprietary name,
contains the most abundant data elements. As shown in Fig. 1(b),
the pre-image consists of vertices, edges and faces, which all can
have possibilities ofmultiplicity. Themultiplicity of T-spline signif-
icantly differs from that of B-spline. Since the T-mesh is not a reg-
ular control grid, the multiplicity of each vertex need to be defined
individually by wedges constituted by several duplicated vertices.
Fig. 2 shows an exemplary definition of the wedges in the TSM file
format [14]. The number of wedges is the same as the functional
valence of the vertex. The complexity brought by the multiplicity
causes great difficulties in designing data models and implement-
ing algorithms, in which the pair of corresponding knot vectors
usually have to be deduced from the pre-image of a T-mesh.

Another notation that is hard to understand and difficult to
program is the ambiguity of a vertex. On one hand, a vertex
represents one or more Cartesian points, as it belongs to the
pre-image of the T-mesh, and several distinct control points can
be mapped into the same vertex. On the other hand, a vertex
represents only one coordinate (s, t) in the parametric space,
so that only one copy of the parametric coordinates should be
persisted. This causes an obvious conflict in the data modeling
work, as the ambiguity of vertex leads to its unclear definition. In
some researches, the terms ‘‘vertex’’ and ‘‘control point’’ are even
Fig. 4. A simple T-spline example for studying the new data models.

interchangeably used, although a vertex usually only represents a
topological entity in the parametric space and a control point is the
location of a vertex in the Cartesian space [15,23].

(3) Most current researches and applications focus on the
T-spline of degree three. However, in case of even degrees
the current principles of T-mesh may cause inconvenience in
programming.

Unlike the regular control grid of B-spline, the existence of
T-junctions in a T-mesh implies a significant problem in deducing
knot vectors when the degree of a T-spline is even. As the
T-spline is point-based (regarding the parametric aspect of a point,
actually it should be called vertex-based), the knot space deducing
principle may not work in some cases. For example, Fig. 3 presents
a per-image of a T-mesh in different cases of even degrees in
s and t directions. The current T-mesh researches must deduce
the knot vectors from a vertex (Fig. 3(a)), while this inference
works only when the T-mesh has odd degrees in both s and
t directions. When one of the degrees is even, the deduction
should be an either horizontal or vertical edge. When both of the
degrees are even, the deduction should be from a face, as shown
in Fig. 3((b)–(d)). In addition, multiplicity rules should be adjusted.
Except for the vertex multiplicity, a T-mesh imposes the edge and
face multiplicities as well. As a matter of fact, all the multiplicity
definitions upon either a vertex, an edge, or a face cannot have
universal functionalities.

2.2. New T-spline data models

The main root of the aforementioned problems is the lack of
effective data structures for processing and exchanging T-spline
models. In order to solve this problem, this article redesigns the
previous T-spline data models in a comprehensive manner. The
proverbial T-mesh is decomposed into three-layer models, which
represent the parametric, topological and Cartesian aspects of a
T-mesh, respectively. This section analyzes the properties and
internal relationships among them, and proposes a set of new data
models correspondingly to avoid the ambiguousness. A simple T-
spline surface as shown in Fig. 4 is studied as an example.
(a) Vertex based (m = 3, n = 3). (b) Edge based (m = 2, n = 3). (c) Edge based (m = 3, n = 2). (d) Face based (m = 2, n = 2).

Fig. 3. Knot space deducing principles in cases of different degrees (m, n) in s and t directions.



W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 39
(a) A T-image example. (b) Data structures of parametric objects. (c) The C++ implementation.

Fig. 5. Data structures of the parametric objects and their C++ implementation.
(a) A T-connect example. (b) Data structures of topological objects. (c) The C++
implementation.

Fig. 6. Data structures of the topological objects and their C++ implementation.
2.2.1. Categories of information
(1) The parametric domain.
All the information that is drawable in the parametric

space forms the parametric domain. According to this rule, the
complicated knot multiplicity and knot space deduction are out
of this scope, as they cannot be clearly ‘‘drawn’’ in the parametric
space. Rest components include vertices (with a parametric
coordinate), edges (with start and end vertices), links (with an edge
and an orientation) and faces (bounded by a loop of links). In this
paper, the parametric domain is referred to as the parametric layer.

(2) The connections between nodes.
The multiplicity and knot deduction are detached from

the parametric domain, and simply unified as the connection
information between different nodes, where a node contains only
the topological connection of the formerly mentioned vertex, and
two pointers to a vertex (or a edge, or a face) and a control point.
It is worthwhile to note that a node hold neither parametric nor
Cartesian coordinates, so there should be no distance between
two nodes. Additionally, the former multiplicity happens when
multiple nodes point to the same vertex (when degrees in both
directions are odd), which does not break the consistent definition
of a node. In this paper, the group of nodes is called the topological
layer.

