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Abstract

As a part of an effort to develop a model-supported method for detection of delaminations in composite beams with

the use of time responses to external excitations, a finite element formulation for dynamics of a composite beam with

delamination and attached piezoelectric actuators is developed. In this formulation account is taken of transverse shear

deformation and nonlinear through-thickness variation of the longitudinal displacement. Parameters that characterize

the delamination are incorporated into the formulation that makes the finite element model convenient for use in

conjunction with damage identification (not discussed in the present paper). Computational predictions of frequencies

show good agreement with experimental results.
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1. Introduction

Mechanical properties of composite materials can degrade severely in the presence of damage. One of
common types of damage modes in laminated composites is interlaminar cracking or delamination. Del-
aminations may develop as a result of manufacturing defects or impact of foreign objects. Delaminations
are known to cause a change in vibration characteristics of composite structures that can be used to detect a
presence of the delamination and estimate its size and location. This can be done by a finite element model
updating to obtain a correct set of physical parameters, characterizing the delamination, that minimize
some measure of discrepancy between the vibration data measured experimentally and obtained from the
finite element model of the delaminated structure.

Some aspects of theory of the model-aided damage detection based on changes of dynamic character-
istics of structures and examples of implementation of the method (for types of damage not related to
delamination) are presented by Natke and Cempel (1997). A review of literature, published before 1997,

International Journal of Solids and Structures 39 (2002) 4457–4483

www.elsevier.com/locate/ijsolstr

* Corresponding author. Tel.: +1-937-255-3636; fax: +1-937-656-7621.

E-mail addresses: victor.perel@wpafb.af.mil (V.Y. Perel), anthony.palazotto@afit.edu (A.N. Palazotto).

0020-7683/02/$ - see front matter Published by Elsevier Science Ltd.

PII: S0020-7683 (02 )00348-7

mail to: victor.perel@wpafb.af.mil


devoted to the subject, which includes detection of delaminations, was published by Doebling et al. (1996).
More recently, the papers regarding the model-based delamination detection were published by Hanagud
with co-authors (for example, Lestari and Hanagud, 1999) and by Chattopadhyay with co-authors (for
example, Chattopadhyay et al., 2000). So, the model-based structural health monitoring with the use of
dynamic response is an active area of research, which requires further development.

The model-aided method of detection of delaminations requires a highly accurate finite element model of
the delaminated structure that contains parameters characterizing delaminations. In order to be accurate,
such a model of a delaminated beam must have a capability to take account of transverse shear defor-
mation, nonlinear through-the-thickness variation of longitudinal displacements, through-the-thickness
continuity of displacements in sublaminates that do not contain delaminations, discontinuity of displace-
ments at the surfaces of the delamination crack, must satisfy stress boundary conditions on the upper and
lower surfaces of the beam, a condition of vanishing of the transverse stresses on the surfaces of the del-
amination crack and a condition of continuity of the transverse stresses at the interfaces between the plies
with different material properties and fiber orientations.

Finite element models for accurate analysis of delaminated plates and beams were created, for example,
by Barbero and Reddy (1991) and Seeley and Chattopadhyay (1999). However, as we understand, in these
models, in order to change a location and size of the delamination crack, a new finite element mesh has to
be constructed, while in our model, presented in this paper, in order to change a location and size of the
crack, one needs only to change values of certain parameters (coordinates of crack tips and distance of the
crack from the middle surface) on which components of stiffness and mass matrices depend. Therefore, in
order to use the other authors’ (referred to) models in model-aided experimental damage identification
procedures, one has to construct a large number of finite element meshes in order to choose among them
the one, which reproduces experimental data as closely as possible. The same is true for modelling del-
aminations with commercially available finite element codes. In addition, the Reddy’s theory for plates
with delaminations is based on a discrete-layer approach, and, therefore, is equivalent to a three-
dimensional (3-D) finite element approach, requiring a large number of degrees of freedom in order to
model a laminated plate or a beam. Therefore, in our opinion, the use of the other authors’ models, as
well as the commercial finite element codes, is not convenient for the model-based health monitoring of
structures.

The model of a delaminated beam, presented in this paper, is developed for the use in damage identi-
fication procedure based on comparing the delaminated beam’s experimentally measured and computed
time responses to excitation from piezoelectric actuators attached to the beam, 1 similar to the method
proposed by Banks et al. (1996) for detection of holes in beams. Therefore, in addition to the finite element
for beam’s segment with delamination, we develop a finite element for a beam’s segment with a piezoelectric
actuator on its upper surface. It is assumed, for simplicity, that the segment of the beam covered with the
piezoelectric patch (actuator) does not contain the delamination.

