
  

  

Abstract— This paper presents a semi-automatic approach 
to segmentation of liver parenchyma from 3D computed 
tomography (CT) images. Specifically, liver segmentation is 
formalized as a pattern recognition problem, where a given 
voxel is to be assigned a correct label – either in a liver or a 
non-liver class.  Each voxel is associated with a feature vector 
that describes image textures. Based on the generated features, 
an Extreme Learning Machine (ELM) classifier is employed to 
perform the voxel classification. Since preliminary voxel 
segmentation tends to be less accurate at the boundary, and 
there are other non-liver tissue voxels with similar texture 
characteristics as liver parenchyma, morphological smoothing 
and 3D level set refinement are applied to enhance the accuracy 
of segmentation. Our approach is validated on a set of CT data. 
The experiment shows that the proposed approach with ELM 
has the reasonably good performance for liver parenchyma 
segmentation. It demonstrates a comparable result in accuracy 
of classification but with a much faster training and 
classification speed compared with support vector machine 
(SVM).  

I. INTRODUCTION 

Accurate liver segmentation is fundamentally important 
in subsequent steps such as surgical planning for tumor 
resection, transplantation and diagnosis of hepatic diseases. 
Currently automatic liver segmentation is still a challenging 
problem. The difficulties of obtaining precise delineation of 
liver boundary mainly arise from factors such as enormous 
shape variability of livers, the lack of clear boundary and 
poor image quality.  

One of the popular techniques for liver segmentation is 
the application of active shape model (ASM) [1] where the 
basic idea is to fit a deformable shape model onto the image. 
It involves the construction of the shape model using 
principal component analysis (PCA) on a set of landmark 
points on the shape surfaces. However using shape model can 
at times be over-restrictive and may not capture all possible 
variations of livers. Also ASM requires an extensive database 
of liver shapes as the prerequisite for training. For example 
Kainmuller et al. [1] constructed their model based on as 
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many as 112 liver shapes. Classification based methods [2-4] 
however only need a small amount of image data samples for 
training. Users just need an initialized region of interest 
(ROI) on CT scans to start generating training samples on-
the-fly. Hence our classification framework is more 
appealing for applications where the training set is very 
scarce and no good shape prior model is available. 

Also, many segmentation approaches in the literature rely 
heavily on proper initialization of liver boundary to function 
effectively. The level set framework of Lee et al. [5] 
necessitates estimated liver boundary to be initialized first by 
applying manually seeded region growing. Even for the ASM 
method, initial localization of liver location is a necessary 
step to ensure proper registration of the shape model [1]. To 
our best knowledge, there is currently no effective method for 
automatic or even semi-automatic liver segmentation with 
very few training CT data sets and with a fast training speed.  

To address these problems, we propose the use of 
Extreme Learning Machine (ELM) [6] to segment liver 
voxels from non-liver ones in CT scans. Here, liver 
segmentation is formalized as a pattern recognition problem. 
Each voxel is associated with a feature vector which consists 
of a set of texture features, namely the mean and variance, 
Law’s features [7] and sum-and-difference histograms [8]. 
Based on these features, an ELM classifier is learned for 
voxel classification, followed with morphological smoothing 
and 3D level set [9] refinement. The only assumption is that 
the liver is the biggest abdominal organ, which helps to 
locate the correct 3D liver segmentation region.  

Our approach does not need any other prior knowledge of 
the exact shape model of the liver. Furthermore, our 
framework requires minimal human intervention and tuning. 
Unlike support vector machine (SVM) [10] or level set 
method [9], ELM is not very sensitive to selection of network 
parameters. If the number of hidden nodes is set adequately 
large, the choice of an activation function is not really 
important. Therefore significant amount of time can be saved 
in tuning the parameters, and the training and testing with 
ELM is very fast. 

The organization of the paper is as follows. Section II 
briefly introduces ELM. Section III presents the proposed 
approach. Section IV summarizes and discusses the result. 
The paper is concluded in Section V. 