(3) The control points.
The control points represent the definitions of a T-mesh in

the Cartesian space. A control point purely provides a (x, y, z)
coordinate with a weight w and can be mapped one-to-one to a
node without the consideration of multiplicities and connections.
Comparing to the former T-mesh in the Cartesian space, the
connections between different control points are subtracted, since
this information has been previously illustrated in the topological
layer. The control points constitute the Cartesian layer.

According to the above definitions, new data models of
T-spline are introduced, which are organized into three layers
correspondingly:
2.2.2. Parametric layer: T-image
A T-image contains the data models on the parametric layer,

which means a set of T-vertices, T-edges, T-links and T-faces. A
T-face is constituted by a loop of T-links. A T-link is actually an
oriented edge, which refers to a T-edge and specifies its orientation
using a Boolean. A T-edge is determined by its start and end
T-vertices, while a T-vertex contains a parametric coordinate
(s, t). The existence of the T-edge is to reduce the redundancy of
T-links, as two T-links with opposite orientations may share the
same T-edge. Fig. 5(a) gives an example of a T-image.

A T-image is in fact a dense graph, as the T-vertices, T-edges,
T-links, and T-faces are all some fundamental elements of a
standard directed graph. Fig. 5((b), (c)) shows the data structures
of them. Note that a T-face has an optional container of T-nodes
for the convenience of tessellation, which will be introduced in the
next section.

2.2.3. Topological layer: T-connect
A T-connect contains all the T-nodes which connect to each

other. A T-node contains a pointer to a selection of a T-vertex, a
T-link, or a T-face (according to the parity of degrees in s and t
directions), another pointer to a control point(T-point), and a set of
pointers to other T-nodes. The number of T-node pointers is called
the valance of a T-node. Fig. 6(a) gives an example of a T-connect.

A T-connect is also a directed graph, but all the faces are empty
and all connections have no distance value, so it is more like a grid
without weights on its grid lines. Fig. 6((b), (c)) shows the data
structures of the topological objects.

2.2.4. Cartesian layer: T-pointset
A T-pointset is a collection of T-points. A T-point is actually

a rational point in the Cartesian space (with a weight) plus a
pointer to a T-node, by which one can deduce the connection
relationships between T-points. Fig. 7(a) presents a T-point group



40 W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47
(a) A T-pointset example. (b) Data structures of Cartesian
objects.

(c) The C++ implementation.

Fig. 7. Data structures of the Cartesian objects and their C++ implementation.
in the cartesian space, which is similar as the former plot of a
T-mesh. Note that, a T-point group provides no connections
between each other, though Fig. 7(a) deduces them from the
corresponding T-connect and plots the results as dotted lines to
enhance its visuality.

Generally, we call all the elements denoted by T as T-objects.
The new data models of T-spline reflect the significant single-
responsibility principle in terms of software engineering. Each
layer of data models holds relatively consistent and stable infor-
mation, and hence possesses homogeneous functionalities.

3. Characteristics of the new data models

According to the definition of the new models, the operations
of T-spline become clear and interesting. New rules have to be
imposed on, and new inferences can be deduced from the data
structures.

3.1. T-image, T-connect and T-pointset

According to the definitions of T-image, T-connect and
T-pointset, they are all similar to graphs, and none of them involve
multiple vertices. This implies the classical graph theory [24] could
be easily introduced for analyzing and manipulating a T-spline.
Fig. 11 shows the linkages among a T-image, a T-connect and a
T-pointset.

A T-image is a direct graph with the most abundant T-objects,
including T-vertices, T-edges, T-links, and T-faces, which are
usually the most complex data in a T-mesh. Each T-edge in a
T-image has a distance and a direction, and a T-vertex does not
directly connect to its adjacent T-vertices but T-links. For a T-vertex
with its valance equal to 4, there are notations ‘‘north’’, ‘‘west’’,
‘‘south’’ and ‘‘east’’ on each T-link pointers of a T-vertex.

A T-connect contains only the topological connections, and
is also a directed graph. However, there is no concept of edges
and faces inside a T-connect. Each T-node connects directly to its
neighbors, and the connection has no distance. The T-node also has
notations of ‘‘north’’, ‘‘west’’, ‘‘south’’ and ‘‘east’’ on its connections.