In the present paper we construct a finite element formulation for a beam with a through-width del-
amination, which satisfies the above-mentioned requirements, in such a way that components of the
stiffness and mass matrices depend on three parameters that characterize the location and length of the
delamination crack, and the values of these parameters do not have to be known in order to construct a
finite element mesh. These parameters are coordinates of the tips of the delamination crack, which is as-
sumed to be parallel to the surfaces of the beam. In the finite element analysis of the beam with known
location and length of the delamination crack (direct problem), these parameters are known; but in the

1 In this paper, the authors’ goal is to describe the formulation and solution of the problem of analysis of the delaminated beam with

the known location of the delamination (direct problem) and its experimental verification. A description of application of this

formulation to the solution of the problem of the model-based detection of delamination (inverse problem) will be published elsewhere.
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inverse problem of damage identification these parameters are treated as unknowns which are to be
computed by minimizing a certain function that characterizes the discrepancy between the computed and
measured time responses of delaminated beams.

For an initial formulation, we consider only the direct problem of analysis of the beam with the known
location and extent of the delamination crack. Thus, methods of damage identification with the use of the
developed finite element formulation of the delaminated beam are not presented in this paper.

2. Three-dimensional formulation

The 3-D formulation of the problem of dynamics of the composite beam with the delamination crack
and with piezoelectric layers (used as actuators) include the following equations.

Strain–displacement equations:

exx ¼
ou
ox

; exy ¼
1

2
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; ð1bÞ

Equations of motion:

rxx;x þ rxy;y þ rxz;z ¼ q€uu; ryx;x þ ryy;y þ ryz;z ¼ q€vv; rzx;x þ rzy;y þ rzz;z � qg ¼ q€ww: ð2Þ
We will consider a piezoelectric material, used in the actuator, with orthorhombic mm2 symmetry, such

as polyvinylidene (PVDF) or lead zirconate-titanate (PZT). In the manufacturing process, the planes of
elastic symmetry can be made the same as the planes of piezoelectric symmetry. In this case, the constitutive
relations in the principle material coordinate system have the form (Mitchell and Reddy, 1994; Varadan
et al., 1989; Nix and Ward, 1986; Dunn and Taya, 1993):
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where Ek are components of the electric field intensity applied to the piezoelectric element; Di are com-
ponents of electric displacement, and nij and eij are constants that characterize electromechanical properties
of piezoelectric materials (Appendix A). For an orthotropic composite material of the beam that does not
have piezoelectric properties, eij ¼ 0 and nij ¼ 0.

An approximation that the electric field intensity in the piezoelectric actuator under low-frequency
applied voltage is derivable only from a scalar electric potential (Tiersten, 1969) leads to

Ex ¼ � ou
ox

; Ey ¼ � ou
oy

; Ez ¼ � ou
oz

: ð4Þ
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We consider a beam with no externally applied loads on the upper and lower surfaces, 2 therefore stress
boundary conditions on the upper and lower surfaces are

rxz ¼ 0 at z ¼ � h
2
; ð5aÞ

rzz ¼ 0 at z ¼ � h
2
: ð5bÞ

Stress boundary conditions at the location of the delamination:

rxz ¼ 0 at z ¼ zd; xd1 6 x6 xd2; ð6Þ

rzz ¼ 0 at z ¼ zd; xd1 6 x6 xd2; ð7Þ
where zd is a z-coordinate of the delamination crack, which is parallel to the surfaces of the beam, xd1 and
xd2 are x-coordinates of the tips of the delamination crack (Fig. 1). For a beam clamped at the edge x ¼ 0,
the boundary conditions at the contour of the beam are:

boundary conditions at the clamped edge are:

w ¼ 0;
ow
ox

¼ 0 at x ¼ 0; ð8Þ

boundary conditions for the stress-free edges can be stated as

2 Excitation of vibrations of the beam is done with the use of a piezoelectric actuator, attached (glued) to the beam, therefore the

actuator is considered to be a part of the beam, and the force of interaction between the actuator and the beam is not a beam’s

externally applied load.

Fig. 1. Cantilever beam with delamination and actuator.
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rxx ¼ 0; rxy ¼ 0; rxz ¼ 0 at x ¼ L; rxy ¼ 0; ryy ¼ 0; rzy ¼ 0 at y ¼ � b
2
: ð9Þ

Besides, we have to take into account that displacements can be discontinuous at the location of the del-
amination, i.e. at z ¼ zd, xd1 6 x6 xd2.

3. Development of the one-dimensional beam theory

We are considering a composite cantilever beam with one delamination crack, parallel to the surfaces of
the beam, and one piezoelectric patch, used as an actuator, attached near the clamped edge of the beam.
Two separate types of finite elements will be developed:

1. for the zone with the piezoelectric actuator attached to the upper surface and without delaminations
(zone 1 in Fig. 1);

2. for the zone without actuators and with the delamination crack (zone 2 in Fig. 1).

Zone 2 includes a region with the delamination crack (xd1 6 x6 xd2) and two regions without delamination
cracks (x1 6 x < xd1, xd2 < x6 L). In order to analyze a whole beam with the actuator and the delamination
crack, both types of elements will be included into the finite element mesh.

3.1. Simplifying assumptions of the beam theory

The following simplifying assumptions are adopted in order to reduce the 3-D formulation of the
problem to the 1-D beam-type formulation.