II. INTRODUCTION OF ELM 

One of the recent advancements in computational 
intelligence is the introduction of ELM by Huang et al. [6]. 
The ELM is designed for single hidden layer feed forward 
networks (SLFN) and it addresses the speed limitation of 
traditional learning methods. In ELM, input weights and 
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biases to the hidden nodes are randomly generated and the 
output weights to the output layer are analytically 
determined. It has been rigorously proven by Huang et al. 
[11] and others [12] that ELM has dramatically faster 
learning speed than all existing learning algorithms while 
offering generalization performance comparable to others 
such as SVM. 

Consider a SLFN network with L hidden nodes and a 
training dataset consisting of N arbitrary samples N
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Here iw and ib  are the input weights and biases to the 
hidden layer respectively. The output weight iβ  links the i-
th hidden node to the output layer and g() is the activation 
function of the hidden nodes. Equation (1) can be compactly 
represented as 

 β =H T  (2) 
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( )
1 1 1 1

1 1

1 1 1

( ) ( )

( ) ( )

,..., , ,..., , ,...,

L

N L

L L N

N L

g b g b

g b g b

b b

×

⋅ + ⋅ + 
 
 
 ⋅ + ⋅ + 

=
L

L N

w x w x

w x w x

H w w x x



  



 (3) 

 T

L
][

1
βββ = and T

L
ttT ][

1
=  (4) 

After the random initialization of the input weights iw  and 

biases ib , matrix H is essentially known and requires no 

further tuning. In practice since L << N equality (2) does not 
hold. ELM determines the optimal solution to (2) in the least 
square sense by expressing the minimum norm least square 
solution β


 as 

 †β = H T


 (5) 

where †H is the Moore-Penrose generalized inverse of the 
hidden layer output matrix H. With (5), the SLFN can be 
constructed easily with the training samples. 

III. METHODOLOGY 

A.  Pre-processing and ROI selection 

A pre-processing step is necessary as the acquired images 
are often noisy and have different contrast ranges. For 
computational feasibility the transversal scans are down-
sampled to a more manageable resolution of 256 x 256. Users 
are then requested to mark some liver and non-liver regions 
in the CT scans either by drawing a circle or using a free-
hand delineation of the regions. The drawing needs not to be 
accurate. The purpose of having the ROI is two-fold: 1) to 
normalize the intensity range onto the [0,1] range and 2) to 
generate training samples for the ELM learning. This is the 
only stage of the framework where users need to manually 
intervene. Once the samples have been set up, the ensuing 
procedure is fully automated. After the intensity adjustment, 

a 2D anisotropic diffusion filter [13] is applied to noise 
suppression. The anisotropic diffusion filter is preferred over 
convolution filters because of its edge preserving property.  

B. Feature Extraction 

Proper selection of features is critical for ensuring high 
classification accuracy. Intensity feature (e.g. neighborhood 
mean and variance) is not an effective  discriminant as liver 
parenchyma often shares similar intensity range with 
adjoining tissues. As liver parenchyma has slightly different 
textures, incorporation of higher order statistics to 
characterize such textures can improve the classification 
performance. Here we quantify texture patterns within a local 
neighborhood of a given voxel by four types of features, i.e. 
(i) neighborhood mean, (ii) neighborhood variance, (iii) 
Law’s texture [7], and (iv) Unser’s sum-and-difference 
histograms [8].  

The Law’s texture in general is capable of discerning a 
variety of patterns such as average intensity, edge, spot, wave 
and ripple. The method of sum-and-difference histograms is a 
way of modeling joint probability distribution between two 
voxels (random variables) separated at a certain 
displacement. From the histograms, texture descriptors such 
as correlation, entropy, contrast, homogeneity, cluster shade 
and so forth could be derived easily to characterize the 
statistical structure of the object appearance.  

Resolution (or scale) at which the texture is defined is 
also equally important. In our work, we define the scales of 
the voxel neighborhood to be 3x3 (fine scale) and 5x5 (coarse 
scale) respectively for all the features. For computing local 
average and variance, the method of integral images 
proposed by Viola and Jones [14] is used to speed up feature 
computation. All the extracted features are then concatenated 
into a single feature vector and fed into the ELM as input. To 
normalize the features, we perform z-score normalization and 
use a hyperbolic tangent function to map the feature values 
into a fixed range of (-1, 1). 

