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Abstract—The control of multivariable industrial
processes is frequently performed using a multiloop
configuration, in which several PID controllers are
committed to control different channels of the plant.
A difficulty with such a strategy arises due to the
interaction among the control loops, which may cause
the control action in a loop to give rise to signifi-
cant disturbances in other loops. In some cases, it
is mandatory to consider a decoupling control that
includes a decoupling precompensator, or decoupler,
to guarantee acceptable decoupling among the control
loops. This paper presents a new robust decoupling
control synthesis procedure for multiloop control sys-
tems which aims to decouple the different channels
of the multivariable system and to guarantee the
tracking response performance. The control problem
is stated as a non-convex optimization problem which
is formulated directly in the space of the PI/PID
controllers and precompensator parameters. Poly-
topic models represent the system uncertainty. An
application example is developed for the control of a
quadruple-tank process with emphasis in dealing with
the control decoupling when the system is working on
a non-minimum phase operating point.

Index Terms—Decoupling control, multiloop con-
trol, PID control, polytopic uncertainty.

I. Introduction

The usage of PI/PID controllers for the implementa-
tion of multiloop control for multivariable processes is
quite popular in industry because such controllers are
easy to understand, implement and tune by operators,
and decentralized structures are failure-tolerant [1]. In
the multiloop control architecture, each manipulated
variable depends only on a single controlled variable. If
process interactions are significant, when a manipulated
variable strongly affects more than one controlled vari-
able, even the best multiloop control system may not pro-
vide satisfactory control. The decoupling control scheme
is one of the early approaches to deal with undesirable
closed loop interactions. This control scheme combines
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the multiloop PI/PID control configuration with a static
or dynamic decoupling precompensator, or decoupler,
in order to compensate for the plant interactions, as
illustrated in Fig. 1. The drawback of the increased
complexity of the control architecture is justified by the
improved decoupling among control loops and better
tracking response performance. The task of developing
a satisfactory decoupling control in multiloop control
architectures constitutes a problem that has received
great interest in the last decades (see [2], [3], [4], [5]
and references therein). Most of the decoupling control
synthesis strategies firstly compute the precompensator
to turn the resultant system into a more nearly diagonal
transfer matrix and them compute the multiloop PI/PID
controllers. Dynamic decoupling is often very difficult
due to the presence of uncertainty in the plant model
and due to the lack of realizability of “ideal” decouplers.
In conventional decoupler synthesis based on the inverse
of the plant transfer matrix, when the system presents
non-minimum phase elements or relative degree one or
more, the resulting decoupler can become non-causal or
unstable.
The contribution of this paper is to present a robust

decoupling control synthesis procedure that aims to de-
couple the control channels of uncertain discrete-time
linear time-invariant multivariable systems assuring the
tracking response performance. In this paper, the PID
tuning procedure presented in [6] is extended to the
decoupling control synthesis problem. Differently from
conventional approaches, the proposed synthesis proce-
dure computes the multiloop PI/PID controllers and the
decoupling precompensator simultaneously based on a
reference model approximation scheme. It is considered
a block diagonal reference model to guarantee the de-
coupling and tracking response performance [7], [8]. The
advantages of the proposed synthesis procedure is to
consider the model uncertainty and to guarantee that
the suboptimal decoupling precompensator is realizable.
The decoupling control synthesis is formulated as an
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optimization problem considering state space model and
polytopic uncertainty.
Similar formulations, also based on a two-step iterative

procedure that alternates an analysis step and a non-
linear optimization synthesis step which is performed
directly in the space of controller variables, have been
proposed for different control problems, achieving high-
performance synthesis results [9], [10], [6], [7], [8].
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Fig. 1. Decoupling Control.

The notation in this paper is standard. The compact
notation:

G(z) =

[

A B
C D

]

is applied to denote the transfer matrix G(z) = C(zI −
A)−1B +D and x(k) , x(kT ), T the sampling time.