Assumption 1. If a beam is narrow in both the y-direction and the z-direction, and not loaded in these
directions, then stresses ryy and rzz, can be set equal to zero:

ryy ¼ 0; rzz ¼ 0: ð10Þ
Under this assumption, the requirement that rzz ¼ 0 at upper and lower surfaces of the beam (Eq. (5b))

and at the location of the delamination (Eq. (7)) is satisfied.

Assumption 2. In our problem, the external electric field will be applied to the piezoelectric actuators only in
the z-direction (perpendicular to the planes of piezoelectric films). Therefore,

Ex ¼ Ey ¼ 0: ð11Þ

Assumption 3. If at each point of the actuator and the beam there is a plane of elastic symmetry parallel to
the x–z plane (for the beam this can occur in case of [0�/90�] ply lay-up), the transverse load intensity, qz,
does not vary in the y-direction, and there is no load in the y-direction, qy ¼ 0, then (Lekhnitskii, 1963)

v ¼ 0;
ou
oy

¼ 0;
ow
oy

¼ 0: ð12aÞ

If, in addition, a material of the piezoelectric actuator has an orthorhombic mm2 symmetry (PVDF or lead
PZT) and its planes of piezoelectric symmetry are aligned with the planes of elastic symmetry of itself and of
the composite material of the beam, then the piezoelectric constant �..36 is equal to zero,

�..36 ¼ 0; ð12bÞ
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due to transformation equation �..36 ¼ ð.31 � .32Þ cos h sin h (Appendix A, Eq. (A.17)), where, in view of our
assumptions, h ¼ 0� or h ¼ 90�. In this case, the two other stresses associated with the y-direction are equal
to zero:

rxy ¼ ryz ¼ 0: ð13Þ

Indeed,

if v ¼ 0;
ou
oy

¼ 0;
ow
oy

¼ 0; then exy ¼
1

2
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oy

�
þ ov
ox

�
¼ 0; eyz ¼

1

2

ov
oz

�
þ ow

oy

�
¼ 0;

and, therefore, according to Eqs. (A.16) and (A.17) in Appendix A,

rxy ¼ Q662 exy|{z}
0

þ �..36|{z}
0

Ez ¼ 0; ryz ¼ Q442 eyz|{z}
0

þ Q45|{z}
0

2exz þ �..14 Ex|{z}
0

þ �..24 Ey|{z}
0

¼ 0:

In the last equation, the elastic coefficient Q45 is set equal to zero for the composite beam with [0�/90�] ply
lay-up in view of the transformation equation Q45 ¼ ðQ55 � Q44Þ cos h sin h (Appendix A, Eq. (A.17)).

In view of Eqs. (10)–(13), the constitutive equations for a material of the piezoelectric actuator attached
to a narrow beam, in a problem coordinate system, take the form (Appendix A, Eq. (A.36)):

rxx
rxz
Dz

8<:
9=; ¼

1

S11
0

�dd31
S11

0 1

S55
0

�dd31
S11

0 � f33 þ
�dd2
31

S11

� �
26664

37775
exx
2exz
ou
oz

8<:
9=;; ð14Þ

where u, is the scalar electric potential, defined by formula (4); the compliance coefficients in the problem
coordinate system, S11 and S55, are expressed in terms of the engineering constants by the formulas (Ap-
pendix A, Eqs. (A.32) and (A.33))

S11 ¼
1

E1

c4 þ 1

E2

s4 þ 1

G12

�
� 2

m12
E1

�
s2c2; S55 ¼

1

G23

s2 þ 1

G13

c2 ð15Þ

(c ¼ cos h, s ¼ sin h, h is an angle of fiber orientation); the constants �dd31 and �dd35, which characterize the
piezoelectric properties in the problem coordinate system are expressed in terms of the constants dij in the
material coordinate system by the formulas (Appendix A, Eqs. (A.34) and (A.35))

�dd31 ¼ d31c2 þ d32s2 � d36sc; d35 ¼ �d34sþ d35c; f33 ¼ f33: ð16Þ

For a composite material of the beam, where the piezoelectric constants are equal to zero, the constitutive
equation (14) have the form

rxx
rxz

� �
¼

1

S11
0

0 1

S55

" #
exx
2exz

� �
: ð17Þ

The strain–displacement relations (Eq. (1a) and (1b)) for this simplified 1-D problem, due to Eq. (12a),
take the form

exx ¼
ou
ox

; exz ¼
1

2

ou
oz

�
þ ow

ox

�
; exy ¼ 0; eyy ¼ 0; eyz ¼ 0; ezz ¼ 0: ð18Þ

The delamination occupies a region xd1 6 x6 xd2, and is assumed to be above the middle surface of the beam
(where z ¼ 0), at a location with z-coordinate z ¼ zd > 0. It is also assumed that the delamination extends
through all the width of the beam, �b=26 y6 b=2.
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Assumption 4. A very common assumption that the beam’s height does not change during deformation is
adopted here:

ezz ¼ 0: ð19Þ

This assumption in conjunction with the strain–displacement relation ezz ¼ ow=oz and the requirement of
taking account of discontinuity of a displacement w at the location of delamination (z ¼ zd, xd1 6 x6 xd2),
leads to the following assumed displacement w in the region with the delamination (xd1 6 x6 xd2), assuming
that the delamination crack is above the middle surface of the plate (zd > 0):

wðx; y; z; tÞ ¼ ½1� HðzÞ�W0ðx; y; tÞ þ HðzÞW1ðx; y; tÞ ðxd1 6 x6 xd2Þ; ð20Þ

where W0ðx; y; tÞ is a transverse displacement (in z-direction) of the middle surface of the beam (where
z ¼ 0), W1ðx; y; tÞ is the transverse displacement of the upper surface of the delamination crack, and HðzÞ is a
Heaviside function that can be defined as

