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Statistical Feedback Control of a Plasma Etch Process 
Purnendu K. Mozumder and Gabriel G. Barna 

Abstract-This paper presents the methodology developed for 
the automatic feedback control of a silicon nitride plasma etch 
process. The methodology provides an augmented level of control 
for semiconductor manufacturing processes, to the level that the 
operator inputs the required process quality characteristics (e.g. 
etch rate and uniformity values) instead of the desired process 
conditions (e.g., specific RF power, pressure, gas flows). The opti- 
mal equipment settings are determined from previously generated 
procesdequipment models. The control algorithm is driven by 
the in-situ measurements, using in-line sensors monitoring each 
wafer. The sensor data is subjected to Statistical Quality Control 
(SQC) to determine if deviations from the required process 
observable values can be attributed to noise in the system or are 
due to a sustained anomalous behavior of the equipment. Once a 
change in equipment behavior is detected, the process/equipment 
models are adjusted to match the new state of the equipment. The 
updated models are used to run subsequent wafers until a new 
SQC failure is observed. The algorithms developed have been 
implemented and tested, and are currently being used to control 
the etching of wafers under standard manufacturing conditions. 

I. INTRODUCTION 

EMICONDUCTOR processing is typically performed S with machine-dependent, static process menus. These 
menus are usually generated by some process characterization 
techniques (e.g. Taguchi, Response Surface Modeling [ 11-[3]) 
and the optimum process then becomes the specification for the 
manufacturing operation. The resulting process observables are 
then typically tracked by an SQC technique. When this system 
detects an out-of-control situation, the process is re-centered 
via engineering intervention or the hardware is cleaned up and 
recommissioned in hopefully the original in-spec state. 

This mode of operation can track process drifts, but only 
reacts to them once an SQC limit for one of the process 
observables has been violated. Since these observables are 
generally measured after-the-fact (i.e., with a significant delay 
in time after the process), a large number of waferi can 
potentially be misprocessed before the out-of-specification 
processing condition is recognized and corrected. However, 
recent advances in the field of plasma processing have allowed 
significant improvements to be made toward the rapid run by 
run, as well as real-time control of such processes [4]-[6]. 
This has been partly enabled by the development of in-situ 
sensors for the monitoring of process observables (e.g., etch 
rate via ellipsometer measurements [7 ] ,  line-width change 
by scatterometry [SI). There has also been a trend toward 
modeling the process observables (e.g. etch rate, selectivity, 
uniformity) as a function of the process parameters (e.g., RF 
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power, pressure, gas flows), by means of empirical models 
[9], [lo]. The merging of these technologies has paved the 
way for the model-based control of plasma processes. For 
the controllers to be effective, the lag between the occurrence 
of a fault and a statistically confident detection of the fault 
must be minimized. A quick detection scheme reduces the 
amount of time for which the process is out-of-control, which 
minimizes the number of potential out-of-specification product 
wafers. However, the SQC technique has to have a low out-of- 
control false alarm rate, since an SQC violation will lead to a 
correction step. Finally, the controller needs to be protected 
against instability in the presence of unexpected and large 
deviations in the equipment state. 

Such a robust SPC procedure was one of the specific goals 
of the MMST (Microelectronics Manufacturing Science and 
Technology) program currently being carried out at Texas 
Instruments. The intent of this portion of the program was 
to modify the requirements of the manufacturing operation to 
utilize an equipment-independent process specification; where 
this specification contains the required results from the process, 
not the standard machine settings. In order to run a process in 
this mode, with the ability to modify the process parameters 
between wafers to keep the observables in-spec; one needs 
the following basic components: 

1) sensors for the measurement of the process results, 
2) an in-line SQC technique for detecting when these 

observables have gone out-of-specification, with a sta- 
tistical confidence, 

3 )  a model that relates the process observables to the 
process parameters, and 

4) an optimizer to calculate the new settings for re- 
centering an out-of-specification process. 

This paper will describe the details of these four basic 
components, and the application of this new scheme to the 
plasma etching of a nitide film. For ease of presentation, 
these four basic components will be described in a different 
order than presented above. The next section (Section 11) 
comprises the description of the nitride etch process, the 
equipment configuration, and the modeling experiments used 
to create the control models. The use of the sensor to deduce 
the responses of interest will also be briefly described in 
Section 11. The following section (Section 111) contains the 
strategy and implementation used to control the nitride etch 
process. Finally, the behavior the controller under several fault 
scenarios is presented in Section IV. 

