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A method to solve nonlinear optimal control problems is proposed in this work. The method implements an approximating
sequence of time-varying linear quadratic regulators that converge to the solution of the original, nonlinear problem. Each
subproblem is solved by manipulating the state transition matrix of the state-costate dynamics. Hard, soft, and mixed boundary
conditions are handled. The presented method is a modified version of an algorithm known as “approximating sequence of Riccati
equations.” Sample problems in astrodynamics are treated to show the effectiveness of the method, whose limitations are also
discussed.

1. Introduction

Optimal control problems are solved with indirect or direct
methods. Indirect methods stem from the calculus of vari-
ations [1, 2]; direct methods use a nonlinear programming
optimization [3, 4]. Both methods require the solution
of a complex set of equations (Euler-Lagrange differential
equations or Karush-Kuhn-Tucker algebraic equations) for
which iterative numerical methods are used. These iterative
procedures implement some form of Newton’s method to
find the zeros of a nonlinear function. They are initiated by
providing an initial guess solution. Guessing an appropriate
initial solution is not trivial and requires a deep knowledge
of the problem at hand. In indirect methods, the initial value
of the Lagrange multiplier has to be provided, whose lack of
physical meaningmakes it difficult to formulate a good guess.
In directmethods, the initial trajectory and control have to be
guessed at discrete points over the whole time interval.

This paper presents an approximate method to solve
nonlinear optimal control problems. This is a modification
of the method known as “approximating sequence of Riccati
equations” (ASRE) [5, 6]. It transforms the nonlinear dynam-
ics and objective function into a pseudolinear and quadratic-
like structure, respectively, by using state- and control-
dependent functions. At each iteration, these functions are

evaluated by using the solutions at the previous iteration, and
therefore, a series of time-varying linear quadratic regulators
is treated. This sequence is solved with a state transition
matrix approach, where three different final conditions are
handled: final state fully specified, final state not specified,
and final state not completely specified. These define hard,
soft, and mixed constrained problems, respectively.

The main feature of the presented method is that it
does not require guessing any initial solution or Lagrange
multiplier. In fact, iterations start by evaluating the state- and
control-dependent functions using the initial condition and
zero control, respectively.Theway the dynamics andobjective
function are factorized recalls the state-dependent Riccati
equations (SDRE) method [7–9].These two methods possess
some similarities, although the way they solve the optimal
control problem is different. As the method is approximated,
suboptimal solutions are derived.These could be used as first
guess solutions for either indirect or direct methods.

2. The Nonlinear Optimal Control Problem

The optimal control problem requires that, given a set of 𝑛

first-order differential equations

ẋ = f (x, u, 𝑡) , (1)
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the 𝑚 control functions u(𝑡) must be determined within
initial, final time 𝑡

𝑖
, 𝑡
𝑓
, such that the performance index

𝐽 = 𝜑 (x (𝑡
𝑓
) , 𝑡
𝑓
) + ∫

𝑡𝑓

𝑡𝑖

𝐿 (x, u, 𝑡) d𝑡 (2)

is minimized while satisfying 𝑛 + 𝑞 two-point conditions

x (𝑡
𝑖
) = x
𝑖
, 𝜓 (x (𝑡

𝑓
) , 𝑡
𝑓
) = 0. (3)

The problem consists in finding a solution that represents
a stationary point of the augmented performance index

𝐽 = 𝜑 (x (𝑡
𝑓
) , 𝑡
𝑓
) + ^𝑇𝜓 (x (𝑡

𝑓
) , u (𝑡

𝑓
) , 𝑡
𝑓
)

+ ∫

𝑡𝑓

𝑡𝑖

[𝐿 (x, u, 𝑡) + 𝜆
𝑇

(f (x, u, 𝑡) − ẋ)] d𝑡,

(4)

where 𝜆 is the vector of costate and ^ is the multiplier of the
boundary condition.The necessary conditions for optimality,
also referred to as Euler-Lagrange equations, are

ẋ =

𝜕𝐻

𝜕𝜆
,

̇𝜆 = −

𝜕𝐻

𝜕x
,

𝜕𝐻

𝜕u
= 0, (5)

where 𝐻, the Hamiltonian, is

𝐻 (x,𝜆, u, 𝑡) = 𝐿 (x, u, 𝑡) + 𝜆
𝑇f (x, u, 𝑡) . (6)

The differential-algebraic system (5) must be solved together
with the final boundary conditions (3) and the transversality
conditions

𝜆 (𝑡
𝑓
) = [

𝜕𝜑

𝜕x
+ (

𝜕𝜓

𝜕x
)

𝑇

^]

𝑡=𝑡𝑓

, (7)

which define a differential-algebraic parametric two-point
boundary value problem whose solution supplies ^ and the
functions x(𝑡), 𝜆(𝑡), u(𝑡), 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑓
].