HðzÞ 	 Hðz; zdÞ 	 lim
b!0

1

p
arctan

z� zd
b

þ 1

2
¼ 1

2
signumðz� zdÞ þ

1

2
¼

0 for z < zd;
0:5 for z ¼ zd;
1 for z > zd;

8<: ð21Þ

where the function signumðzÞ is defined as follows

signumðzÞ ¼
0 for z ¼ 0;
z
jzj for all other z:

�
ð22Þ

In the region without delamination (06 x < xd1, xd1 < x6L), the assumed displacement has the form

wðx; y; z; tÞ ¼ W0ðx; y; tÞ ð06 x < xd1; xd1 < x6LÞ: ð23Þ

Assumption 5. From constitutive equations (14) we have

rxz ¼
1

S55
2exz: ð24Þ

Therefore, in order to satisfy the stress boundary conditions (6), i.e. vanishing of the transverse stress rxz at
the outer surfaces of the plate and the surfaces of the delamination crack, the assumed transverse shear
strain exz must also vanish at the same surfaces. Besides, in order to represent the through-the-thickness
variation of the transverse stress rxz realistically, we will assume that this stress varies quadratically in the
thickness direction of the plate. Then, according to the constitutive equation (24), the same through-the-
thickness variation of the transverse strain exz must be assumed. This leads to the following simplifying
assumptions about variation of the transverse strains in the thickness direction:

For the region of the zone 2 with the delamination (xd1 6 x6 xd2) and without attached or embedded
piezoelectric actuators (Fig. 1), it is assumed that

2exzðx; y; z; tÞ ¼ uð1Þ
x ðx; y; tÞ 1

�
þ 2

h
z
�

1

�
� z
zd

�
½1� HðzÞ� þ uð2Þ

x ðx; y; tÞ
�
� 1þ 2z

h

�
1

�
� z
zd

�
HðzÞ

ðxd1 6 x6 xd2Þ; ð25Þ

where uð1Þ
x ðx; y; tÞ is an unknown function that characterizes the strain exz under the delamination crack

(�h=26 z < zd, xd1 6 x6 xd2) and uð2Þ
x ðx; y; tÞ is the unknown functions that characterizes the strain exz above

the delamination crack (zd < z6 h=2, xd1 6 x6 xd2).
For the region of the zone 2 without delaminations (x1 6 x < xd1, xd1 < x6 L) and without attached or

embedded piezoelectric actuators (Fig. 1), it is assumed that
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2exzðx; y; z; tÞ ¼ uxðx; y; tÞ 1

�
� 2

h
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�
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h
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ðx1 6 x < xd1; xd2 6 x6 LÞ; ð26Þ

where uxðx; y; tÞ is an unknown function that characterizes the strain exz in the region without delamina-
tions.

For the zone 1 of the beam, i.e. for the zone without delaminations and with the piezoelectric actuator
attached to the upper surface it is assumed that

2exz ¼ wxðx; tÞ 1

�
� 2

hþ 2t
z
�

1

�
þ 2

h
z
�

06 x < x1; ð27Þ

where t is the thickness of the piezoelectric patch, and wxðx; tÞ is an unknown function that characterizes the
strain exz in the region without delaminations and with the piezoelectric actuator attached to the upper
surface of the beam. This assumed strain vanishes at the lower surface of the beam z ¼ �h=2 and at the
upper surface of the actuator, attached to the upper surface of the beam, i.e. at z ¼ ðh=2Þ þ t (Fig. 1).

3.2. Finite element formulation for the zone 1 of the beam (with the piezoelectric actuator attached to the
upper surface and without delaminations)

Let u0 be a longitudinal displacement at the axis of the beam (at z ¼ 0), i.e. u0ðx; tÞ 	 ujz¼0. In order to
express the longitudinal displacement uðx; z; tÞ in terms of the unknown functions u0ðx; tÞ, wxðx; tÞ and
W0ðx; tÞ, we will integrate the strain–displacement relation 2exz ¼ ou=ozþ ow=ox with the result

uðx; z; tÞ � U0ðx; tÞ ¼
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With the use of Eq. (28) and the strain–displacement relation

exx ¼
ou
ox

;

we can find the strain exx in terms of the unknown functions:

exx ¼

1
z
z2

z3

8>><>>:
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In this model, the virtual work principle for a finite element of a beam with a piezoelectric patch has the
form:
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Z Z Z
ðVbeamÞ

rðbÞ
xx dexx
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xz 2dexz
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where ðV Þ ¼ ðVbeamÞ þ ðVpatchÞ is a volume of the whole finite element (beam and piezoelectric patch). Eq.
(31a) can be written in the form
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According to the constitutive equation (A.36),
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where the superscript (b) where stands for a composite material of the beam, and the superscript (p) stands
for a material of the piezoelectric patch.

