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Abstract—This paper aims to solve an economic dispatch
problem concerning wind power using a Bacterial Swarm Al-
gorithm (BSA). The massive installation of the wind turbines in
power system presents a challenge for the conventional economic
dispatch. With increasing wind power penetration, the ramp
capability of wind farms correlates with the uncertain wind speed
rather than a fix ratio as conventional generators. Therefore, the
ramp constraints of the economic dispatch can be extended to
a probability which is related to the wind speed. In order to
solve the constrained optimization problem, this paper employs
the BSA to reduce the fuel cost by selecting suitable control
variables governing the power systems. The proposed method
has been evaluated using an IEEE 30-bus test system. Simulation
results indicate that the proposed method significantly reduces
the fuel cost and satisfies the ramp constraints.

Keywords—wind power, economic dispatch, ramp constraints,
bacteria swarm optimizer.

I. INTRODUCTION

ECONOMIC dispatch aims to achieve the minimization
of fuel cost based on a model of power system by adjusting
the control variables of the system, while satisfying a set of
operational and physical constraints. As a result, the economic
dispatch is formulated as a non-linear constrained optimization
problem. Although economic dispatch has been widely studied
over last few decades, most dispatch studies are based on
a deterministic scheme, which consists of a deterministic
objective function and associated constraints. Conventional
dispatch assumes that the the model of the power system is
invariant within the dispatch actions taken around an hour.

Recently, as the utilization of wind power has increased,
uncertainties of wind power generation have attracted much
attention [1]. With the fast increased rate of wind power
penetration, the intermittent nature of wind power becomes
a risk factor to the grid, where its uncertainty greatly affects
the economic dispatch and the system stability. To preserve
the system stability and to optimize the running costs, dis-
patch problems are extended to wind power integrated power
systems, in which operators evaluate the system status with the
consideration for wind power uncertainty. Although the run-
ning cost of wind power is lower than conventional generators,
the spinning reserve cost rises due to the uncertainty. The wind
power varies significantly during a dispatch period, especially

during the ramp period. If the wind farm fails to follow the
ramp rate as scheduled when the actual wind speed is different
from the forecast value, the imbalance of the power in the grid
will cause instability and the chain actions may further cause
black out [2].

To deal with the wind speed uncertainty, some research
adopts multi-stage features of preventive and corrective mea-
sures. By initially generating a large number of feasible
stages with varieties on wind speed probability density, the
optimized operation policy could be determined in connection
with different stages. However, instantly switching operation
policy based on real-time measurements of the wind speeds in
application is still a difficult task to perform. In this paper, a
novel ramp constraint is designed, where a lower and an upper
ramp rate margin for the wind turbines is generate from the
distribution of wind speed. The constraint proposed forces the
operation policy of economic dispatch following the lower and
upper ramp rate margin and the system stability is therefore
guaranteed.

In this paper, an improved optimization algorithm, BSA, is
introduced to solve the economic dispatch problem [3]. Instead
of simply describing chemotaxis behavior in Bacterial Forag-
ing Algorithm (BFA), BSA involves further details of bacterial
behaviors, and incorporates the mechanisms of metabolism and
quorum sensing. In BSA, two features of bacterial behaviors
are incorporated, which are chemotaxis and quorum sensing.
Chemotaxis comprises two basic foraging patterns, tumble and
run, which form the basic searching strategy of BSA. Quorum
sensing enables BSA to escape from local optima. This is a
two-fold operation that can either attract a bacterium to the
optimal location or repel it away from the location where
bacteria are concentrated.

This paper also presents the simulation studies which are
undertaken using an IEEE 30-bus test system. Compared with
conventional dispatch schemes, the dispatch scheme proposed
in this paper not only has an optimized fuel cost, but also
satisfies the ramp constraint on both wind turbine and conven-
tional generator. By applying the control strategy to the power
system, even if the wind speed is different from forecast value,
the ramp rate of entire system will still be guaranteed in most
cases.
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II. ECONOMIC DISPATCH MODEL

The economic dispatch problem discussed in this paper
aims to reduce the fuel cost of the power system. To achieve
this objective, the algorithm introduced is applied to optimize
the control variables of the power system, including the power
and voltages of each generator except the slack bus, the
tap ratios of transformers and the reactive power of volt-
ampere reactive (var) sources in the grid. Once these control
variables have been decided, the state variables are calculate
using power flow evaluation, which determines the values
of the real power of the slack bus, the load bus voltage,
the generator reactive power output, and the network power
flows. Besides the objective functions, the constraints of the
dispatch problem are also considered in this paper, which are
inequality constraints limiting of the control variables and state
variables, and equality constraints of the power flow equations.
Moreover, the constraints are extended with a ramp rate which
guarantees the increase of the actual power for each generator
follow the requirement.