C. Classifier architecture 

There are only a few user-specified parameters to tweak 
in ELM learning, i.e. the number of hidden nodes L and the 
type of activation function g() as defined in equation (1). It is 
observed that ELM is insensitive to the choice of activation 
function with adequately high number of hidden nodes, 
which is smaller than that of the support vectors used in a 
direct SVM learning. Fig.1 shows the performance with 
different number of hidden nodes and activation functions 
used for ELM training. 

 

Figure 1. Testing error vs. the number of hidden nodes with various types of 
activation functions 
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As shown in Fig.1, the sigmoid, sine and radial basis 
functions (RBF) exhibit comparable performance when the 
size of hidden layer is set sufficiently large. In this paper we 
select 150 hidden nodes and the sigmoid function for ELM. 

D. Binary Classification 

The ELM classifier is deployed to segment the whole CT 
volume of each patient, slice-by-slice in the transversal view. 
A threshold (sign) function is applied to the ELM output to 
obtain the binary segmentation. Fig. 2(a) illustrates the ELM 
output (saliency map) where the brightness indicates the 
likelihood of a voxel belonging to the liver, while Fig. 2(b) 
compares ELM with SVM, which shows it is able to achieve 
very similar segmentation result as SVM. 

 

 

 

 

 

 

     

                   (a) ELM output                          (b) Binary segmentation  

Figure 2. (a) ELM output: Original CT image (top row) and the ELM output 
(bottom row). (b) Binary segmentation: Original CT image (top left), 
Ground truth (top right), SVM segmentation (bottom left) and ELM 

segmentation (bottom right). 

E. Post-processing 

With ELM classification, the segmentation could still 
contain both the liver and some falsely classified non-liver 
voxels. To remove these unwanted tissues, we employ 3D 
morphological operations (Fig. 3) to post-process the volume. 
To remove cylindrical structures like inferior vena cava 
(IVC), we fit an ellipse to each 2D connected component on 
the transversal view. If the eccentricity of a component is 
below a predefined cutoff value, the 2D component is 
discarded since it is too circular to be a liver component. A 5-
mm sized spherical element is used to morphologically open 
and smooth the binary volume. From anatomical perspective 
we know that liver is the largest organ in human body. 
Incorporating this prior knowledge, the largest 3D connected 
component is identified as the liver volume. 

 
Figure 3.  (Left) The liver is connected to the part of inferior vena cava, 
circled in the ellipse. (Right) Result after applying opening, removing 
cylindrical structures and extracting the largest connected component. 

The opening procedure tends to produce a slightly under-
segmented liver volume. To remedy this problem, a 3D 
distance regularized geodesic level set [9] is used to refine 
the liver boundary using the previous segmented result. 

Illustrated in Fig. 4 is an example of the initialization (cyan) 
from the ELM and morphologic smoothing and the result 
after level-set refinement (yellow). Since the initial ELM 
segmentation is very close to the true boundary, the level set 
method is relatively insensitive to parameters setting (e.g. 
curvature weightage and weightage of area term) which is an 
added advantage to our framework. 

   
Figure 4. Examples of liver segmentation boundary before (cyan) and after 

(yellow) level set evolution. 

IV. RESULTS AND DISCUSSION 

We validate our segmentation approach on MICCAI’07 
dataset. The segmentation is done with MATLAB running on 
a standard 3 GHz PC with 2 GB of RAM. The time to 
segment one slice is about 40 seconds.  Visual results of our 
ELM segmentation are presented in Fig. 5.  

 
Figure 5. Comparison of our segmentations (blue lines) and ground truth 

(red lines) in sagittal, coronal and transversal view respectively. 

