The Worst Case Permutation for Median-of-Three

Quicksort

Hannu Erkio

Department of Computer Science, University of Helsinki, Tukholmankatu 2, SF-00250 Helsinki 25, Finland

An algorithm is given which forms the worst case permutation for one of the most efficient versions of quicksort
(median-of-three quicksort). This makes the experimental evaluation of this important algorithm possible. The paper
includes a simple experimental comparison of the median-of-three and original versions of quicksort.

1. INTRODUCTION

2. THE ALGORITHM

Practicall?' the only serious weakness of Hoare’s
quicksort’ is its possibility to require O(N?) time units,
which happens when an extremely unfavourable input
permutation is sorted (the worst case). The effect of this
drawback can be diminished in amount and made less
likely by choosing the partitioning key as the median of
a small sample of keys instead of one strictly determined
key as in the original version of the algorithm, where the
first key is used. The size of the sample and the ways of
implementing quicksort are analysed by Sedgewick who
recommends a sample of only three elements? and
presents an efficient algorithm for the median-of-three
quicksort.® (The idea of using a sample was already
presented in Ref. 1).

As quicksort is generally considered to be the best
internal sorting algorithm, and it is often used as a
yardstick to which the efficiency of other algorithms is
compared, it is essential that its performance is thor-
oughly understood. This includes the knowledge of the
worst case behaviour of the algorithm, and especially
when the algorithm is experimentally evaluated, one
must be able to generate the worst possible input
permutation for it.

Wedenote the part of the array A[1 : N]to be partitioned
in one specific pass of quicksort by A[L:R], and the
partitioning element by V¥ (as in Ref. 3, for example). In
Ref. 2 it is shown that the worst case of original quicksort
is caused by successive degenerated partitions with
partitioning elements always smaller or larger than all
the other elements. In the original quicksort, A[L] is used
as the partitioning element, and thus the ordered input
permutation {1, 2, ..., N} trivially leads to the worst
possible behaviour of the algorithm. The O(N?) complex-
ity of this worst case is easily derived by counting the
number of key comparisons needed in successive parti-
tioning passes:

Cl=WN+D+N+(N=1+---+3=(N?2+O0]N)

In Section 2 we give an algorithm which forms the
corresponding (non-trivial) worst case permutation for
the median-of-three quicksort presented in Ref. 3
(Program 2, with a correction given in Ref. 4). In Section
3 we give some experimental results showing the practical
worst case behaviour of the ordinary and median-of-
three versions of quicksort.

By using the median of the first, middle, and last elements
of A[L:R], efficient partitions into parts of fairly equal
sizes can be achieved in most practical situations. In the
worst case, however, nothing prevents this sample of
three elements from containing the two smallest (or,
equivalently, the two largest) elements. The partitions
are thus almost as degenerated as in the original quicksort,
and the number of key comparisons is given by

C=N+D+WN-1D+N=3)+---
= (N?)/4 + O(N)

In Ref. 2 an example of a corresponding worst case input
permutation of numbers 1, 2, ..., 15 is given; the
partitioning elements in consecutive passes are 2, 4, 6,

We base our generation of the worst case permutation
on Sedgewick’s Program 2 of Ref. 3 with the correction
mentioned above. The three-element sample of this
procedure consists of the second, middle, and last
elements of the array to be partitioned ; replacing the first
element by the second has hardly any effect on the
practical performance of the algorithm but it helps to
keep the subarrays resulting from the partitioning
random. Sedgewick’s Program 2 terminates with a
‘global’ insertion sort which, after all partitions done,
sorts the short (length less than or equal to M) subarrays
which have not been partitioned any further. When the
worst case permutation is sorted, there actually remains
only one such subarray in true disorder.

The generation algorithm follows a strategy which is a
reversal of the sorting: first, a reverse-order subarray
A[N — M + 1:N] containing elements N, N—1, ...,
N — M +1 is formed for the (worst case of) insertion
sort, and then this subarray is repeatedly lengthened by
the two next smaller elements until a permutation of N
elements is achieved. As the array is always extended to
the left, symbols N and R can be equalized. In connection
with the lengthening, elements A[L], A[L + 1], A[(L +
N) div 2], and A[N] are arranged so that the degenerated
partitioning occurs in the corresponding pass of sorting.
Besides this maximization of the number of comparisons,
the construction also induces the maximum number of
exchanges in selecting the partitioning elements.