A T-pointset is simply constituted by a set of T-points. Each
T-point is in fact a rational point, which contains not only a (x, y, z)
coordinate but also a weight w. No connections exist between
T-points, so a T-pointset usually provides the least information.

Basically, there are two one-to-one inferences imposed on the
three-layer models:

Inference 1: The patches on a T-spline surface one-to-one map
to the T-faces on a T-image.

Inference 2: The T-points in a T-pointset one-to-one link to the
T-nodes (Non-virtual) in a T-connect.

3.2. T-junctions and virtual T-objects

There are two kinds of T-junctions in the parametric and
topological layers, respectively. For the parametric layer, a
Fig. 8. Directions of a T-junction.

Fig. 9. Virtual T-objects.

T-junction exists when a T-vertex has one and only one empty
pointer to its adjacent T-links. Since each pointed T-link has a
notation of direction, this T-junction also has a similar notation,
which is specified by the missed pointer. For the topological layer,
a T-junctionmeans a T-node thatmisses one and only one adjacent
T-node. The notation of this T-junction is also specified by the
missed direction. Fig. 8 shows the directions of T-junction.

When a T-junction occurs, the patching operation needs to
be implemented, so that a complete pair of knot vectors can be
inferred for calculating the related Bernstein basis function. Virtual
T-objects are some auxiliary elements that help for the calculation
purposes, and can be generated automatically in run time. Virtual
T-objects include virtual T-nodes, virtual T-vertices, virtual T-links,
virtual T-edges and virtual T-faces. Fig. 9 presents the deducing
process of virtual T-objects.

3.3. Dual indexing roles of a T-node

Comparing to a T-vertex, a T-node is relatively simpler, as
it represents only the connections between each other. In spite
of that, a T-node may play two indexing roles in the T-spline
models. On one hand, the upwards indexing role is played to
trace all T-points from a T-face, as a non-virtual T-node has
an one-to-one mapping relationship to a T-point. On the other
hand, the downwards indexing role is played for inferring the
knot vectors when the point-based blending function needs that
for computation. Fig. 10 demonstrates the principle of the dual



W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 41
(a) Upwards indexing procedure. (b) Downwards indexing procedure.

Fig. 10. Dual indexing roles of T-nodes played in the upwards and downwards indexing procedures.
Fig. 11. Linkages among a T-image, a T-connect and a T-pointset.
indexing roles. Correspondingly, the path from a parametric
coordinate (s, t) to a T-point is called the upwards indexing
procedure and the path from a T-point to the knot vectors is called
the downwards indexing procedure. The dual roles of a T-node
usually coexist, while there are also exceptions. When a virtual
T-node is employed to the blending function, typically it has an
empty pointer to T-point, so only the downwards indexing role
exists in this case.

3.4. Efficient data accessing mechanisms

Since the new data models are different from the pre-image
of T-mesh, their data accessing and manipulating mechanisms are
also different. Basically, any T-objects can be used as the entry of
data accessing, and all other wanted data can be traceable from
any start points. For example, start from a T-point, its parametric
domain used for the tensor product of the two B-spline curves can
be obtained using an efficient data accessing mechanism (m = n
= 3):

1. Find the T-node Since each T-point has a pointer to a T-node,
the corresponding T-node can be obtained directly;

2. Find the T-node cross A T-node cross consists of a center
T-node and for each orientation (degree −1) linked
T-nodes, as shown in Fig. 10(b). Each T-node has four
pointers to its adjacent north, west, south and east
T-nodes, so the T-node cross can be obtained by
iteratively inferring the adjacent T-node in individual
directions.

3. Find the T-vertex cross Similarly, a T-vertex cross contains a
center T-vertex and four lists of T-vertices. Whereas,
the number of T-vertices on each direction does not
constantly equal to (degree −1), because multiple
T-nodes may point to the same T-vertex. In spite of that,
there is no need to impose any special operations on the
finding procedure.

4. Find two knot vectors The T-vertex cross contains the para-
metric coordinations. Hence, the two knot vectors can be
deduced directly.

Each step of the deduction of the knot vectors is direct data
accessing operations, and has no need to prestore the redundant
knot values.

3.5. Degree parity and generalized multiplicity

Most researches on T-spline have limited their scopes on cubic
(3 degrees) T-splines [1,23,25]. In this case, a T-point(T-node) can
be somehow mapped to a T-vertex directly, so the pre-image
of T-mesh can reluctantly represent the parametric domain of a



42 W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47
T-spline surface and the knot vectors can be pre-stored in vertices.
However, this conclusion can only be formed when the degree is
odd.When the even degree occurs, a T-point(T-node)may notmap
to a T-vertex but to a T-edge or a T-face in many cases. Some rules
can be derived from the existence of the generalized multiplicity:

Rule 1 If a T-spline has odd degrees in both s and t directions, a
T-node should only point to a T-vertex.