11. EQUIPMENT MODELS AND SENSORS 

This paper will be focused on the etching of a nitride film 
in a PBL (Polysilicon Buffered LOCOS) stack (2400 A silicon 
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nitride, 500 A polysilicon and 90 A silicon dioxide). The 
requirements for this etch are a high nitride etch rate and 
low etch nonuniformity, and a small line width loss. Since 
the dominant layer in the PBL stack is the nitride, almost 
all of the line loss can be attributed to the nitride etch. It is 
also important to ensure that the during the nitride etch no 
part of the wafer has the polysilicon completely etched, so 
as to expose the underlying oxide, since the oxide is readily 
etched by the CHF3/CF,/O, etch chemistry used for the 
nitride etch. This would cause a lateral encroachment of the 
subsequent field oxidation on the active area of the transistor. 
There are two possible methods of avoiding the etching of the 
poly: a very high etch selectivity of nitride to poly, or a very 
uniform etch. The former is not achievable (the selectivity is 
at most 4 : l), and therefore having a low nonuniformity is an 
important target for the etch. 

As stated previously, some of the key requirements for the 
rapid run by run feedback control of processes are the in-situ 
sensors for detecting process shifts and the models required 
to re-center the process after such a shift has been observed. 
The following experiments were designed and run for the PBL 
etch on a TI-designed and built Advanced Vacuum Processor 
(AVP) [ l l ] ,  to generate the empirical models to be used in 
the model-based process control operation of this reactor. In 
addition, data had to be obtained to evaluate the correlation 
between the slope of the endpoint curve at the nitride endpoint 
and the uniformity of the etch. The reason for this was to see 
if this slope of the endpoint curve could be used as a sensor 
for the etch rate uniformity. 

The primary equipment controls for the AVP are the cham- 
ber pressure (Pressure), delivered RF power ( R F ) ,  four 
gas flows (CHF3, CF4,02, and AT), the helium chuck pres- 
sure ( H e  - chuck), and the rector substrate temperature 
(Substrate). The output parameters of interest for the PBL 
etch are the etch rate (ER), across wafer etch rate nonuni- 
formity (NU), and line width change (LW). There are four 
linewidth structures on the wafers where linewidth change 
can be measured. Although all four sites were modeled only 
one of the structures was used by the controller. Details of 
these structures and the rationale for the choice of a particular 
linewidth model for control are presented in Sections I1 and 
111. A description of the observables, and the corresponding 
sensor interpretation, is presented in Section 11; only the ER 
and NU could be observed using the in-situ sensors present 
in the AVP. 

Experimental Setup 

attributes: 
The AVP is a single-wafer plasma reactor with the following 

Process chamber enclosed by quartz walls, 
RIE configuration, with a wide electrode gap, 
6" wafer on a cooled electrode with a He-chuck, 
clamped face-down to the top electrode by means of 
three quartz pins, and 
Gas inlet through a quartz tube, with a centrally-located 
and clamped "table-top'' gas distribution baffle over the 
end of the tube. 

The hardware is under full computer control, with a 386 PC 
with UNIX. All mass flow controllers (MFC's) are calibrated 
by the internal 10-point calibration method, with the set-points 
automatically defined from this calibration curve. Prior to 
running the experiments, the reactor hardware was stabilized 
and characterized. Software was implemented for the closed- 
loop control of all control parameters, and the standard PBL 
etch process was determined to be reproducible. This is to 
emphasize that stable hardware and reproducible process con- 
ditions are pre-requisites for the model-based process control 
mode of operation described in this paper. 

Responses and Measurement Methodology 

The only on-line sensor available on this particular AVP is 
a single wavelength monochrometer, used to derive a real- 
time optical emission signal (OES) during the etch. With 
the monochrometer tuned to a spectral line that corresponds 
to the emission of a chemical species that is depleted or 
generated during the etch, the resulting intensity versus time 
curve is known as the endpoint trace (EPT). Of the two 
process observables required for the process control strategy 
described in this paper, ER (etch rate) is readily obtained 
from the standard interpretation of the EPT. NU (across wafer 
etch rate nonuniformity), on the other hand, requires that a 
correlation be made between the EPT and the nonuniformity. 
If this correlation is sufficiently high then the OES will be an 
effective measure (low variance predictor) of both etch rate 
as well as nonuniformity; a desirable set of conditions for 
multivariable control. 

The monochrometer was tuned to the CN* emission line 
at 388.3nni. An example trace is shown in Fig. 1. At this 
wavelength the changing plasma chemistry produces a clear 
end-point (the large decrease in intensity at N 65s in the Fig. 
l ) ,  which then triggers a timed overetch and subsequently 
the RF shutdown. The etch rate is readily calculated from 
the automatically determined endpoint time and the known 
thickness of the nitride film. 