II. Problem Formulation

Consider a discrete-time linear time-invariant system
described by

x(k + 1) = Ax(k) +Buu(k) +Bww(k),
z(k) = Czx(k) +Dzuu(k) +Dzww(k),
y(k) = Cyx(k) +Dyww(k),

(1)

where x(k) ∈ R
n is the state vector, u(k) ∈ R

m is
the control signal vector (manipulated variables), w(k) ∈
R

nw is the exogenous input vector, z(k) ∈ R
nz is the

controlled output vector, and y(k) ∈ Rny is the measured
output vector (inputs to the dynamic output-feedback
controller).
To simplify the notation, the system matrices in

Eq. (1) are gathered in the matrix:

P ,





A Bu Bw

Cz Dzu Dzw

Cy 0 Dyw



 , (2)

that can include uncertain parameters belonging to a
known convex compact set, or polytope, defined by its
vertices:

P(α) ,

{

P : P =
N
∑

i=1

αiPi; α ∈ Ω

}

, (3)

Ω ,

{

α : αi ≥ 0,
N
∑

i=1

αi = 1

}

, (4)

with Pi, i = 1, . . . , N , the polytope vertices and α =
[

α1 . . . αN

]′

the vector that parameterizes the
polytope. The dependence of the system matrices with α
will be omitted.

Let the decentralized PI controller be represented by

C(z) ,

[

Ac Bc

Cc Dc

]

,

and the decoupling precompensator be represented by

D(z) ,

[

Ad Bd

Cd Dd

]

.

The dynamic output-feedback control, U(z) =
K(z)Y (z), is the product of these 2 blocks,
K(z) = D(z)C(z):

K(z) ,

[

Ak Bk

Ck Dk

]

=





Ad BdCc BdDc

0 Ac Bc

Cd DdCc DdDc



 .

The closed-loop transfer matrix relating the controlled
variables, z(k), and the exogenous inputs, w(k),

Tzw(z) =

[

Af Bf

Cf Df

]

, (5)

can be computed by

Af =

[

A+BuDkCy BuCk

BkCy Ak

]

,

Bf =

[

Bw +BuDkDyw

BkDyw

]

,

Cf =
[

Cz +DzuDkCy DzuCk

]

,

Df =
[

Dzw +DzuDkDyw

]

.

(6)

Let

Tm(z) =

[

Am Bm

Cm Dm

]

, Tcr(z) =

[

Acr Bcr

Ccr Dcr

]

, (7)

where Tm(z) is a block diagonal reference model that
decouples the system and attains the tracking transient
response specifications (overshoot, settling time, etc.) for
each controlled output:

Tm(z) =







Tm,1(z) 0
. . .

0 Tm,m(z)






, (8)

and Tcr(z) is the closed-loop transfer function relating
the set-point signals and the plant outputs, one of the
blocks of Tzw(z). The approximation error between the
reference model and the closed-loop transfer function,
E(z) , Tm(z) − Tcr(z), can be represented by the
following state-space model:

E(z) =





Am 0 Bm

0 Acr Bcr

Cm −Ccr Dm −Dcr



 . (9)

This paper will consider a robust control problem that
can be stated as: given a polytope-bounded uncertain,
discrete-time, linear time-invariant system, P(α), α ∈ Ω,
and a reference model, Tm(z), find the decoupling con-
troller, K(z) = D(z)C(s), that minimizes the maximum
H∞-norm of the error between the reference model and
the closed-loop transfer function, E(z), in the uncer-
tainty domain:

K∗ = argmin
K

max
α∈Ω

‖E(z, α,K)‖∞

subject to: K ∈ F ,
(10)
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with F the set of decoupling controllers with a specified
structure such as the closed-loop system is robustly
stable.
The idea behind the proposed decoupling control prob-

lem formulation is simple. With a diagonal reference
model, if the worst case approximation error is low it
means that the gain of the out-of-diagonal elements of the
closed-loop transfer matrix, Tcr(z), will be closer to zero
for all frequencies, leading to an satisfactory decoupling
among the control loops. Besides, the diagonal elements
of Tcr(z) will approximate the specified frequency re-
sponse.

III. Proposed Robust Decoupling Control

Synthesis Procedure

The proposed procedure to tackle the non-convex opti-
mization problem (10) directly in the space of controller
parameters is based on two steps: synthesis and analysis.
In the synthesis step, it is applied a non-linear optimiza-
tion algorithm to solve the optimization problem (10)
with the infinite set Ω replaced by a finite set of points
Ω̃ ⊂ Ω. This finite set is initially the set of vertices of
the polytope as considered in convex formulations. To
consider only the polytope vertices is not sufficient to
guarantee the robust stability of the closed-loop system
and the minimization of ‖E‖∞ for all α ∈ Ω. To verify
the decoupling controller computed in the first step, in
the second step, it is applied an analysis procedure based
on a combination of a branch-and-bound algorithm and
LMI formulations [11]. If the analysis procedure finds an
instance of an unstable system in the uncertain domain
or if it is verified that the maximum value of ‖E‖∞ does
not occur in a point belonging to Ω̃, then this point is
included in Ω̃ and it is necessary to execute the two steps
of the procedure again. The procedure ends when it is
verified that the closed-loop system is robustly stable and
the maximum value of the objective function occurs on a
point that belongs to Ω̃ (or near to that set, accordingly
to a specified accuracy).
In the synthesis step, the scalar optimization problem