Rule 2 If a T-spline has an odd degree in the s direction and an
even degree in the t direction, a T-node should point to
either a T-vertex or a vertical T-edge. When a T-node
points to a T-vertex, it means there are two multiple
knots in the t direction.

Rule 3 If a T-spline has an even degree in the s direction and
an odd degree in the t direction, a T-node should point
to either a T-vertex or a horizontal T-edge. When a
T-node points to a T-vertex, it means there are two
multiple knots in the s direction.

Rule 4 If a T-spline has even degrees in both s and t directions, a
T-node should point to either a T-vertex, a T-edge (either
vertical or horizontal), or a T-face. When a T-node points
to a vertical T-edge, itmeans there are twomultiple knots
in the s direction. When a T-node points to a horizontal
T-edge, it means there are two multiple knots in the t
direction. When a T-node points to a T-vertex, it means
there are two multiple knots in both s and t directions.

3.6. Data and pointer redundancy

In the software engineering, it is a commonly used strategy
to store some redundant data or pointers to save in-time com-
putations, so as to fasten the run time speed. According to the
implement-in-terms-of rule [26], redundant pointers are much
more efficient than redundant data. Hence, redundant data are
strictly avoided in the new T-spline data models. Whereas, some
redundant pointers are still necessary to decrease the time com-
plexity. These redundant pointers can be obtained either from ex-
changeddata or initializationwhen the data are loaded. One typical
example is the set of infected T-nodes in a T-face. From Eq. (1) and
Fig. 10, we can derive two essential inferences:

Inference 3: Each T-point should have its individual knot
vectors.

Inference 4: Each T-face should have its individual set of
T-nodes (called infected T-nodes).

Inf. 3 can be guaranteed using the downwards indexing
procedure, while Inf. 4 means a set of T-nodes should be pre-
assigned to each T-face. This operation can be carried out during
initialization. Fig. 12 presents the initializing flowchart of the sets
of infected T-nodes in all T-faces.

3.7. Separated patch tessellation

The tessellation is a key functionality for representing a spline
surface. As the T-faces have one-to-one mapping relationships
with the patches of a T-spline surface, the tessellation process
can be separated according to T-faces. After initialization, each
T-face has its crucial data for computation (equivalent to a PB-
spline [1]), hence a relatively high efficiency can be achieved
during tessellation. Furthermore, the patch oriented tessellation
principle facilitates to adjust the face based resolution, so that
small patchesmay have finermeshes. Since the T-faces have all the
required data, the separated patch tessellation brings no iterative
computations to split the parametric domain. This adjustment
significantly balances the tessellating performance and quality. On
one side, large patches need to be tessellatedmore coarsely to save
the computation time. On the other side, small patches have to
be tessellated more finely, so that details may not be overlooked.
Fig. 13 gives an example of the face based tessellation.
Fig. 12. Initializing the sets of infected T-nodes in all T-faces.

3.8. Stable data storage against modifications

The proposed data models have great advantages against mod-
ifications. According to the definition, the separation of T-image,
T-connect and T-pointset also distinguishes the modification fre-
quencies accordingly. The most frequent changes happen on the
Cartesian layer, the topological layer suffers less, and the paramet-
ric layer is the most stable data structure in memory. When a con-
trol point changes its position, only the Cartesian layer needs to be
adjusted. If a control point changes its neighbors or vanishes, the
topological layer also needs to be changed. Only if the topological
structure of a T-spline surface is transformed, which means only
when a quantity-to-quality change happens, the parametric layer
needs to be touched. A relatively stable data storagemakes it more
convenient to manipulate the T-spline data structures and more
efficient to handle with modifications and adjustments, especially
in cases of large T-spline models.

4. STEP-compliant T-spline data models

This section applies the new T-spline data models using
the EXPRESS language [18], which can inherently merge the



W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 43
(a) A T-spline surface with different patch sizes. (b) The face based tessellation result.

Fig. 13. An T-spline example of the face based tessellation.
(a) The STEP definitions of a NURBS surface. (b) The STEP definitions of a T-spline surface.