Substitution of constitutive equation (32) into the virtual work principle, Eq. (31b), yields
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Substitution of expressions for the displacements and strains in terms of the unknown functions, Eqs. (23),
(27), (29) and (30), into the virtual work principle, Eq. (33), gives the virtual work principle in terms of the
unknown functions in which the maximum orders of the derivatives of the unknown functions U0ðx; tÞ,
W0ðx; tÞ and wxðx; tÞ are

In order to perform a finite element formulation, we will represent the unknown functions U0ðx; tÞ,
W0ðx; tÞ and wxðx; tÞ by piecewise interpolation polynomials. If the virtual work principle contains spatial
derivatives of a field variable with a highest order being a number m, then an interpolation polynomial
must be chosen to satisfy the following requirements (Cook et al., 1989): (1) it must be a complete poly-
nomial of degree m or higher; (2) across boundaries between elements, the interpolation polynomial and its

Function Maximum order of derivatives

U0 1
W0 2
wx 1
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derivatives through order m� 1 (or higher) must be continuous. In the problem under consideration, the
interpolation polynomial will be chosen to be of the lowest allowable degree and the order of their de-
rivatives’ continuity. Therefore, we choose the first degree Lagrange polynomials to interpolate the un-
known functions U0 and wx

U0 ¼ bMc
ð1�2Þ

U0

�  
ð2�1Þ

; wx ¼ bMc
ð1�2Þ

�wwx
n o
ð2�1Þ

; ð34Þ

where

bMc 	 M1 M2b c; M1 ¼ 1� �xx
l
; M2 ¼

�xx
l
; ð35Þ

U 0

�  
	 U0ð0Þ

U0ðlÞ

� �
; �wwx

n o
	 wxð0Þ

wxðlÞ

� �
: ð36Þ

Here �xx is an x-coordinate in a local (element) coordinate system, whose origin coincides with the left node
of the finite element, and l is a length of a finite element. Following the same rules, we choose the Hermit
polynomials of the third degree to interpolate W0:

W0 ¼ bNc
ð1�4Þ

W 0

�  
ð4�1Þ

; ð37Þ

where

bNc
ð1�4Þ

	 N1 N2 N3 N4b c; ð38Þ

N1 ¼ 1� 3�xx2

l2
þ 2�xx3

l3
; N2 ¼ �xx� 2�xx2

l
þ �xx3

l2
; N3 ¼

3�xx2

l2
� 2�xx3

l3
; N4 ¼ ��xx2

l
þ �xx3

l2
; ð39Þ

W 0

�  
ð4�1Þ

¼

W0ð0Þ
oW0

ox ð0Þ
W0ðlÞ
oW0

ox ðlÞ

8>><>>:
9>>=>>;: ð40Þ

By introducing a column-matrix of nodal parameters f~hhgð8�1Þ, the components of which are defined as

~hh1 ¼ U0ð0Þ; ~hh2 ¼ W0ð0Þ; ~hh3 ¼
oW0

ox
ð0Þ; ~hh4 ¼ wxð0Þ; ~hh5 ¼ U0ðlÞ; ~hh6 ¼ W0ðlÞ;

~hh7 ¼
oW0

ox
ðlÞ; ~hh8 ¼ wxðlÞ ð41Þ

and by substitution of polynomial approximations of the unknown functions (Eqs. (34) and (37)) into the
virtual work principle for a finite element, written in terms of the unknown functions, one can obtain the
virtual work principle for a finite element in terms of the nodal parameters:

d~hh
n o
ð1�8Þ

T

~mm
h i
ð8�8Þ

€~hh~hh
n o
ð8�1Þ

0@ þ ~kk
h i
ð8�8Þ

~hh
n o
ð8�1Þ

� qf g
ð8�1Þ
V ðsÞ

1A ¼ 0; ð42Þ

where expressions for matrices ½ ~mm�, ½~kk� and vector fqg are presented in Appendix B. Equations of motion of
a finite element for the zone 1 of the beam, i.e. for the zone without delaminations and with the piezoelectric
actuator attached to the upper surface (Fig. 1), follow from Eq. (42):
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½ ~mm�
ð8�8Þ

€~hh~hh
n o
ð8�1Þ

þ ½~kk�
ð8�8Þ

~hh
n o
ð8�1Þ

¼ eqqf g
ð8�1Þ
V ðsÞ: ð43Þ

3.3. Finite element formulation for the zone 2 of the beam (without actuators and with the delamination crack)

In the zone 2 of the beam (Fig. 1) there are no attached piezoelectric actuators, and this zone contains a
region with the delamination (xd1 6 x6 xd2), where the assumed transverse shear strain exz has the form of
Eq. (25), and two regions without delaminations (x1 6 x < xd1, xd2 6 x6 L), where the assumed strain exz has
the form of Eq. (26). In order to represent the assumed strain exz with a single expression, valid for both
regions of the zone 2, with and without the delamination, we will use the extended Dirac’s function, that
can be defined by the formula:

Dðx; xd1; xd2Þ 	
1

p
lim
b!0

arctan
x� xd1

b

�
� arctan

x� xd2
b

�

¼ 1

2
signumðx� xd1Þ þ

1

2
signumð�xþ xd2Þ ¼

1 for xd1 < x < xd2;
1
2

for x ¼ xd1 or for x ¼ xd2;
0 for all other x;

8><>: ð44Þ

where

signumðxÞ ¼
0 for x ¼ 0
x
jxj for all other x:

�
ð45Þ

Then, expressions (25) and (26) for exz can be written as a single expression valid for the whole domain of
the zone 2 of the beam:

2exz ¼ ð1� DÞux 1

�
� 2

h
z
�

1

�
þ 2

h
z
�
þ D uð1Þ

x 1

��
þ 2

h
z
�

1

�
� z
zd

�
ð1� HÞ þ uð2Þ

x

�
� 1þ 2z

h

�
� 1

�
� z
zd

�
H
�

ðx1 6 x6 LÞ: ð46Þ

According to Eq. (20), the assumed displacement w in the region with the delamination is

wðx; y; z; tÞ ¼ ½1� Hðz; zdÞ�W0ðx; y; tÞ þ Hðz; zdÞW1ðx; y; tÞ ðxd1 6 x6 xd2Þ:
According to Eq. (23), in the region of the zone 2 without the delamination, the assumed displacement w
has the form

wðx; y; z; tÞ ¼ W0ðx; y; tÞ ðx1 6 x < xd1; xd2 < x6 LÞ:
The last two equations can be combined into a single one that is valid for the whole domain of the zone 2:

w ¼ ð1� DÞW0 þ D½ð1� HÞW0 þ HW1� ¼ W0 þ DHðW1 � W0Þ ðx1 < x < LÞ: ð47Þ
We now need to find an expression for the longitudinal displacement uðx; z; tÞ such that it takes account

of discontinuity of the displacement u at the surfaces of the delamination crack (at z ¼ zd) and satisfies the
strain–displacement relation 2exz ¼ ou=ozþ ow=ox. If the delamination crack is above the axis of the beam,
i.e. if zd > 0, then the sought expression for uðx; z; tÞ can be assumed to have the form

uðx; z; tÞ ¼ U0ðx; tÞ þ Hðz; zdÞ½U1ðx; tÞ � U0ðx; tÞ� þ
Z z

0

2exz

�
� ow

ox

�
dz; ð48Þ
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where U0ðx; tÞ 	 ujz¼0, and U1ðx; tÞ is a function that characterizes discontinuity of the displacement u at the
surfaces of the delamination crack (i.e. at z ¼ zd). Substitution of Eq. (46) for the assumed exz and Eq. (47)
for the assumed w into Eq. (48) gives the result:

u ¼ ð1� DÞ U0

�
� oW0

ox
zþ ux z

�
� 4

3h2
z3
��

þ D ð1
�

� HÞU0 þ HU1 þ uð1Þ
x ð1� HÞ

�
�
� 2

3hzd
z3 þ 6zd � 3h

6hzd
z2 þ z

�
þ uð2Þ

x H
�
� 2

3hzd
z3 þ 6zd þ 3h

6hzd
z2 � z

�
� ð1
�

� HÞ oW0

ox
þ H oW1

ox

�
z
�

ðx1 < x < LÞ: ð49Þ

Substitution of Eq. (49) for u and Eq. (47) for w into the strain–displacement relation exx ¼ ou
ox gives an

expression for the strain component exx, in terms of the unknown functions

exx ¼ ð1� DÞ oU0

ox

�
� o2W0

ox2
zþ oux

ox
z
�

� 4

3h2
z3
��

þ D ð1
�

� HÞ oU0

ox
þ H oU1

ox
þ ouð1Þ

x

ox
ð1� HÞ

�
�
� 2

3hzd
z3 þ 6zd � 3h

6hzd
z2 þ z

�
þ ouð2Þ

x

ox
H
�
� 2

3hzd
z3 þ 6zd þ 3h

6hzd
z2 � z

�
� ð1
�

� HÞ o
2W0

ox2
þ H o2W1

ox2

�
z
�
: ð50Þ

The virtual work principle for the zone 2 of the beam can be written similarly to that for the zone 1 of the
beam (Eq. (33)):

b
Z l

0

Z h=2

�h=2

1

S
ðbÞ
11

exxdexx

"
þ 1

S
ðbÞ
55

2exz2dexz

#
dzdxþ b

Z l

0

Z h=2

�h=2
qðbÞ€uududzdx

þ b
Z l

0

Z h=2

�h=2
qðbÞðg þ €wwÞdwdzdx ¼ 0: ð51Þ

In order to perform a finite element formulation for the zone 2 of the beam, we will represent the un-
known functions U0ðx; tÞ, U1ðx; tÞ, W0ðx; tÞ, W1ðx; tÞ, uxðx; tÞ, uð1Þ

x ðx; tÞ, uð2Þ
x ðx; tÞ by piecewise interpolation

polynomials. In the expressions for the displacements and strains in terms of the unknown functions (Eqs.
(46), (47), (49) and (50)) and, therefore, in the virtual work principle, the maximum orders of derivatives are