The segmentation result is quantitatively evaluated using the 
following five metrics [15]: volume overlap (VO), volume 
difference (VD), average symmetric surface distance (in 
mm), Root Mean Square (RMS) symmetric surface distance 
(in mm) and maximum surface distance (in mm). There are a 
total of 20 datasets in MICCAI’07 liver database. However 
due to the speed limitation of SVM, we have only evaluated 
SVM results on 5 datasets. Table I compares the results from 
SVM and ELM segmentation. It shows the accuracy of ELM 
is comparable to that of SVM segmentation but at a much 
faster training speed. As the trained SVM has more than 4000 
support vectors, compared to only 150 hidden nodes of ELM, 
the classification time of ELM is only around 10% of that of 
SVM based approach. 
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Here we compare SVM (code downloadable from [10]) 
and ELM classifiers in terms of their sensitivities to user-
specified parameters. There are two parameters for SVM 
with radial basis function (RBF) kernel:  cost parameter C 
and kernel parameter γ. It is rarely known beforehand which 
combination of (C, γ) yields the best performance for a given 
application. The SVM has to be tuned iteratively using 
multiple combinations of (C, γ). As illustrated in Fig. 6, SVM 
is sensitive to the choice of (C, γ). This shows that ELM is 
better than SVM since it requires fewer tunings and is less 
sensitive to the user-specified parameters (see Fig. 1). 

 
Figure 6. Performance of SVM with RBF kernel trained on multiple (C, γ) 

combinations (with dataset 2 as an example). 

Currently, our method is only capable of segmenting 
healthy liver parenchyma, with/without small tumors, 
accurately. It may not be able to handle datasets with large 
liver tumors. Setting the pathological datasets (2 sets) aside, 
our overall ELM segmentation performance (on 18 sets) is 
given in Table II. 

Table II. Overall ELM segmentation results  
 mean std. max. min. 

VO (%) 90.3 1.7 92.3 86.8 

VD (%) -0.7 3.6 5.9 -6.2 
Avg. dist. (mm) 1.7 0.3 2.4 1.3 
RMS dist. (mm) 2.7 1.0 5.8 1.7 
Max. dist. (mm) 22.9 7.5 38.0 14.3 

V. CONCLUSION 

We summarize our contributions as follows. In this paper, 
we have proposed an approach using ELM to segment liver 
voxels in CT scans. We also examined briefly the 

performance of ELM compared with that of SVM. To deal 
with the occasional leakage in ELM segmentation, we 
applied morphologic operation and level set  for the post-
processing to enhance the segmentation. In our approach, 
user interaction is only required to expedite the preparation of 
the training dataset. The remaining classification procedures 
are fully automated. Even without the shape prior model, the 
proposed approach performs reasonably well and it is easy to 
implement.  

We have experimentally demonstrated that our method in 
liver segmentation and show advantageous over SVM in 
terms of training speed. Compared to existing techniques, our 
framework is robust to user-specified parameters. In addition, 
it can operate on a limited amount of training test cases and 
does not require any prior knowledge about the location, 
orientation or shape of the liver organ. 

As an ongoing work, we are experimenting with using 
multiple ELM classifiers to segment the healthy parenchyma 
and pathological tissues (tumors) jointly. 
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Table I. Comparison of ELM and SVM segmentation results 
   SVM    

Dataset 
VO 
(%) 

VD 
(%) 

Avg. 
Dist.(mm) 

RMS 
Dist. 
(mm) 

Max. 
Dist. 
(mm) 

Training 
time (s) 

1 88.3 -0.2 2.2 3.6 21.0 2109.1 

2 91.5 -0.8 1.6 1.8 20.4 2591.2 

3 90.7 -3.1 1.7 2.4 15.3 2353.7 

4 91.2 -5.4 1.6 2.1 14.5 1538.2 

5 92.2 3.6 1.8 2.4 20.5 2292.2 

   ELM    

Dataset 
VO 
(%) 

VD 
(%) 

Avg. 
Dist.(mm) 

RMS 
Dist. 
(mm) 

Max. 
Dist. 
(mm) 

Training 
time (s) 

1 90.6 -1.0 1.7 2.2 16.8 104.9 

2 91.7 -2.6 1.6 2.1 15.6 106.6 

3 91.7 -1.5 1.7 2.2 17.6 109.3 

4 92.3 -3.7 1.5 1.9 14.3 90.5 

5 91.1 -3.6 1.6 2.5 23.2 89.7 
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