Fig. 14. Comparing the STEP definitions of NURBS and T-spline surfaces.
object-oriented architecture into the T-spline data structures.
Newly defined T-spline models are embedded into the AP238
standard (STEP-NC AIM) [27], in which a lot of modeling work can
be saved by using inheritances and compositions of the abundant
existing entities and types. Amount of EXPRESS-G diagrams are
illustrated to present the hierarchical structures. According to
the previous definitions, STEP-compliant T-spline models are
separated into three groups: the parametric, topological and
Cartesian models. Before the introduction and discussion of the
new STEPmodels, the NURBSmodels that are defined in the recent
STEP standard are reviewed for the comparison with T-spline
models.

4.1. Comparison of NURBS and T-spline models

In the recent STEP standards, NURBS is the only mathemat-
ical model to describe a freeform surface. Comparing T-spline,
NURBS is significantly simpler. Fig. 14(a) illustrates the EXPRESS
definition of NURBS in the STEP standard [20,21]. A NURBS sur-
face is defined in a compounded entity, where the mathemat-
ical model is split into three major entities: b_spline_surface,
b_spline_surface_with_knots and rational_b_spline_surface. Obvi-
ously, the EXPRESS models of a NURBS surface are designed to
be grid based, for the knot vectors with their multiplicities are
defined using arrays (‘u_knots’, ‘v_knots’, ‘u_multiplicities’ and
‘v_multiplicities’). Due to the aforementioned reasons, these mod-
els cannot be directly extended to the use of a T-spline surface.
Therefore, T-spline EXPRESS models have to be designed solely.
Fig. 14(b) shows the STEP definitions of a T-spline surface. Basi-
cally, a T-spline surface is determined by a t_image, a t_connect
and a t_pointset, whose definitions will be introduced detailedly
in the following parts of this section.

4.2. Parametric models

The parametric models include the entities and types t_vertex,
t_edge, t_link, t_edge_condition, t_face, t_mapper, t_image, etc.
The entity t_vertex represents the model of a T-vertex, the entity
t_edge stands for a T-edge, and others are obviously understood in
a similar way. The EXPRESS-G diagram of parametric models are
presented in Fig. 15.



44 W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47
Fig. 15. EXPRESS diagrams of the parametric models.
The entity t_vertex inherits from a vertex_point, whose hi-
erarchical structures are given in the existing standard. A
vertex_point basically inherits from two entities: vertex and
geometric_representation_item, and contains an attribute ver-
tex_geometry of a point type. The entity point is also given in the
existing STEP standard, which is the supertype of different types of
points, such as cartesian_point, point_on_curve, point_on_surface,
degenerate_pcurve, etc. Wherein, the entity point_on_surface is
introduced to T-spline for the definition of a parametric coordi-
nate. The entity point_on_surface inherits from the entity point,
and contains an attribute basis_surface of type surfacewhich holds
the target parametric domain (in this case, a t_image), and at-
tributes point_parameter_u and point_parameter_v of type pa-
rameter_value to store the (u, v) coordinate. The entity t_edge
is a subtype of the entity edge, which provides the attributes
edge_start and edge_end of type vertex for the reference to
t_vertex(t_vertex inherits from vertex). The entity t_link inherits
from the entity oriented_edge, which gives a Boolean attribute to
specify the orientation. The entity t_edge_condition is an auxiliary
entity to the entity t_edge. When the optional Boolean attribute
on_boundary of a t_edge is not assigned, a t_edge_condition en-
tity can be used as a substitution. This method helps to reduce
some redundant data in a large T-spline file. The entity t_face is
a subtype of the entity face containing a set of entities face_bound.
The entity face_bound is defined by a bound of type loop and a
Boolean orientation, while the entity loop derives the entities ver-
tex_loop and edge_loop. The entity edge_loop has another super-
type of the entity path, in which an edge list of type oriented_edge
(the parent of t_link) is provided to determine the boundary of
the t_face. Additionally, the entity t_face uses an optional attribute
infected_nodes to store the required T-nodes in the upwards in-
dexing procedure (Fig. 10). The entity t_image is derived from the
entity bounded_surface, and is composed of sets of t_face, t_edge,
t_link and t_vertex entities. The type t_mapper is a select of a
t_vertex, a t_edge, or a t_face, all of which can be used as a T-
mapper on the parametric layer.
Fig. 16. EXPRESS diagrams of the topological models.

4.3. Topological models

Topological models consist of only two types of entities, t_node
and t_connect.

A t_node is an abstract supertype of all other t_node entities.
As presented in Fig. 16, the entity t_node has an attribute vertex of
type t_vertex and an attribute control_point of type rational_point.
A t_node gives no information how T-nodes connect each other, as
these definitions should be node type dependent. In this paper, the
entity t_node_v4, which inherits from the entity t_node, defines
the connections to its four t_node_v4 neighbors via four optional
pointers (north_node, west_node, south_node, and east_node).
The entity t_connect possesses a set container attribute to organize
all the t_nodes involved on the topological layer.