3. The Approximating Sequence of
Riccati Equations

Let the controlled dynamics (1) be rewritten in the form

ẋ = 𝐴 (x, 𝑡) x + 𝐵 (x, u, 𝑡) u, (8)

and let the objective function (2) be rearranged as

𝐽 =

1

2

x𝑇 (𝑡
𝑓
) 𝑆 (x (𝑡

𝑓
) , 𝑡
𝑓
) x (𝑡
𝑓
)

+

1

2

∫

𝑡𝑓

𝑡𝑖

[x𝑇𝑄 (x, 𝑡) x + u𝑇𝑅 (x, u, 𝑡) u] d𝑡,

(9)

where the operators𝐴,𝐵, 𝑆,𝑄, and𝑅have appropriate dimen-
sions. The nonlinear dynamics (8) and the performance
index (9) define an optimal control problem. The initial
state, x

𝑖
, is assumed to be given, while the final condition

(𝜓 in (3)) can assume three different forms (see Section 4).
The problem is formulated as an approximating sequence

of Riccati equations. This method reduces problem (8)-(9)
to a series of time-varying linear quadratic regulators that
are defined by evaluating the state- and control-dependent
matrices using the solution of the previous iteration (the first
iteration considers the initial condition and zero control).

The initial step consists in solving problem 0, which is
defined as follows:

ẋ(0) = 𝐴 (x
𝑖
, 𝑡) x(0) + 𝐵 (x

𝑖
, 0, 𝑡) u(0),

𝐽 =

1

2

x(0)𝑇 (𝑡
𝑓
) 𝑆 (x
𝑖
, 𝑡
𝑓
) x(0) (𝑡

𝑓
)

+

1

2

∫

𝑡𝑓

𝑡𝑖

[x(0)𝑇𝑄 (x
𝑖
, 𝑡) x(0) + u(0)𝑇𝑅 (x

𝑖
, 0, 𝑡) u(0)] d𝑡.

(10)

Problem 0 is a standard time-varying linear quadratic reg-
ulator (TVLQR), as the arguments of 𝐴, 𝐵, 𝑆, 𝑄, and 𝑅 are
all given except for the time. This problem is solved to yield
x(0)(𝑡) and u(0)(𝑡), 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑓
], where the superscript denotes

the problem that the solution refers to.
At a generic, subsequent iteration, problem 𝑘 has to be

solved. This is defined as follows:

ẋ(𝑘) = 𝐴 (x(𝑘−1) (𝑡) , 𝑡) x(𝑘) + 𝐵 (x(𝑘−1) (𝑡) , u(𝑘−1) (𝑡) , 𝑡) u(𝑘),

𝐽 =

1

2

x(𝑘)𝑇 (𝑡
𝑓
) 𝑆 (x(𝑘−1) (𝑡

𝑓
) , 𝑡
𝑓
) x(𝑘) (𝑡

𝑓
)

+

1

2

∫

𝑡𝑓

𝑡𝑖

[x(𝑘)𝑇𝑄 (x(𝑘−1) (𝑡) , 𝑡) x(𝑘)

+ u(𝑘)𝑇𝑅 (x(𝑘−1) (𝑡) , u(𝑘−1) (𝑡) , 𝑡) u(𝑘)] d𝑡.

(11)

Problem 𝑘 is again a TVLQR; note that x(𝑘−1) and u(𝑘−1) are
the solutions of problem 𝑘 − 1 achieved at previous iteration.
Solving problem 𝑘 yields x(𝑘)(𝑡) and u(𝑘)(𝑡), 𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑓
].