can be solved by means of the cone-ellipsoidal algorithm
[12]. Let χ ∈ R

d be the vector of optimization param-
eters (in this case the PI controllers and decoupling
precompensator parameters), f(χ) : R

d → R be the
objective function to be minimized, and gi(χ) : R

d → R,
i = 1, . . . , s, be the set of constraint functions. Let
χk be the ellipsoid center and Qk = QT

k ≻ 0 the
matrix that determines the direction and dimension of
the ellipsoid axes. Given the initial values χ0 and Q0,
the ellipsoidal algorithm is described by the following
recursive equations:

χk+1 = χk −
1

d+ 1
Qkm̃,

Qk+1 =
d2

d2 − 1

(

Qk −
2

d+ 1
Qkm̃m̃TQk

)

,
(11)

with

m̃ = mk/
√

mT
kQkmk,

where mk is the sum of the normalized gradients (or sub-
gradients) of the violated constraint functions, ▽gi(χ) >
0, when χk is not a feasible solution, or the gradient (or
sub-gradient) of the objective function, ▽f(χ), when χk

is a feasible solution. The gradients (or sub-gradients) are
computed numerically by means of the finite difference
method. Let ei be the i-th column of the identity matrix
of size d, Id×d, and δ be a scalar such that δ > 0 and
δ → 0 (typical values are in the range from 10−8 to 10−3).
Each entry of the vector ▽f(χ) can be computed as:

vi =
f(χ+ δei)− f(χ)

δ
, i = 1, . . . , d

In the analysis step, it is required to compute the
α ∈ Ω corresponding to the maximum of the objective
and constraint functions in (10) or to find an α ∈ Ω
that corresponds to an unstable system, if K 6∈ F . The
basic strategy of the branch-and-bound algorithm is to
partition the uncertainty domain, Ω, such as lower and
upper bound functions converge to the maximum value of
the norm in the uncertain domain Ω. This algorithm ends
when the difference between the bound functions is lower
than the prescribed relative accuracy. The algorithm is
implemented considering as lower bound function the
H∞ norm computed in the vertices and as upper bound
function the H∞ guaranteed cost computed by means
of linear matrix inequality (LMI) formulations, both
functions calculated for the original polytope and its
subdivisions [11]. If the system is not robustly stable,
the algorithm finds an unstable system in the polytope
while searching for the maximum norm value. A partition
technique based on simplicial meshes [13] is applied to
allow this procedure to be applied to polytopic models
with improved efficiency. The H∞ guaranteed cost is
computed based on the LMI formulation of [14, Theorem
2].

In most of the cases, the worst case of the objective
function is over a polytope vertex and the proposed
procedure requires just one iteration. An example of a
problem that requires more than one iteration of the
proposed procedure is presented in [10].

IV. Illustrative Example

The proposed robust decoupling control synthesis pro-
cedure is illustrated using a quadruple-tank process,
presented in Fig. 2. This is a laboratory process with an
adjustable zero, that has been used to illustrate many
issues in multivariable control [15], [16]. The two lower
tank levels are controlled by means of two pumps. The
three-way valve settings establish the interaction between
the two control loops.
Considering deviations around an operating point,

with all inputs and outputs as voltage signals, the
quadruple-tank process can be represented by the lin-
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Fig. 2. Quadruple-tank process.

earized state space model [15]:

dx

dt
=











− 1
T1

0 A3

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 − 1
T4











x

+











0 γ1k1

A1
γ2k2

A2
0

(1−γ2)k2

A3
0

0 (1−γ1)k1

A4











u,

z =

[

kc 0 0 0
0 kc 0 0

]

x,

y =







0 0 0 0
0 0 0 0
kc 0 0 0
0 kc 0 0






x+







1 0
0 1
0 0
0 0






w,

(12)

where the state variables are the four tank level devia-
tions, xi = hi − h0

i , i = 1, 4; the control signals are the
two pump voltage deviations, u , [v2 − v02 v1 − v01 ]

T ; the
exogenous inputs are the reference signals, w = [r1 r2]