A. Objective function

The objective function of economic dispatch can be for-
mulated as a minimization problem, described as follows:

min F (Y,X) (1)
s.t. G(Y,X) = 0 (2)

H(Y,X) > 0, (3)

where F (Y,X) is the optimization objective function, which
is concerned with fuel cost, G(Y,X) is a set of equality
constraints, and H(Y,X) is a set of formulated inequality
constraints; Y is the vector of dependent variables, which is
expressed as:

Y ᵀ = [PG1 VL1 · · ·VLNG QG1 · · ·QGNG S1 · · ·SNE ], (4)

which includes the slack bus power PG1, the load bus voltage
VL, generator reactive power outputs QG, and the apparent
power flow Sk; X is the set of control variables:

Xᵀ = [PG2 · · ·PGNG
VG1 · · ·VGNG

T1 · · ·TNT QC1 · · ·QCNC ], (5)

which includes the generator real power output PG except
slack bus PG1; the generator voltages VG, the transformer tap
setting T , and the reactive power generations of var source QC.
The detailed notations and formulation for equality constraints
and inequality constraints are given in [4].

The objective function, F , aims to optimize the fuel cost of
the generators. The mathematical expectation of the fuel cost
is expressed as:

F =

NG∑
i=1

fcosti , i = 1, 2, · · ·NG, (6)

where
fcosti = ai + biPGi + ciP

2
Gi
, (7)

where NG indicates the number of generators, fcosti indicates
the fuel cost ($/h) of the ith generator, ai, bi and ci are fuel
cost coefficients of that generator, and PGij is the real power
output generated by the ith generator.

The inequality constraints G(Y,X) are limits of control
variables and state variables. Control variables are chosen
according to these inequalities and are used for solving the
power flow equations in each iteration of the dispatch process.
Dependent variables in Y are calculated based on the control
variables by power flow evaluation. Moreover, the voltage V ,
reactive power Q, and apparent power flow S for all buses are
also limited during the entire OPF process, which if formulated
as constraints of the objective function as [4].

B. Wind power uncertainty

Weibull distribution is commonly used to describe long-
term wind speed stochastic behavior such as one month or one
year [5]. When the wind speed follows the Weibull distribution,
the wind speed at the ith bus, vi ∈ R, is expressed as:

P(vi;λ, k) =
k

λ

(vi
λ

)k−1

e−(vi/λ)k (8)

where k and λ are the parameters of the Weibull distribution. In
this study, k is set to be 2, which makes the wind uncertainty
distribution close to the Rayleigh distribution such that the
wind speed is always greater than zero [6].

The power output distribution of the wind turbine con-
nected to the ith bus is determined by the wind speed at that
location. A relationship between the power generated and the
wind speed was proposed in [7]. The active power output of
a wind turbine is given as:

PWi
=


0 0 ≤ vi < vci

a+ bv3
i vci ≤ vi < vra

Pra vra ≤ vi < vco

0 vi ≥ vco

, (9)

where

a =
Prav

3
ci

v3
ci − v3

ra

and b =
Pra

v3
ra − v3

ci

, (10)

where vi is the wind speed, vci the cut-in wind speed, vra the
rated wind speed, vco the cut-out wind speed, and Pra is the
rated power of wind turbine. In this paper, the rated power of
a wind power generator is set to be 2 MW, the rated wind
speed is set to be 12.5 m/s, and the cut-in and cut-out wind
speeds are set to be 4 m/s and 20 m/s, respectively.