Iterations continue until a certain convergence criterion
is satisfied. In the present implementation of the algorithm,
the convergence is reached when

󵄩
󵄩
󵄩
󵄩
󵄩
x(𝑘) − x(𝑘−1)󵄩󵄩󵄩󵄩

󵄩∞

= max
𝑡∈[𝑡𝑖 ,𝑡𝑓]

{

󵄨
󵄨
󵄨
󵄨
󵄨
𝑥
(𝑘)

𝑗
(𝑡) − 𝑥

(𝑘−1)

𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
, 𝑗 = 1, . . . , 𝑛} ≤ 𝜀,

(12)

where 𝜀 is a prescribed tolerance.That is, iterations terminate
when the difference between each component of the state,
evaluated for all times, changes by less than 𝜀 between two
consecutive iterations.

4. Solution of the Time-Varying
Linear Quadratic Regulator by
the State Transition Matrix

With the approach sketched in Section 3, a fully nonlinear
optimal control problem is reduced to a sequence of time-
varying linear quadratic regulators. These can be solved



ISRN Aerospace Engineering 3

a number of times to achieve an approximate solution of the
original, nonlinear problem. This is done by exploiting the
structure of the problem as well as its state transition matrix.
This scheme differs from that implemented in [5, 6], and, in
part, is described in [1].

Suppose that the following dynamics are given:

ẋ = 𝐴 (𝑡) x + 𝐵 (𝑡) u, (13)

together with the quadratic objective function

𝐽 =

1

2

x𝑇 (𝑡
𝑓
) 𝑆 (𝑡
𝑓
) x (𝑡
𝑓
)

+

1

2

∫

𝑡𝑓

𝑡𝑖

[x𝑇𝑄 (𝑡) x + u𝑇𝑅 (𝑡) u] d𝑡,

(14)

where 𝑄, 𝑅, and 𝑆 are positive semidefinite and positive
definite time-varying matrices with appropriate dimensions,
respectively. The Hamiltonian of this problem is

𝐻 =

1

2

[x𝑇𝑄 (𝑡) x + u𝑇𝑅 (𝑡) u] + 𝜆
𝑇

[𝐴 (𝑡) x + 𝐵 (𝑡) u] , (15)

and the optimality conditions (5) read

ẋ = 𝐴 (𝑡) x + 𝐵 (𝑡) u, (16)

̇𝜆 = −𝑄 (𝑡) x − 𝐴
𝑇

(𝑡)𝜆, (17)

0 = 𝑅 (𝑡) u + 𝐵
𝑇

(𝑡)𝜆. (18)

From (18), it is possible to get

u = −𝑅
−1

(𝑡) 𝐵
𝑇

(𝑡)𝜆, (19)

which can be substituted into (16)-(17) to yield

ẋ = 𝐴 (𝑡) x − 𝐵 (𝑡) 𝑅
−1

(𝑡) 𝐵
𝑇

(𝑡)𝜆,

̇𝜆 = −𝑄 (𝑡) x − 𝐴
𝑇

(𝑡)𝜆.

(20)

In a compact form, (20) can be arranged as

[

ẋ
̇𝜆
] = [

𝐴 (𝑡) −𝐵 (𝑡) 𝑅
−1

(𝑡) 𝐵
𝑇

(𝑡)

−𝑄 (𝑡) −𝐴
𝑇

(𝑡)

] [

x
𝜆

] . (21)

Since (21) is a system of linear differential equations, the exact
solution can be written as

x (𝑡) = 𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡) x
𝑖
+ 𝜙
𝑥𝜆

(𝑡
𝑖
, 𝑡)𝜆
𝑖
, (22)

𝜆 (𝑡) = 𝜙
𝜆𝑥

(𝑡
𝑖
, 𝑡) x
𝑖
+ 𝜙
𝜆𝜆

(𝑡
𝑖
, 𝑡)𝜆
𝑖
, (23)

where the functions 𝜙
𝑥𝑥
, 𝜙
𝑥𝜆
, 𝜙
𝜆𝑥
, and 𝜙

𝜆𝜆
are the compo-

nents of the state transition matrix, which can be found by
integrating the following dynamics:

[

̇
𝜙
𝑥𝑥

̇
𝜙
𝑥𝜆

̇
𝜙
𝜆𝑥

̇
𝜙
𝜆𝜆

] = [

𝐴 (𝑡) −𝐵 (𝑡) 𝑅
−1

(𝑡) 𝐵
𝑇

(𝑡)

−𝑄 (𝑡) −𝐴
𝑇

(𝑡)

] [

𝜙
𝑥𝑥

𝜙
𝑥𝜆

𝜙
𝜆𝑥

𝜙
𝜆𝜆

] ,

(24)

with the initial conditions

𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡
𝑖
) = 𝜙
𝜆𝜆

(𝑡
𝑖
, 𝑡
𝑖
) = 𝐼
𝑛×𝑛

,

𝜙
𝑥𝜆

(𝑡
𝑖
, 𝑡
𝑖
) = 𝜙
𝜆𝑥

(𝑡
𝑖
, 𝑡
𝑖
) = 0
𝑛×𝑛

.