T ;
the controlled variables are the measured level signals of
tanks 1 and 2, zj = kc(hj − h0

j), j = 1, 2, kc the sensor
gain; the measured variables are the reference signals and
the measured level signals, y = [r1 r2 z1 z2]

T . The time
constants are

Ti ,
Ai

ai

√

2h0
i

g
, i = 1, . . . , 4. (13)

The quadruple-tank linearized model has the following
parameter values [15]: tank cross-sections A1 = A3 =
28cm2, A2 = A4 = 32cm2; cross-section of the outlet
holes a1 = a3 = 0.071cm2, a2 = a4 = 0.057cm2; sensor
gain kc = 0.50V/cm; and acceleration of gravity g =
981cm/s2. In [15], two operating points are presented, P−

and P+, which have minimum phase and non-minimum
phase characteristics, respectively. The minimum phase
operating point can be decoupled satisfactorily by means
of decentralized PI controllers [8]. The non-minimum
phase operating point is more difficult to decouple and
it will be considered here. The corresponding parameter
values of the non-minimum phase operating point is

TABLE I

Parameter values of the non-minimum phase operating

point.

Parameter Value

(h0
1, h

0
2) [cm] (12,6; 13,0)

(h0
3, h

0
4) [cm] (4,8; 4,9)

(v01 , v
0
2) [V] (3,15; 3,15)

(k1, k2) [cm3/Vs] (3,14; 3,29)

(γ1, γ2) (0,43; 0,34)

(T1, T2) (63; 91)

(T3, T4) (39; 56)

reproduced here in Table I. The tank inlet flows are
function of the pump coefficients, k1 and k2, and the
three-way valve coefficients, γ1 and γ2. In the case of the
non-minimum phase operating point, it is better to apply
pump 1 to control the level of the tank 2 and pump 2 to
control the level of tank 1. The control signal vector is
changed in relation to [15] to consider this better pairing.
It will be considered a variation of ±10% over the

following uncertain parameters: T1 and T2. The system
will be represented by a polytopic model with 4 vertices
corresponding to the combination of the lower and upper
values of the 2 uncertain parameters.
The choice of the reference model is based on a simple

trial and error scheme to achieve a trade-off between
decoupling and tracking response performance. The ref-
erence model is firstly chosen to achieve the desired
tracking response performance. If the worst case of the
approximation error, maxα∈Ω ‖E(z)‖∞, is high, resulting
in an unsatisfactory decoupling, the reference model
must be adjusted to reduce maxα∈Ω ‖E(z)‖∞, improving
the decoupling. To adjust the reference model to reduce
the approximation error, and consequently the coupling
among control loops, it is necessary to choose its diagonal
elements to reproduce the tracking transient responses
that were already achieved with the previous reference
model. In this specific case, it is necessary to include a
first order Padé approximation of time delay in the final
reference model to achieve a better trade-off:

Tm,i(s) =
ω2
n,i(−τis+ 1)

(τis+ 1)(s2 + 2ζiωn,is+ ω2
n,i)

, i = 1, 2. (14)

with τ1 = 50, ωn,1 = 0.01, ζ1 = 0.8, τ2 = 60, ωn,2 = 0.01,
and ζ2 = 1.5. Considering sampling time Ts = 2.5s:

Tm,1(z) =
−0.00029817(z − 1.051)(z + 0.9544)

(z − 0.9512)(z2 − 1.96z + 0.9608)

Tm,2(z) =
−0.00029638(z − 1.043)(z + 0.9486)

(z − 0.9905)(z − 0.9592)(z − 0.9366)

Consider a multiloop I-P controller (proportional ac-
tion applied to output, a = 0) represented as

Ac =

[

1 0
0 1

]

,

Bc =

[

T
Ti,1

0 − T
Ti,1

0

0 T
Ti,2

0 − T
Ti,2

]

,

Cc =

[

kp,1 0
0 kp,2

]

,
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Dc =





kp,1

(

a+ T
2Ti,1

)

0 . . .

0 kp,2

(

a+ T
2Ti,2

)

. . .

−kp,1

(

1 + T
2Ti,2

)

0

0 −kp,2

(

1 + T
2Ti,2

)



 .