C. Ramp rate constraints

This research assumes that the dispatch is performed every
one hour. Therefore, the ramp rate is expressed as the differ-
ence of real power between the dispatch interval. Assuming the
load at the ith bus has an initial real power demand P̄Di

before
the dispatch action. When the dispatch strategy is performed,
the demand is updated to PDi

. Therefore, the difference of the
real power demand between the dispatch interval is expressed
as:

∆PDi = PDi − P̄Di . (11)

And the ramp demand of the power system is expressed as:

Pramp =

NB∑
i=1

∆PDi
, (12)

where NB indicates the number of buses in the power system.
The ramp demand, Pramp, is the total demand increase required



by the load on each bus, and this amount of demand should
be covered by the real power output of the generator. Similar
as load, P̄Gi and PGi indicate the real power output of the ith
generator before and after the dispatch action. Therefore, the
difference of the real power generated between the dispatch
interval is expressed as:

∆PGi = PGi − P̄Gi . (13)

Therefore, the ramp rate constraint is expressed as:

NG∑
i=1

∆PGi
> Pramp (14)

∆PGi < ∆PGUBi , (15)

where ∆PGUBi
indicates the upper margin of the ramp rate of

the ith generator. By adding the above ramp rate constraints
to the objective function, the solution obtained will guarantee
that the ramp demand can be covered by all generators, and
the ramp rate for each generator is limited within the ramp
ability.

The ramp rate constraints for wind power is also considered
in this research, which aims to provide a lower and upper
margin to describe the maximal increase or decrease of the
wind power output. Assuming the ith wind turbine follows
the Rayleigh distribution, the Cumulative Distribution Function
(CDF) is expressed as:

C(vi) = 1− e−x
2/2λ2

. (16)

The ramp rate constraint proposed aims to satisfie most pos-
sible cases from entire wind speed distribution. Therefore, the
lower and the upper CDF margins at the ith wind turbine are
introduced as Clbi

and Cpbi
, respectively. By introducing these

two margins, Cpbi
−Clbi

percent of the wind speed is included
in this constraint. As a result, the lower and upper wind speed
margins, vlbi and vpbi

, are expressed as:

vlbi
=

√
−2λ2 lnClbi

(17)

vubi =
√
−2λ2 lnCubi . (18)

Once the lower and upper wind speed margins are obtained,
the lower and upper wind power margins, PWlbi

and PWubi
,

can be calculated by using (9). The wind power margins can
be integrated to the ramp rate margin as:

NG∑
i=1

∆PGi
+

NT∑
j=1

(P̄Wi
− PWlbi

) > Pramp, (19)

where P̄Wi indicates the wind power output of the ithe before
the dispatch action. If the system power demand is decreasing
with time, the PWlbi

in ramp rate constraint is replaced by
PWubi

.

III. BACTERIAL SWARM OPTIMIZER

A. Chemotaxis

The chemotaxis behavior can be modeled by a tumble-
run process that consists of a tumble step and several run
steps. The tumble-run process follows a gradient searching
principle, which indicates that the position of the bacterium is
updated in the run steps by the gradient information provided

by the tumble step. Determining the rotation angle taken
by a tumble action in an n-dimensional search space can
be described as follows. Suppose the pth bacterium, in the
tumble-run process of the kth iteration, has a current position
Xk
p ∈ Rn. The objective of the optimization is to find the

minimum of F (Xk
p ). The bacterium also has a rotation angle

ϕkp =
(
ϕkp1, ϕ

k
p2, ..., ϕ

k
p(n−1)

)
∈ Rn−1 and a tumble length

Dk
p(ϕkp) =

(
dkp1, d

k
p2, ..., d

k
pn

)
∈ Rn, which can be calculated

from ϕkp via a polar-to-cartesian coordinate transform:

dkp1 =
n−1∏
i=1

cos
(
ϕkpi
)
,

dkpj = sin
(
ϕkp(j−1)

) n−1∏
i=p

cos
(
ϕkpi
)
j = 2, 3, ..., n− 1,

dkpn = sin
(
ϕkp(n−1)

)
. (20)

In the polar-to-cartesian coordinate transform, an arbitrary
vector in the n-dimensional space can be represented by n−1
angles and a normalized distance to the original point.

The maximal rotation angle ϕmax is related to the number
of the dimensions of the objective function, which can be
formulated as:

ϕmax =
π

b
√
n + 1 c

, (21)

where n is the number of dimensions and b·c denotes the
operation which rounds the element to the nearest integer
towards minus infinity. By introducing (21), the maximal
rotation angle is restricted with the increase of dimension. As
a result, the algorithm is easier to converge to the optima in
high-dimensional environment, when it finds a heading angle
with an effective direction.

In the tumble-run process of the kth iteration, the pth

bacterium generates a random rotation angle, which falls in
the range of [0, ϕmax]. A tumble action takes place in an angle
expressed as:

ϕ̂kp = ϕkp + r1ϕmax/2, (22)

where r1 ∈ Rn−1 is a uniform random sequence with a range
of [−1, 1]. The run action immediately follows the tumble
action. Because the run action will be performed more than
once, the position Xk

p is recorded as X̂k,0
p , which indicates

the position of the pth bacterium at the beginning of the kth

iteration.