(25)

If both x
𝑖
and 𝜆

𝑖
were given, it would be possible to

compute x(𝑡) and 𝜆(𝑡) through (22)-(23), and therefore the
optimal control function u(𝑡) with (19). The initial condi-
tion is assumed to be given, whereas the computation of
𝜆
𝑖
depends on the final condition, which, in the present

algorithm, can be defined in three different ways.

4.1. Hard Constrained Problem. In a hard constrained prob-
lem (HCP), the value of the final state is fully specified,
x(𝑡
𝑓
) = x

𝑓
, and therefore, (14) does not account for 𝑆. The

value of 𝜆
𝑖
can be found by writing (22) at final time

x
𝑓

= 𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡
𝑓
) x
𝑖
+ 𝜙
𝑥𝜆

(𝑡
𝑖
, 𝑡
𝑓
)𝜆
𝑖

(26)

and by solving for 𝜆
𝑖
; that is,

𝜆
𝑖
(x
𝑖
, x
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
) = 𝜙
−1

𝑥𝜆
(𝑡
𝑖
, 𝑡
𝑓
) [x
𝑓

− 𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡
𝑓
) x
𝑖
] . (27)

4.2. Soft Constrained Problem. In a soft constrained problem
(SCP), the final state is not specified, and thus 𝑆 in (14) is an
𝑛×𝑛 positive definite matrix.The transversality condition (7)
sets a relation between the state and costate at final time

𝜆 (𝑡
𝑓
) = 𝑆 (𝑡

𝑓
) x (𝑡
𝑓
) , (28)

which can be used to find 𝜆
𝑖
.This is done by writing (22)-(23)

at final time and using (28)

x (𝑡
𝑓
) = 𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡
𝑓
) x
𝑖
+ 𝜙
𝑥𝜆

(𝑡
𝑖
, 𝑡
𝑓
)𝜆
𝑖
,

𝑆 (𝑡
𝑓
) x (𝑡
𝑓
) = 𝜙
𝜆𝑥

(𝑡
𝑖
, 𝑡
𝑓
) x
𝑖
+ 𝜙
𝜆𝜆

(𝑡
𝑖
, 𝑡
𝑓
) 𝜆
𝑖
.

(29)

Equations (29) represent a linear algebraic system of 2𝑛

equations in the 2𝑛 unknowns {x(𝑡
𝑓
),𝜆
𝑖
}. The system can be

solved by substitution to yield

𝜆
𝑖
(x
𝑖
, 𝑡
𝑖
, 𝑡
𝑓
) = [𝜙

𝜆𝜆
(𝑡
𝑖
, 𝑡
𝑓
) − 𝑆 (𝑡

𝑓
) 𝜙
𝑥𝜆

(𝑡
𝑖
, 𝑡
𝑓
)]

−1

× [𝑆 (𝑡
𝑓
) 𝜙
𝑥𝑥

(𝑡
𝑖
, 𝑡
𝑓
) − 𝜙
𝜆𝑥

(𝑡
𝑖
, 𝑡
𝑓
)] x
𝑖
.

(30)

4.3. Mixed Constrained Problem. In a mixed constrained
problem (MCP), some components of the final state are
specified and some are not. Without any loss of generality,
let the state be decomposed as x = (y, z), where y are
the 𝑝 known components at final time, y(𝑡

𝑓
) = y

𝑓
, and z

are remaining 𝑛 − 𝑝 elements. The costate is decomposed
accordingly as 𝜆 = (𝜉, 𝜂). With this formalism, 𝑆 in (14) is
(𝑛 − 𝑝) × (𝑛 − 𝑝), and it is pre- and postmultiplied by z(𝑡

𝑓
).