4.4. Cartesian models

Cartesian models represent the Cartesian layer of T-spline, and
contain only two entities, rational_point and t_pointset. The entity



W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 45
Fig. 17. EXPRESS diagrams of the Cartesian models.

rational_point inherits from a cartesian_point, so it essentially
possesses the (x, y, z) coordinate. The notation ‘‘rational’’ means
it additionally sets a weight value on each point. The entity
t_pointset is simply a container of all rational_points involved on
the Cartesian layer (see Fig. 17).

5. Prototype system

This paper developed a prototype system to verify the
newly designed T-spline models which consists of three major
components: the TSM convertor, the STEP parser, and the T-spline
kernel. Fig. 18 shows the prototype system to test the STEP-
compliant data exchange of T-spline, and Fig. 19 gives some testing
results.

(1) TSM convertor: convert a TSM file to a STEP file.
The recent most frequently used T-spline modeling tool is the

Rhino softwarewith a T-spline plug-in contributed by the T-splines
company. While, the clear text file format exported by the Rhino
system is called TSM file. In order to obtain T-spline models from
Rhino, a TSM to STEP convertor is developed. As this work is
a temporary use, the convertor is developed using the Matlab
system, which can save a lot of programming efforts.

(2) STEP parser: read a STEP file into memory.
Once the STEP file is obtained, they should be firstly read into

the memory and parsed clearly. In order to fulfill this demand, a
Table 2
Sizes of TSM and STEP files.

Models TSM (kB) STEP (kB) Ratio

Simple 1.763 5.624 3.19
Mouse 6.277 19.239 3.06
Blade surface 16.244 30.325 1.87
Gearbox cover 28.362 76.058 2.68
Bike seat 45.083 74.910 1.66
Human face 66.698 116.651 1.75

standard procedure called SDAI (Standard Data Access Interface)
has to be implemented. All EXPRESS models embedded inside the
AP238were automatically converted into C++ language, and so can
be compiled to an executable library.

(3) T-spline kernel: manipulate the T-spline models.
The exchanged T-spline model finally has to be handled by a

software kernel. This paper developed a T-spline kernel using the
architecture constituted by the aforementioned models. This T-
spline kernel realizes the redesigned T-splinemodels and supports
the related algorithms.

Using STEP-compliant T-spline models, it will increase the size
of data files for storage, Table 2 presents the comparison between
TSM and STEP files. Although it increases the storage cost in STEP-
compliant T-spline files (this is actually an issue for all STEP files),
the cost is definitely worth comparing to the brought convenience
and legibility.

6. Discussion and conclusion

This paper reconsiders the drawbacks of the existing T-spline
models, and proposes a set of new T-spline data models to obtain
better data storing and operating efficiencies. The conventional
T-mesh is decomposed into the parametric, topological, and
Cartesian layers, respectively. The characteristics of the redesigned
T-spline models are analyzed and reviewed. Using the proposed
T-spline data structures, the STEP-compliant data models are
presented for the standardized data exchange between different
CAx systems in the future. A prototype system which consists
of a TSM-to-STEP convertor, a STEP parser and a T-spline kernel,
is proposed to implement the data models and realize the
Fig. 18. A prototype system to test the STEP-compliant data exchange of T-spline models.



46 W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47
(a) Simple. (b) Mouse. (c) Blade surface.

(d) Gearbox cover. (e) Bike seat. (f) Human face.

Fig. 19. STEP-compliant data exchange testing results.
STEP-compliant data exchange. In order to verify the feasibility
and efficiency, some T-spline examples have been tested and
presented. The testing results prove that the new T-spline data
models are much more friendly to both human and computer,
hence have a great prospect for the future development of T-
spline technologies. Although recent datamodelsworkwell for the
regular T-spline surfaces, other more generalized models have to
be considered in the future. For example, unstructured T-splines
with extraordinary vertices should be considered [28], T-NURCCS
models will be supported for a manifold T-spline surface [1,29],
volumetric T-spline will be defined for models with higher
dimensions [30,31], and the research and development of new-
model based algorithms should be investigated and discussed.

Acknowledgments

This researchwas financially supported by the National Natural
Science Foundation of China (No. 51505020, No. 61572056, and
No. 31327901).We acknowledge to anonymous reviewers for their
comments and advice.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cad.2016.06.004.