In the problem under consideration, the interpolation polynomial will be chosen to be of the lowest
allowable degree and the order of their derivatives’ continuity. Therefore, we choose the first degree
Lagrange polynomials to interpolate the unknown functions U0, U1, ux, uð1Þ

x , uð2Þ
x :

Function Maximum order of derivatives

U0 1
U1 1
W0 2
W1 2
ux 1
uð1Þ
x 1

uð2Þ
x 1
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U0 ¼ bMc
ð1�2Þ

fU0g
ð2�1Þ

; U1 ¼ bMc
ð1�2Þ

fU1g
ð2�1Þ

; ux ¼ bMc
ð1�2Þ

uxf g
ð2�1Þ

; uð1Þ
x ¼ bMc

ð1�2Þ
uð1Þ
x

n o
ð2�1Þ

; uð2Þ
x ¼ bMc

ð1�2Þ
uð2Þ
x

n o
ð2�1Þ

; ð52Þ

where

U 0

�  
	

U0ð0Þ
U0ðlÞ

� �
; U 1

�  
	

U1ð0Þ
U1ðlÞ

� �
; uxf g 	

uxð0Þ
uxðlÞ

� �
; uð1Þ

x

n o
	 uð1Þ

x ð0Þ
uð1Þ
x ðlÞ

( )
;

uð2Þ
x

n o
	 uð2Þ

x ð0Þ
uð2Þ
x ðlÞ

( )
; ð53Þ

and the matrix of shape functions bMc is defined by Eq. (35). For interpolation of functions W0 and W1 we
choose the Hermit polynomials of the third degree:

W0 ¼ bNc
ð1�4Þ

W 0

�  
ð4�1Þ

; W1 ¼ bNc
ð1�4Þ

W1

�  
ð4�1Þ

; ð54Þ

where

W 0

�  
ð4�1Þ

¼

W0ð0Þ
oW0

ox ð0Þ
W0ðlÞ
oW0

ox ðlÞ

8>><>>:
9>>=>>;; W1

�  
ð4�1Þ

¼

W1ð0Þ
oW1

ox ð0Þ
W1ðlÞ
oW1

ox ðlÞ

8>><>>:
9>>=>>;; ð55Þ

and the matrix of shape functions bNc is defined by Eqs. (38) and (39).
The vector of nodal parameters of the finite element for the zone 2 of the beam is introduced as follows:

h1 ¼ U0ð0Þ; h2 ¼ U1ð0Þ; h3 ¼ W0ð0Þ; h4 ¼
oW0

ox
ð0Þ; h5 ¼ W1ð0Þ; h6 ¼

oW1

ox
ð0Þ;

h7 ¼ uxð0Þ; h8 ¼ uð1Þ
x ð0Þ; h9 ¼ uð2Þ

x ð0Þ; h10 ¼ U0ðlÞ; h11 ¼ U1ðlÞ; h12 ¼ W0ðlÞ;

h13 ¼
oW0

ox
ðlÞ; h14 ¼ W1ðlÞ; h15 ¼

oW1

ox
ðlÞ; h16 ¼ uxðlÞ; h17 ¼ uð1Þ

x ðlÞ; h18 ¼ uð2Þ
x ðlÞ: ð56Þ

Then, equations of motion for a finite element of the zone 2 of the beam, derived from the virtual work
principle (51) are

½m�
ð18�18Þ

f€hhg
ð18�1Þ

þ ½k�
ð18�18Þ

fhg
ð18�1Þ

¼ fqg
ð18�1Þ

; ð57Þ

where the matrices ½m�, ½k� and the vector ff g are presented in Appendix C.

4. Verification of results of the FE analysis

In order to verify an accuracy of finite element models based on the theory presented above, we con-
sidered several example problems for cantilever beams with piezoelectric actuators attached near the
clamped edges (one actuator attached to each beam, Fig. 1).