The transversality condition (7) is 𝜂(𝑡
𝑓
) = 𝑆(𝑡

𝑓
)z(𝑡
𝑓
).
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The MCP is solved by partitioning the state transition
matrix in a suitable form such that, at final time, (22)-(23)
read

[

y (𝑡
𝑓
)

z (𝑡
𝑓
)

] = [

𝜙
𝑦𝑦

𝜙
𝑦𝑧

𝜙
𝑧𝑦

𝜙
𝑧𝑧

] [

y
𝑖

z
𝑖

] + [

𝜙
𝑦𝜉

𝜙
𝑦𝜂

𝜙
𝑧𝜉

𝜙
𝑧𝜂

] [

𝜉
𝑖

𝜂
𝑖

] , (31)

[

𝜉 (𝑡
𝑓
)

𝜂 (𝑡
𝑓
)

] = [

𝜙
𝜉𝑦

𝜙
𝜉𝑧

𝜙
𝜂𝑦

𝜙
𝜂𝑧

] [

y
𝑖

z
𝑖

] + [

𝜙
𝜉𝜉

𝜙
𝜉𝜂

𝜙
𝜂𝜉

𝜙
𝜂𝜂

] [

𝜉
𝑖

𝜂
𝑖

] , (32)

where the dependence of the state transition matrix compo-
nents on 𝑡

𝑖
, 𝑡
𝑓
is omitted for brevity. From the first row of (31),

it is possible to get

𝜉
𝑖
= 𝜙
−1

𝑦𝜉
[y
𝑓

− 𝜙
𝑦𝑦
y
𝑖
− 𝜙
𝑦𝑧
z
𝑖
] − 𝜙
−1

𝑦𝜉
𝜙
𝑦𝜂
𝜂
𝑖
, (33)

which can be substituted in the second row of (31) to yield

z (𝑡
𝑓
) = [𝜙

𝑧𝑦
− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑦

] y
𝑖
+ [𝜙
𝑧𝑧

− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑧

] z
𝑖

+ 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
y
𝑓

+ [𝜙
𝑧𝜂

− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝜂

] 𝜂
𝑖
.

(34)

Equations (33)-(34), together with the transversality condi-
tion 𝜂(𝑡

𝑓
) = 𝑆(𝑡

𝑓
)z(𝑡
𝑓
), can be substituted in the second row

of (32) to compute the component of the initial costate

𝜂
𝑖
(x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
) = [

̃
𝜙
𝜂𝜂

]

−1

w (x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
) , (35)

where

̃
𝜙
𝜂𝜂

= 𝜙
𝜂𝜂

− 𝜙
𝜂𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝜂

− 𝑆 (𝜙
𝑧𝜂

− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝜂

) ,

w (x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
)

= [𝑆 (𝜙
𝑧𝑦

− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑦

) − 𝜙
𝜂𝑦

+ 𝜙
𝜂𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑦

] y
𝑖

+ [𝑆 (𝜙
𝑧𝑧

− 𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑧

) + 𝜙
𝜂𝑧

+ 𝜙
𝜂𝜉

𝜙
−1

𝑦𝜉
𝜙
𝑦𝑧

] z
𝑖

+ [𝑆 (𝜙
𝑧𝜉

𝜙
−1

𝑦𝜉
) − 𝜙
𝜂𝜉

𝜙
−1

𝑦𝜉
] y
𝑓
.

(36)

Once 𝜂
𝑖
is know, the remaining part of the initial costate,

𝜉
𝑖
, is computed through (33), and therefore, the full initial

costate is obtained as a function of the initial condition, given
final condition, initial and final time; that is, 𝜆

𝑖
(x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
) =

(𝜉
𝑖
(x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
), 𝜂
𝑖
(x
𝑖
, y
𝑓
, 𝑡
𝑖
, 𝑡
𝑓
)).

5. Numerical Examples

Two simple problems with nonlinear dynamics are consid-
ered to apply the developed algorithm. These correspond to
the controlled relative spacecraftmotion and to the controlled
two-body dynamics for low-thrust transfers.