The generation algorithm is given below. The correct-
ness of the algorithm can be shown by a simple inductive

CCC-0010-4620/84/0027-0276 $01.00

276 THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984

© Wiley Heyden Ltd, 1984

910z ‘0z Jequuisidas uo 1senb Aq /B10'seuno pioyxo’ Jufwody/:diy wouy papeojumoq

http://comjnl.oxfordjournals.org/

THE WORST CASE PERMUTATION FOR MEDIAN-OF-THREE QUICKSORT

proof which we here sketch only informally. In the
beginning of the cycle in the main loop of the algorithm,
A[L + 2:N] contains the worst case permutation of N —
L —1 elements which is a resulting subarray of one pass
in the median-of-three quicksort. The four assignments
in the loop extend the subarray by two elements which
again corresponds to the result of the previous pass in the
median-of-three quicksort. By comparing these four
assignments with the operations which precede the
selection of the partitioning element in the median-of-
three quicksort it is easy to see that at the end of the loop
A[L: N] contains the worst case permutation of N — L +
1 elements.

procedure worstpermutation (A, N, M),
value N, M; integer N, M,
integer array A;

integeri, L, L1;

comment to avoid some non-essential special cases we assume that
N>3(and M < N);

ifM=1thenM=2;

if2*(N—-M)div2) # N—Mthen M =M —1;

Lil=N-M-1;
if M = 1 then
begin
AIN-2]=N-1;AIN—-1]=N; A[N]=N - 2;
Ll=L1-2
end
else if M = 2 then
begin
AIN-3]=N-2; AIN-2]=N-1; AN -1]1=N;
A[N]=N - 3;
Ll=L1-2
end
else

fori=1steplunti Mdo AIN-M+il=N+1-i
for L =Ll step — 2 until | do

A[L}= A[(L + N) div 2);
Al(L + N)div 2] = A[N];

AN]=L;
AL+1]=L+1;
end;
end;

3. EXPERIMENTAL EVALUATION OF WORST
CASES

In order to have a rough idea about the relative ‘badness’
of the median-of-three and the original versions of
quicksort, we made some experiments with both proce-
dures. Experiments were run on a Burroughs B7800, and
the procedures were coded in Algol. The version for
original quicksort (described in detail in Ref. 5) is non-
recursive, and includes also the global insertion sort at
the end. Thus the main difference between the two
algorithms is just the choice of the partitioning element.
The same value M = 9 was used for both algorithms. The
results are presented in Table 1. For comparison, Table
1 also includes the average times used to sort some
random materials by both algorithms.

The results show the differences between the two
versions of quicksort: for random material the difference
is only slight (generally less than 109, consistent with
Ref. 3), but in the worst case the median-of-three version
uses only half the time of the original quicksort. The
latter relation agrees very well with that between the
numbers of comparisons, C1 and C2. Further, the known
O(N?) worst case behaviour of the median-of-three
quicksort is clearly visible.

Table 1. Execution times of two versions of quicksort (in

milliseconds)
Worst case permutation Random material
N Median-of-3 Original Median-of-3 Original
icksort icksort icksort quicksort
100 6 1 5 5
250 31 58 12 12
500 117 228 26 29
1000 440 886 49 60
2500 2922 5764 158 159
5000 12,288 24,595 342 364

REFERENCES

1. C. A. R. Hoare, Partition: Algorithm 63, Quicksort: Algorithm 64,
and Find: Algorithm 65. Comm. ACM & (7), 321-322 (1961).

2. R. Sedgewick, Quicksort. Ph.D. Thesis, Stanford Comptr. Sci.
Rep. STAN-CS-75-492, Stanford U., Stanford, Calif. (1975).

3. R. Sedgewick, Implementing quicksort programs. Comm. ACM
21 (10),847-857 (1978).

4. R. Sedgewick, Corrigendum to Ref. 3. Comm. ACM 22 (6), 368
(1979).

5. H. Erkio and E. Peltola, Algorithms for experimental analysis of
some internal sort algorithms. Report A-1978-1, Department of
Computer Science, University of Helsinki, Finland (1978).

Received February 1983

THE COMPUTER JOURNAL, VOL. 27, NO. 3,1984 277

9T0Z ‘0 Joquisides uo 1sanb Aq /Bio'sfeuinolpioxo’ [ulwody/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