Once the angle is determined by the tumble step, the
bacterium will run for a maximum of Nc run steps. If at the
N th

f (Nf < Nc) run step, the bacterium finds a position which
has a better fitness value than the current one, the run process
also stops. The position of the pth bacterium is updated at the
hth (h ≥ 1) run step in the following way:

X̂k,h
p = X̂k,h−1

p + r2D
k
p(ϕ̂kp), (23)

where r2 ∈ R is a normally distributed random number
generated from N (0, Dmax), Dmax is the maximal step length
of a run, and X̂k,h

p is the position of the pth bacterium after the
hth run step. For convenience of description, the position of
the pth bacterium beginning immediately after the tumble-run
process of the kth iteration is denoted by X̂k,Nf

p , Nf ≤ Nc.



TABLE I. NUMBER OF WIND TURBINES AND WIND SPEED
PARAMETERS IN THE IEEE 30-BUS SYSTEM

Node 2 7 10 16 24
Number of turbines 3 10 5 3 8

λ 10.3 7.5 8.6 3.7 9.5

The rotation angle is updated after each iteration. The
tumble angle of the pth bacterium at the beginning of the
(k + 1)th iteration is expressed as ϕk+1

p , which has the same
value as ϕ̂kp .

B. Quorum sensing

Inspired by Particle Swarm Optimizer (PSO), the positions
of the bacteria moving by attraction are updated as follows:

Xk+1
p = X̂k,Nf

p + r3(Xbest − X̂k,Nf
p ), (24)

where r3 ∈ R is a normally distributed random number with
a range of [−1, 1], which describes the strength of bacterial
attraction, and Xbest indicates the position of the current best
global solution updated after the evaluation of each function.

In BSA, a small number of the bacteria are randomly
selected to be repelled. To measure the degree of repelling,
a repelling rate is defined by ζ, i.e., in each iteration, 100ζ
percent of the bacteria are processed by repelling. Accordingly
the attraction rate is 100(1−ζ) percent. The repelling process is
based on the random searching principle. If the pth bacterium
shifts into the repelling process, a random angle in the range
of [0, π] is generated. The bacterium is thereby “moved” to
a random position following this angle in the search space,
which can be described as:

Xk+1
p = X̂k,Nf

p + r4D
k
p(ϕ̂kp + π/2), (25)

where r4 ∈ Rn is a normally distributed random sequence
which drawn from N (0, Drange), and Drange is the range of
the search space.

IV. EXPERIMENTAL STUDIES

A. Experimental setting

The simulation studies are carried out on an IEEE 30-
bus system [8]. The present experimental study assumes five
groups of wind turbines are installed on buses 2, 7, 10, 16 and
24, respectively. The number of wind turbines on each bus and
the corresponding parameters in (8) are listed in Table I.

The experiment assumes the real power demands of all
buses are increased by 10% from their original values. There-
fore, the optimized real power output should be increased as
well. The constraint parameters for conventional generators
are listed in Table II, which include the bus number of the
generator, the initial real power output before the dispatch
(P̄Gi ) and the ramp rate margin (∆PGUBi ). Among these
generators, generator on bus 1 is the slack bus generator.
Generator on bus 2 is defined to be a base load generator,
which has a small ramp rate margin. The other 4 generators are
defined to be peak load generators, and the ramp rate margins
are set at higher values. For the ramp constraint, Clbi

and Cpbi

are set to 5% and 95% to make the constraints cover 90% of
the wind speed distribution.

TABLE II. RAMP RATE CONSTRAINTS FOR CONVENTIONAL
GENERATORS

Generator number Bus number P̄Gi
(MW) ∆PGUBi

(MW)

0 1 90.00 20.00
1 2 50.00 2.00
2 5 35.00 10.00
3 8 20.00 5.00
4 11 10.00 5.00
5 13 10.00 5.00

In the experimental studies, BSA is compared with PSO
[9], which has been widely studied and compared in the past
few years [9]. For the parameters of PSO, the inertia weight
ω is set to be 0.73, and the acceleration factors c1 and c2
are both set to be 2.05. The number of iterations for PSO to
solve stochastic dispatch is set to be 3× 102, as suggested in
[10]. There are 50 individuals in PSO, and each individual is
evaluated by 200 simulations with different combinations of
environmental uncertainties in each iteration. Therefore, the
total number of function evaluations for PSO is set to be 3×
106. The number of BSA is set to be 50, and the maximal
number of function evaluation is set to be 3× 106 as well.