Based on previous experience and theoretical considerations 
[12], it was anticipated that the slope of the EPT, at the 
nitride etch end-point, would correlate to the nonuniformity 
of the etch. A set of experiments was performed specifically 
to obtain the correlation between the endpoifit slope and the 
nonuniformity of the etch. Since it was determined from earlier 
experiments that the nonuniformity was sensitive to only three 
of the input parameters (Pressure, R F  and CHF3), a full 
factorial experimental design was run, appended with three 
replicate center points (23 + 3 = 11 runs). Two wafers were 
run for each experimental point; the first was etched past 
the end-point with a datalogger used to capture the EPT 
at a 0.2s sampling interval. The second wafer was only 
etched to 75% completion and was subsequently analyzed 
with 81 point pre- and post-etch film thickness measurements 
to obtain a value of the spatial etch uniformity across the 
wafer. Although a simple measurement of the slope could 
have been used, the electronically logged data lent itself to 
the sophisticated analysis of the slope. Using the methods of 
smoothing [ 131, differentiation, and feature extraction, metrics 
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Fig. 1. Optical emission signal trace for 388.3nm line during PBL etch. (All 
equipment controls are held constant during the etch. RF is shut down at 98 s.) 

of slope at the end-point were determined and then correlated 
to the (maz. - min.) and standard deviation (a /p )  metria 
of nonuniformity. A correlation coefficient value of 0.8 was 
observed between predicted, in terms of the slopes of the 
EPT (at the end-point), and the experimentally observed 
nonuniformity (a/p). 

Although linewidth (LW) control is significant for this etch, 
the in situ critical dimension (CD) sensor developed in the 
MMST program is not available on this AVP. This implies 
that all line width measurements have to be routed to off- 
line metrology tools for measurements. Since this entails very 
time consuming pre- and post-measurements1, which prohibits 
the utilization of this metric for rapid run by run or real-time 
process control, the LW models have therefore been taken out 
of the control loop. However, to assure that the optimization 
of the ER and NU does not violate LW considerations, 
the off-line LW models are included as constraints in the 
process optimization calculations. Since the linewidths were 
not observables only one of LW models (the one with the best 
model fit - Section 11) is used in the controller. 

Equipment Modeling 
With in-situ real-time sensors providing data on the process 

observables, the next requirement for statistical process con- 
trol is the availability of process models. The models are 
necessary to determine the optimum starting point for the 
process, and to vector/drive the process observables back 
toward the target values as the hardware drifts with time. 
Preliminary experimental studies illustrated that polynomial, 
quadratic models had sufficiently high goodness of fit for 
the outputs of etch rate, nonuniformity and the line width 
loss for a limited range of variation in the input values2. 

'The linewidth of the resist before and after the etch are determined using 

*Two line losses and two space gains were modeled. For the experiment, 
a top down scanning electron microscopy (SEM) image. 

however, only one of the line loss models was used. 

TABLE I 
INPUT PARAMETER RANGES FOR PBL MODEL 

Parameter Units Low Center High 
P T e s S l l T s  TnT 100 150 200 
RF IV 300 400 500 
CHF3 scrm 30 40 50 
C F4 seem 40 60 80 
0 2  sccrn IO 15 20 
d T SCrTII 100 
H s  - ehiiek T 2.5 
Substrate "C 0 

The range of the control parameters chosen for this modeling 
experiment was determined to be the range over which the 
inputs will be allowed to vary when the process is subjected 
to SQC. Statistically designed experiments were generated 
via the commercially available experimental design package, 
ECHIPTM [14]. Table I shows the input ranges for the five 
control parameters which were varied and the values for the 
three which were fixed (and thus are not a part of the model). 
The "standard" process was kept at the center of the hyperbox. 

In order to generate the necessary data for the modeling 
of the ER, NU and line width loss (LW), the experimental 
procedure was as follows. The experiments generated by 
ECHIPTM (a 31 wafer D-optimal [I51 experimental design, 
with 26 unique experiments, along with the 5 replicates) were 
actually run in three separate sets, each with slightly different 
wafers which were optimized for the measurements that had 
to be made. 

Set #1: 
Substrate 
1oooA 
2000'4 
2400'4 
No Resist 

Silicon 
Oxide 

Nitride 
Poly 

These wafers were run past the nitride etch endpoint in order 
to determine the endpoint time under the individual process 
conditions. 

Set #2: 
Substrate 

2400A 
No Resist 

1000'4 
Silicon 
Oxide 
Nitride 

These wafers were run to about 75% of the previously 
determined nitride endpoint time. These wafers were evaluated 
for etch rate nonuniformity by an 81 point measurement of 
nitride thickness on a Prometrix SpectraMap. 