References

[1] Sederberg TW, Zheng J, Bakenov A, Nasri A. T-splines and T-NURCCs. ACM
Trans Graph 2003;22(3):477–84. http://dx.doi.org/10.1145/882262.882295.

[2] Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T. T-spline
simplification and local refinement. ACM Trans Graph 2004;23(3):276–83.
http://dx.doi.org/10.1145/1015706.1015715.
[3] Zheng J, Wang Y, Seah HS. Adaptive T-spline surface fitting to z-map models.
In: Proceedings of the 3rd international conference on computer graphics and
interactive techniques in australasia and south east Asia. GRAPHITE’05, New
York (NY, USA): ACM; 2005. p. 405–11.
http://dx.doi.org/10.1145/1101389.1101468.

[4] Xu G, Mourrain B, Duvigneau R, Galligo A. Analysis-suitable volume
parameterization of multi-block computational domain in isogeometric
applications. Comput-Aided Des 2013;45(2):395–404.
http://dx.doi.org/10.1016/j.cad.2012.10.022.

[5] Xu G, Mourrain B, Duvigneau R, Galligo A. Optimal analysis-aware parameter-
ization of computational domain in 3D isogeometric analysis. Comput-Aided
Des 2013;45(4):812–21. http://dx.doi.org/10.1016/j.cad.2011.05.007.

[6] Autodesk. T-Splines Plug-in for Rhino, 2014.
http://www.autodesk.com/education/free-software/t-splines-plug-in-for-
rhino.

[7] Bazilevs Y, Calo V, Cottrell J, Evans J, Hughes T, Lipton S, et al. Isogeometric
analysis using T-splines. Comput Methods Appl Mech Engrg 2010;199(58):
229–63. http://dx.doi.org/10.1016/j.cma.2009.02.036.

[8] Ginnis A, Kostas K, Politis C, Kaklis P, Belibassakis K, Gerostathis T, et al.
Isogeometric boundary-element analysis for the wave-resistance problem
using T-splines. Comput Methods Appl Mech Engrg 2014;279:425–39.
http://dx.doi.org/10.1016/j.cma.2014.07.001.

[9] Gan WF, Fu JZ, Shen HY, Chen ZY, Lin ZW. Five-axis tool path generation
in CNC machining of T-spline surfaces. Comput-Aided Des 2014;52:51–63.
http://dx.doi.org/10.1016/j.cad.2014.02.013.

[10] Lai J, Fu J, Shen H, Gan W, Chen Z. Machining error inspection of T-spline
surface by on-machine measurement. Int J Precis Eng Manuf 2015;16(3):
433–9. http://dx.doi.org/10.1007/s12541-015-0059-4.

[11] Newman S, Allen Jr R, RR. CAD/CAM solutions for STEP-compliant CNC
manufacture. Int J Comput Integr Manuf 2003;16(7–8):590–7.
http://dx.doi.org/10.1080/0951192031000115688.

[12] Xu X. Realization of STEP-NC enabled machining. Robot Comput-Integr Manuf
2006;22(2):144–53. http://dx.doi.org/10.1016/j.rcim.2005.02.009.

[13] Xiao W, Zheng L, Huan J, Lei P. A complete CAD/CAM/CNC solution for
STEP-compliant manufacturing. Robot Comput-Integr Manuf 2015;31:1–10.
http://dx.doi.org/10.1016/j.rcim.2014.06.003.

[14] T-Splines Inc.. TSM (T-spline Mesh) file format, 2015. www.tsplines.com.
[15] Asche C, Berkhahn V. Efficient data structures for T-spline modeling. In: 19th

international workshop of the European group for intelligent computing in
engineering. Herrsching, Germany. 2012.

[16] CGAL. The Computational Geometry Algorithms Library, 2015.
http://www.cgal.org.

http://dx.doi.org/10.1016/j.cad.2016.06.004
http://dx.doi.org/10.1145/882262.882295
http://dx.doi.org/10.1145/1015706.1015715
http://dx.doi.org/10.1145/1101389.1101468
http://dx.doi.org/10.1016/j.cad.2012.10.022
http://dx.doi.org/10.1016/j.cad.2011.05.007
http://www.autodesk.com/education/free-software/t-splines-plug-in-for-rhino
http://www.autodesk.com/education/free-software/t-splines-plug-in-for-rhino
http://www.autodesk.com/education/free-software/t-splines-plug-in-for-rhino
http://dx.doi.org/10.1016/j.cma.2009.02.036
http://dx.doi.org/10.1016/j.cma.2014.07.001
http://dx.doi.org/10.1016/j.cad.2014.02.013
http://dx.doi.org/10.1007/s12541-015-0059-4
http://dx.doi.org/10.1080/0951192031000115688
http://dx.doi.org/10.1016/j.rcim.2005.02.009
http://dx.doi.org/10.1016/j.rcim.2014.06.003
http://www.tsplines.com
http://www.cgal.org


W. Xiao et al. / Computer-Aided Design 79 (2016) 36–47 47
[17] Lin H, Cai Y, Gao S. Extended T-mesh and data structure for the easy
computation of T-spline. J Inf Comput Sci 2012;9(3):583–93.