Applying the proposed synthesis procedure to compute
multiloop I-P controllers, χ1 = kp,1, χ2 = T/Ti,1, χ3 =
kp,2, and χ4 = T/Ti,2, and the decoupling precompen-
sator with the following structure:

Ad =





















0 1 0 0 0 0 0 0
χ5 χ6 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 χ7 χ8 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 χ9 χ10 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 χ11 χ12





















,

B
T
d =

[

0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1

]

,

Cd =

[

χ13 χ14 χ15 χ16 0 0 0 0
0 0 0 0 χ17 χ18 χ19 χ20

]

,

it is achieved kp,1 = 0.0069, Ti,1 = 42.9311, kp,2 =
0.0118, Ti,2 = 139.6382, and the precompensator with
the following transfer functions:

D1,1(z) =
44.101(z − 0.8185)

(z2 − 1.536z + 0.9748)
,

D1,2(z) =
−157.33(z − 0.9592)

(z2 − 1.466z + 0.8945)
,

D2,1(z) =
−88.607(z − 0.9681)

(z − 0.381)(z − 0.5739)
,

D2,2(z) =
112.54(z − 0.8992)

(z2 − 0.7721z + 0.2231)
.

This decoupling control results in the guaranteed approx-
imation error of maxα∈Ω ‖E(z)‖∞ = 0.1029. First-order
precompensator results poor decoupling for this case.
To verify the achieved robust decoupling control on the

interactions among control loops, the system is simulated
with step changes in the reference signals r1(t) = 1(t),
r2(t) = 1(t− 3000), where 1(t− τ) is the unit-step func-
tion translated by τ . The transient responses of the plant
outputs and manipulated variables are presented in Fig. 3
and Fig. 4, respectively. It is noticeable in Fig. 3 that, be-
cause of the choice of the reference model with the diag-
onal structure, the robust decoupling controller improves
significantly the decoupling among the control loops of
the system. Since the model matching error is low, both
tracking responses are similar to the specified reference
model responses for the 4 polytope vertices. Despite the
time delay introduced in the transient responses, it can
be considered that both tracking responses are improved
in relation to previous results in the literature [15], [16].
The Fig. 4 shows that is not necessary a higher control
effort to achieve the tracking response improvements.
There is a trade-off in the choice of the reference model.
Reference models with faster transient responses result

in higher approximation errors and consequently higher
interactions among control loops. The interactions can
be further reduced choosing reference models with slower
transient responses.
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for the 4 polytope vertices.
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To demonstrate that the necessity of the decou-
pling precompensator, the proposed procedure is applied
to compute just the multiloop PI controllers without
the decoupling precompensator. It is achieved kp,1 =
0.1584, Ti,1 = 57.5836, kp,2 = 1.1252, and Ti,2 =
359.6777, resulting the guaranteed approximation error
of maxα∈Ω ‖E(z)‖∞ = 0.4083. This higher approxima-
tion error results in worst decoupling as illustrated in
Fig. 5.
Similar results can be achieved considering a simplified

decoupler configuration where its diagonal elements are
set as unity, D1,1(z) = 1 and D2,2(z) = 1:

D(z) =















0 1 0 0 0 0
χ5 χ6 0 0 0 1
0 0 0 1 0 0
0 0 χ7 χ8 1 0
χ9 χ10 0 0 1 0
0 0 χ11 χ12 0 1















.
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for the 4 polytope vertices.

The multiloop PI controllers with kp,1 = 0.1651, Ti,1 =
55.5231, kp,2 = 0.4023, and Ti,2 = 174.2660, and the
decoupling precompensator:

D1,2 =
−5.3269(z − 0.9455)

(z2 − 1.145z + 0.6322)
,

D2,1(z) =
−2.924(z − 0.9632)

(z − 0.3106)(z − 0.7316)
,

result in maxα∈Ω ‖E(z)‖∞ = 0.1199 and the transient
responses presented in Fig. 6. The decoupling and track-
ing responses are similar to the more complex decoupling
control configuration.
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Fig. 6. Transient responses of the lower tank levels (solid line), ref-
erence model outputs (dashed line), and set-point signals (dotted)
for the 4 polytope vertices.

V. Conclusions

A new robust decoupling control synthesis procedure
for uncertain discrete-time linear time-invariant multi-
variable systems was proposed here. Decoupling of the
multivariable system and tracking response performance
are considered as control objectives. It was verified that
the reference model approximation strategy can assure
satisfactory decoupling and tracking response perfor-
mance. The proposed procedure was illustrated by an

application to a non-minimum phase operating point of a
quadruple-tank process. The advantages of the proposed
synthesis procedure are to consider uncertain systems
and to compute simultaneously the multiloop PI/PID
controllers and suboptimal physically realizable decou-
plers.
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