B. Optimization of fuel cost

The first objective function adopted in this experiment aims
to optimize the fuel cost of the system without adding the
ramp rate constraint. The wind turbines are assumed to be
running under a fixed wind speed, which is the λ value in Table
I. Once a control policy is obtained after the optimization,
it is applied to the power system model 2,000 times with
different wind speeds generated from a Weibull distribution.
The mathematical expectation of the fuel cost (F ) and the
ramp rate for each generator can be calculate from these 2,000
samples. Meanwhile, a margin is defined to describe the spare
power support provided to wind turbines from conventional
generator, P̂W, which is expressed as:

P̂W = ∆PG0 −∆PGUBi
−∆PGi

−
NT∑
j=1

P̄Wi
. (26)

A positive value of P̂W means the system is able to provide
enough ramp power when the output of wind turbines reaches
a lower value, which covers 95% of the total possible wind
speed distribution. When P̂W is a negative value, the system
may fail to provide enough ramp power.

According to the results listed in Table III, the solution
obtained by BSA has a lower fuel cost than PSO. Because
the ramp rate constraint is not included in the objective
function, the ramp rate of most generators exceeds the margin.
Running the system under this control policy will make the
system unstable. Meanwhile, the solutions obtained by the two
algorithms both successfully meet the requirement of ramp rate
for the wind turbines. This is because the generator on the slack
bus has a large ramp rate to balance the power.

C. Optimization with ramp rate constraints

Following the previous experiment, this experiment aims to
enhance the economic dispatch objective function with a ramp
rate constraint. The wind turbines are assumed to run under
uncertain wind speed, which is generated using the Weibull



TABLE III. MATHEMATICAL EXPECTATION OF FUEL COST AND RAMP RATE OBTAINED WITHOUT CONSTRAINT

Algorithm F ($/h) ∆PG1 (MW) ∆PG2 (MW) ∆PG3 (MW) ∆PG4 (MW) ∆PG5 (MW) P̂W (MW)
PSO 910.55 4.66 12.27 2.85 11.46 5.92 15.83
BSA 907.43 2.08 12.31 9.84 4.84 3.87 11.53

Margin - 2.00 10.00 5.00 5.00 5.00 0.00

TABLE IV. MATHEMATICAL EXPECTATION OF FUEL COST AND RAMP RATE OBTAINED WITH CONSTRAINT

Algorithm F ($/h) ∆PG1
(MW) ∆PG2

(MW) ∆PG3
(MW) ∆PG4

(MW) ∆PG5
(MW) P̂W (MW)

PSO 910.72 1.98 9.98 4.98 4.91 4.22 10.70
BSA 908.17 1.99 9.99 4.99 4.99 4.31 9.49

Margin - 2.00 10.00 5.00 5.00 5.00 0.00

distribution with the λ value in Table I. The mathematical
expectation of the fuel cost (F ) and the ramp rate for each
generator are listed in Table IV.

According to the results, it can be found that the fuel costs
obtained by PSO and BSA are both increased. After integrating
the ramp rate constraint to the objective function, the feasible
space of the control variable is shrunk as well. Therefore,
the cost of running the system under the control policy is
increased. However, it also can be found that the ramp rate of
these conventional generators are all secured within the margin.
Meanwhile, these ramp rates are close to the margin, which
maximize the performance of each generator. A lower value
of P̂W also indicates the generator on slack bus has sufficient
real power to support the ramping of wind power.

V. CONCLUSION

This paper extends the conventional economic dispatch
objective function by employing a ramp rate constraint, which
not only aims to minimize the running cost of the system,
but also guarantee the ramp rate of each generator is secured
within the margin. In order to solve this constrained optimiza-
tion problem, a population based algorithm, BSA, has been
employed. To evaluate the ramp rate constraint proposed in
this paper, IEEE 30-bus test case is introduced and integrated
with wind power. BSA and PSO are applied to the test case
to analysis the system running cost and ramp rate constraint.
Simulation results indicate that although the fuel cost of the
system is increased after considering the ramp rate constraint,
the ramp rate of conventional generator is limited in the
margin, and therefore the ramp progress is stable. Meanwhile,
the system optimized is also able to provide sufficient support
to the ramp rate of wind power.
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