[18] ISO 10303-11. Industrial automation systems and integration – product data
representation and exchange – part 11: Description methods: The express
language reference manual. 2004.

[19] ISO 10303-23. Industrial automation systems and integration – product
data representation and exchange – part 23: Implementation methods: C++
language binding to the standard data access interface. 2000.

[20] ISO 10303-203. Industrial automation systems and integration – product data
representation and exchange – part 203: Application protocol: Configuration
controlled 3d design of mechanical parts and assemblies. 2011.

[21] ISO 10303-214. Industrial automation systems and integration – product data
representation and exchange – part 214: Application protocol: Core data for
automotive mechanical design processes. 2003.

[22] Scottc M, Hughesa T, Sederbergb T, Sederbergd M. An integrated approach
to engineering design and analysis using the Autodesk T-spline plugin for
Rhino3d. 2013.

[23] Scott M, Li X, Sederberg T, Hughes T. Local refinement of analysis-
suitable T-splines. Comput Methods Appl Mech Engrg 2012;213216:206–22.
http://dx.doi.org/10.1016/j.cma.2011.11.022.
[24] Bondy JA. Graph theory with applications. Oxford (UK, UK): Elsevier Science
Ltd.; 1976.

[25] Cardon DL. T-spline simplification (Master of science), Brigham Young
University; 2007.

[26] Meyers S. Effective C++. Addison Wesley; 2005.
[27] ISO 10303-238. Industrial automation systems and integration - product data

representation and exchange - part 238: Application protocol: Application
interpreted model for computerized numerical controllers. 2008.

[28] Scott MA, Simpson RN, Evans JA, Lipton S, Bordas SPA, Hughes TJR, et al. Iso-
geometric boundary element using unstructured T-splines. Comput Methods
Appl Mech Engrg 2013;254. http://dx.doi.org/10.1016/j.cma.2012.11.001.

[29] Gu X, He Y, Qin H. Manifold splines. Graph Models 2006;68(3):237–54.
http://dx.doi.org/10.1016/j.gmod.2006.03.004.

[30] Wang K, Li X, Li B, Xu H, Qin H. Restricted trivariate polycube splines
for volumetric data modeling. IEEE Trans Vis Comput Graphics 2012;18(5):
703–16. http://dx.doi.org/10.1109/TVCG.2011.102.

[31] Zhang Y, Wang W, Hughes TJ. Conformal solid T-spline construction
from boundary T-spline representations. Comput Mech 2013;51(6):1051–9.
http://dx.doi.org/10.1007/s00466-012-0787-6.

http://refhub.elsevier.com/S0010-4485(16)30061-6/sbref17
http://dx.doi.org/10.1016/j.cma.2011.11.022
http://refhub.elsevier.com/S0010-4485(16)30061-6/sbref24
http://refhub.elsevier.com/S0010-4485(16)30061-6/sbref25
http://refhub.elsevier.com/S0010-4485(16)30061-6/sbref26
http://dx.doi.org/10.1016/j.cma.2012.11.001
http://dx.doi.org/10.1016/j.gmod.2006.03.004
http://dx.doi.org/10.1109/TVCG.2011.102
http://dx.doi.org/10.1007/s00466-012-0787-6

	Reconsideration of T-spline data models and their exchanges using STEP
	Introduction
	Reconsideration of T-spline data models
	Review of T-spline and T-mesh
	New T-spline data models
	Categories of information
	Parametric layer: T-image
	Topological layer: T-connect
	Cartesian layer: T-pointset


	Characteristics of the new data models
	T-image, T-connect and T-pointset
	T-junctions and virtual T-objects
	Dual indexing roles of a T-node
	Efficient data accessing mechanisms
	Degree parity and generalized multiplicity
	Data and pointer redundancy
	Separated patch tessellation
	Stable data storage against modifications

	STEP-compliant T-spline data models
	Comparison of NURBS and T-spline models
	Parametric models
	Topological models
	Cartesian models

	Prototype system
	Discussion and conclusion
	Acknowledgments
	Supplementary data
	References