5.1. Low-Thrust Rendezvous. This problem is taken from
the literature where a solution is available, for comparison’s
sake [10, 11]. Consider the planar, relative motion of two
particles in a central gravity field expressed in a rotating
frame with normalized units: the length unit is equal to

the orbital radius, the time unit is such that the orbital period
is 2𝜋, and the gravitational parameter is equal to 1. In these
dynamics, the state, x = (𝑥

1
, 𝑥
2
, 𝑥
3
, 𝑥
4
), represents the radial,

tangential displacements (𝑥
1
, 𝑥
2
) and the radial, tangential

velocity deviations (𝑥
3
, 𝑥
4
), respectively. The control, u =

(𝑢
1
, 𝑢
2
), is made up by the radial and tangential accelerations,

respectively.
The equations of motion are

𝑥̇
1

= 𝑥
3
,

𝑥̇
2

= 𝑥
4
,

𝑥̇
3

= 2𝑥
4

− (1 + 𝑥
1
) (

1

𝑟
3

− 1) + 𝑢
1
,

𝑥̇
4

= −2𝑥
3

− 𝑥
2

(

1

𝑟
3

− 1) + 𝑢
2
,

(37)

with 𝑟 = √(𝑥
1

+ 1)
2

+ 𝑥
2

2
. The initial condition is x

𝑖
=

(0.2, 0.2, 0.1, 0.1). Two different problems are solved to test
the algorithm in both hard and soft constrained conditions.
Hard Constrained Rendezvous. The HCP consists in
minimizing

𝐽 =

1

2

∫

𝑡𝑓

𝑡𝑖

u𝑇u d𝑡 (38)

with the final, given condition x
𝑓

= (0, 0, 0, 0) and 𝑡
𝑖

= 0,
𝑡
𝑓

= 1.
Soft Constrained Rendezvous. The SCP considers the follow-
ing objective function:

𝐽 =

1

2

x𝑇 (𝑡
𝑓
) 𝑆x (𝑡

𝑓
) +

1

2

∫

𝑡𝑓

𝑡𝑖

u𝑇u d𝑡, (39)

with 𝑆 = diag(25, 15, 10, 10), 𝑡
𝑖
= 0 and 𝑡

𝑓
= 1 (x

𝑓
is free).

Thedifferential equations (37) are factorized into the form
of (8) as

[

[

[

[

𝑥̇
1

𝑥̇
2

𝑥̇
3

𝑥̇
4

]

]

]

]

=

[

[

[

[

[

[

[

[

0 0 1 0

0 0 0 1

𝑓 (𝑥
1
, 𝑥
2
) (1 +

1

𝑥
1

) 0 0 2

0 𝑓 (𝑥
1
, 𝑥
2
) −2 0

]

]

]

]

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴(x)

×

[

[

[

[

𝑥
1

𝑥
2

𝑥
3

𝑥
4

]

]

]

]

+

[

[

[

[

0 0

0 0

1 0

0 1

]

]

]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

[

𝑢
1

𝑢
2

] ,

(40)

with 𝑓(𝑥
1
, 𝑥
2
) = −1/[(𝑥

1
+ 1)
2

+ 𝑥
2

2
]
3/2

+ 1. Thus, the problem
is put into the pseudo-LQR form (8)-(9) by defining𝐴(x) and
𝐵 as in (40) and by setting 𝑄 = 0

4×4
and 𝑅 = 𝐼

2×2
.



ISRN Aerospace Engineering 5

0 0.05 0.1 0.15 0.2 0.25
−0.1

0

0.1

0.2

0.3

x1

x
2

(a) 𝑥1 versus 𝑥2

−0.4 −0.2 0 0.2 0.4
−0.4

−0.2

0

0.2

0.4

x3

x
4

(b) 𝑥3 versus 𝑥4

−2 −1 0 1 2 3
−2.5

−2

−1.5

−1

−0.5

0

0.5

u1

u
2

(c) 𝑢1 versus 𝑢2

Figure 1: Hard constrained rendezvous.

The two problems have been solved with the developed
method. Table 1 reports the details of the HCP and SCP,
whose solutions are shown in Figures 1 and 2, respectively.
In Table 1, 𝐽 is the objective function at the final iteration,
“Iter” is the number of iterations, and the “CPU time” is the
computational time (this refers to an Intel Core 2Duo 2GHz
with 4GBRAM running Mac OS X 10.6). The termination
tolerance 𝜀 in (12) is 10

−9. The optimal solutions found
replicate those already known in the literature [10, 11],
indicating the effectiveness of the developed method.