In the first example problem we considered a wooden beam without a delamination, and in the FE model
the transverse shear strain exz was set equal to zero (by setting equal to zero the nodal parameters associated
with the unknown functions ux, uð1Þ

x and uð2Þ
x ). The beam had the following characteristics: length of the

beam L ¼ 430:4� 10�3 m, density of the wood: q ¼ 464:52 kg/m3, width of the beam b ¼ 3:81� 10�2 m,
thickness of the beam h ¼ 1:9025� 10�2 m, Young’s modulus of wood in the direction of the fibers:
E1 ¼ 1:0897� 1010 N/m2, shear modulus G13 ¼ 0:43588� 1010 N/m2. Elastic compliance coefficients in the
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laminate coordinate system, S11 and S55, are computed by the formulas (A.32) and (A.33). Edges of the
wooden beam were cut along the visible direction of fibers, so h ¼ 0, therefore

S55 ¼
1

G13

¼ 2:2942� 10�10 m2=N;

S11 ¼
1

E1

¼ 0:91768 � 10�10 m2=N:

In the finite element program, the length of the delamination crack was set equal to zero by setting equal
the coordinates of the left and right tips of the delamination crack, i.e. xd1 ¼ xd2. An analytical formulation
of this problem, for a beam without the delamination and with exz set equal to zero, can be written in a form
of the differential equation

E1I
o2w
ox2

þ �mm
o2w
ot2

¼ 0 ð58Þ

(where �mm is a mass of the beam per unit length, and I is a moment of inertia of a cross-section) with
boundary conditions, which for the cantilever beam have the form

wð0Þ ¼ 0;
ow
ox

ð0Þ ¼ 0: ð59Þ

The solution of the differential equation (58) with the boundary conditions (59) gives the following natural
frequency m ¼ 1=T

mn ¼
c2n
2p

ffiffiffiffiffiffiffiffi
EI
�mmL4

r
; ð60Þ

where cn is computed from the equation

cos cn cosh cn þ 1 ¼ 0: ð61Þ

The natural frequencies for the beam without delamination and without shear strain taken into account,
computed analytically from Eq. (60) and with the use of the FE model with 20 elements (based on the FE
formulation presented above) are shown in Table 1.

In the second example problem, the same wooden beam without a delamination was considered, but in
the finite element model the transverse shear strain exz was taken into account. The frequencies, computed
with the use of the finite element model, were compared with the frequencies measured experimentally with
the use of a laser vibrometer, PSV-300, a POLYTEC manufactured product. A size and weight of the

Table 1

Natural frequencies of a beam without debonding, transverse shear strain set equal to zero

m (s�1) from analytical solution m (s�1) from FEA (20 elements)

80.354 81.7 (error 1.7%)

503.57 516 (error 2.5%)

1410 1518 (error 7.6%)

2763 2934 (error 6.1%)

4567 4490 (error 1.7%)

6823 5464 (error 20%)

9529 10,583 (error 11%)

12,688 13,727 (error 8.2%)

16,296 16,291 (error 0.03%)

20,357 20,000 (error 1.8%)
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piezoelectric actuator, attached to the upper surface of the beam near the clamp (Fig. 1), was very small as
compared to the size and weight of the beam. Therefore, the influence of the presence of the actuator on
the natural frequencies of the beam was negligibly small. The excitation voltage to the piezoelectric ac-
tuator contained frequencies in the range from 0 to 2� 104 Hz. Results of this comparison are presented in
Table 2.

In the third example, a wooden two-ply beam with debonding (delamination) between plies was con-
sidered. This two-ply beam was constructed by adhering two separate wooden plies. The delamination was
permanently formed by removing the adhesion.

The material and geometric characteristics of this delaminated beam were the same as in the previous
example problems. The delamination crack was parallel to the surfaces of the beam. The x-coordinates of
the tips of the delamination crack were xd1 ¼ 149:2� 10�3 m and xd2 ¼ 353:15� 10�3 m, and z-coordinate
of the delamination crack was zd ¼ 3:34� 10�3 m. In the finite element model the transverse shear strain exz
was taken into account. A comparison of computed and experimentally measured frequencies is presented
in Table 3. The higher computed frequencies are inaccurate.

5. Conclusion

A theory of beams with delaminations, presented in this paper, is developed for the use in model-sup-
ported damage identification. The frequencies computed with the use of the finite element model, based on
the formulation presented in this paper, are in good agreement with experimental results. This shows the
validity of the simplifying assumptions adopted in the present paper for constructing a 1-D theory of a

Table 2

Natural frequencies of a beam without debonding, in the FE model transverse shear strain taken into account

m (s�1) experimental m (s�1) from FE solution (20 elements)

80 81 (error 1.3%)

1068 998 (error 6.6%)

3192 3041 (error 4.7%)

5242 5247 (error 0.1%)

7947 7565 (error 4.8%)

10,850 10,523 (error 3.01%)

12,710 12,885 (error 1.4%)

15,780 15,797 (error 0.1%)

15,910 16,054 (error 0.9%)

19,060 18,975 (error 0.4%)

Table 3

Natural frequencies of a beam with debonding, in the FE model transverse shear strain taken into account

m (s�1) experimental m (s�1) from FE solution (20 elements)

85.9 86.4 (error 0.6%)

341 301 (error 11%)

3356 3287 (error 2%)

4810 4829 (error 0.4%)

6485 6365 (error 1.8%)

7793 7814 (error 0.3%)

8488 8591 (error 1.2%)

9119 9294 (error 1.9%)
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beam with delamination. Therefore, a similar approach, with the use of the Heaviside function and ex-
tended Dirac function, can be attempted for constructing a 2-D plate theory.
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