5.2. Low-Thrust Orbital Transfer. In this problem, the con-
trolled, planar Keplerian motion of a spacecraft in polar
coordinates is studied. The dynamics are written in scaled
coordinates, where the length unit corresponds to the radius
of the initial orbit, the time unit is such that its period is
2𝜋, and the gravitational parameter is 1. The state, x =

(𝑥
1
, 𝑥
2
, 𝑥
3
, 𝑥
4
), is made up by the radial distance from

the attractor (𝑥
1
), the phase angle (𝑥

2
), the radial velocity

(𝑥
3
), and the transversal velocity (𝑥

4
), whereas the control,

u = (𝑢
1
, 𝑢
2
), corresponds to the radial and transversal

accelerations, respectively [12, 13]. The equations of motion
are

𝑥̇
1

= 𝑥
3
,

𝑥̇
2

= 𝑥
4
,

𝑥̇
3

= 𝑥
1
𝑥
2

4
−

1

𝑥
2

1

+ 𝑢
1
,

𝑥̇
4

= −

2𝑥
3
𝑥
4

𝑥
1

+

𝑢
2

𝑥
1

,

(41)

and the objective function is

𝐽 =

1

2

∫

𝑡𝑓

𝑡𝑖

u𝑇u d𝑡, (42)

with 𝑡
𝑖

= 0 and 𝑡
𝑓

= 𝜋. The initial state corresponds to the
conditions at the initial orbit; that is, x

𝑖
= (1, 0, 0, 1). Two

differentHCPs are solved,which correspond to the final states
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Figure 2: Soft constrained rendezvous.

x
𝑓

= (1.52, 𝜋, 0, 1.52
−3/2

) and x
𝑓

= (1.52, 1.5𝜋, 0, 1.52
−3/2

),
respectively. This setup mimics an Earth-Mars low-thrust
transfer. The dynamics (41) and the objective function (42)
are put in the form (8)-(9) by defining 𝑄 = 0

4×4
, 𝑅 = 𝐼

2×2
,

and

𝐴 (x) =

[

[

[

[

[

[

[

[

[

[

0 0 1 0

0 0 0 1

𝑥 −

1

𝑥
3

1

0 0 𝑥
1
𝑥
4

0 0 −

2𝑥
4

𝑥
1

0

]

]

]

]

]

]

]

]

]

]

,

𝐵 (x) =

[

[

[

[

[

0 0

0 0

1 0

0

1

𝑥
1

]

]

]

]

]

. (43)

Table 1: Rendezvous solutions details.

Problem 𝐽 Iter CPU time (s)
HCP 0.9586 5 0.375
SCP 0.5660 6 0.426

Table 2: Earth-Mars transfer details.

Problem 𝐽 Iter CPU time (s)
𝑥
2,𝑓

= 𝜋 0.5298 22 5.425
𝑥
2,𝑓

= 1.5𝜋 4.8665 123 41.831

The two HCPs have been solved with the developed
method. The solutions’ details are reported in Table 2, whose
columns have the same meaning as in Table 1. It can be seen
that more iterations and an increased computational burden
are required to solve this problem. The solution with 𝑥

2,𝑓
=

1.5𝜋 is reported in Figure 3.
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Figure 3: Orbital transfer with 𝑥
2,𝑓

= 1.5𝜋.

6. Conclusion

In this paper, an approximated method to solve nonlinear
optimal control problems has been presented, with applica-
tions to sample cases in astrodynamics. With this method,
the nonlinear dynamics and objective function are factor-
ized in a pseudolinear and quadratic-like forms, which are
similar to those used in the state-dependent Riccati equation
approach. Once in this form, a number of time-varying linear
quadratic regulator problems are solved. A state transition
matrix approach is used to deal with the time-varying linear
quadratic regulators. The results show the effectiveness of
the method, which can be used to either have suboptimal
solutions or to provide initial solutions to more accurate
optimizers.

References

[1] A. E. Bryson and Y. C. Ho,Applied Optimal Control, JohnWiley
& Sons, New York, NY, USA, 1975.

[2] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E.
F. Mishchenko, The Mathematical Theory of Optimal Processes,
John Wiley & Sons, New York, NY, USA, 1962.

[3] J. T. Betts, Practical Methods for Optimal Control and Estimation
Using Nonlinear Programming, SIAM, Philadelphia, Pa, USA,
2010.

[4] B. Conway, “Spacecraft trajecory optimization using direct
transcription and nonlinear programming,” in Spacecraft Tra-
jectory Optimization, pp. 37–78, Cambridge University Press,
Cambridge, UK, 2010.

[5] T. Çimen and S. P. Banks, “Global optimal feedback control
for general nonlinear systems with nonquadratic performance
criteria,” Systems and Control Letters, vol. 53, no. 5, pp. 327–346,
2004.
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