Set #3: 
Substrate 
1oooA 
2000A 
2400A 
Moat pattem 

Silicon 
Oxide 

Nitride 
CRB Positive Resist 

Poly 
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TABLE I1 
MODEL STATISTICS FOR PBL MODELS 

Parameter ER NU LW-1x1 LW-3x3 LW-1x5 LW-3x5 

R* 0.95 1 0.927 0.947 0.901 0.894 0.905 
Residual Std. Dec.. 4.095 8.682 0.0106 0.0092 0.0181 0.0 162 

1 _ ’  

.. I 1  

I- ~ 

Fig. 2. ER versus RF and pressure 

These wafers were etched to just past the nitride endpoint. 
Line width data was obtained from pre/post SEM measure- 
ments on 5 dies per wafer, with 5 points on each die. 

Based on the analysis of the data by ECHIPTM, it was 
determined that of the six observables, five were modeled well 
(i.e. the variance of the replicates accounted for most of the 
variance in the residuals). The residual standard deviation and 
the R2 for the modeled parameters are presented in Table 11. 
The NU has poor predictive capability, due to the residual 
standard deviation of approximately 8.6%. The LW- 1 x5 model 
had the worst fit amongst the LW models. LW-1x1 (1.2pm 
line) had the best model fit and was used for the controller. 
(The NxM notation after the last two parameters refers to the 
die/position of the measurement. Die #1 is close to the wafer 
flat, #3 is in the middle of the wafer, and #5 is at the top of the 
wafer. Although several sets of linewidth data were measured, 
only four were modeled.) 

The contour plot representation of the etch rate is shown 
in Fig. 2 .  The contour is plotted in the coordinate system 
that had the greatest effect on the specific observable. The 
etch rate shows essentially a pure RF power dependence at 
higher pressure, with more of a RF/PR interaction at lower 
pressure. The coefficients of all the terms in the quadratic 
model of each observable were extracted and incorporated 
into the model-based control algorithms of the process control 
software. 

111. CONTROL STRATEGY 
From the viewpoint of the operator, there is a significant 

difference between running a process under machine control 
or under process control. In the former, one specifies the hard- 
ware control parameters; in the latter, the process observables 
are specified. In order to execute the process under process 
control, the strategy shown in Fig. 3 has been implemented. 

The specific steps in the execution of this strategy are as 
follows: 

1) Query the user for a set of targets on ER (etch rate), NU 
(nonuniformity) and LW (line width). 

2 )  Determine the optimal settings based on the RSM’s. 
This is the “target-to-settings’’ step. The process of 
determining the optimal equipment settings based on 
the process/equipment models, and the required/desired 
values of the observables (and nonmeasured product 
parameters) is termed as target-to-settings. The objective 
function used is the sum of squares of the difference 
between the predicted and target values. The optimiza- 
tion is carried out using an encapsulated version of the 
optimizer NPSOL [ 161. 

3 )  Measure the ER and NU by observing the sensor (op- 
tical emission signal from the monochrometer) data or 
off-line measurements. In this case, the off-line SEM 
measurements were not made. The software is set up, 
however, to take into account the SEM measurement 
if the user is able to measure them between successive 
runs. 

4) Perform SQC based on the (observed-model predicted) 
output for ER and NU. This is based on the use of two 
charts; the Moving Average and the Moving Standard 
Deviation with a sample size of 4. 

5) Based on the results of the SQC test (described in 
detail in the next section) the subsequent options are 
as follows: 

a. 

b. 

If the output is outside spec limits, stop processing 
and begin diagnosis; 
else, if the process violates control limits, deter- 
mine whether ER or NU has failed, adapt the 
constant term in the corresponding model, and 
continue processing with the new control values; 
else, continue processing with the present model. c. 

To avoid getting trapped in a local optimum during the target- 
to-setting optimization, 20 starting points generated by a Latin 
Hypercube Design [ 171 are used. The best optima from the 20 
runs are chosen. Although this does not guarantee a global 
optimum, it minimizes the probability of being stuck in a 
local optimum. The number 20 was chosen as a compromise 
between time to find the settings and the probability of hitting 
the global optimum. 

SQC Charts 
In order to analyze the process data obtained from the in- 

situ measurement of the ER and NU, it is necessary to analyze 
the trend in the mean and standard deviation over several 
runs. This led to the use of the Moving Average (x) and 
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Fig. 3. Schematic of SPC strategy for PBL nitride etch on AVP-PBL. 

Moving Standard Deviation (s) SQC methods3. The mean and 
variance for R consecutive runs are plotted on an x and s 
charts, respectively. The and Sk after the kth run, using n 
samples, are calculated as: 

l n  
= - x k - i + l  n 

i=l  

The control limits and the specification limits have to be gener- 
ated for the SQC chart. The SQC limits depend on the process’ 
intrinsic variability, or the expected behavior of the process 
under noise. The specification limits are set up by the process 
and control engineers as the difference between the observed 
and predicted that signals a large malfunction and cannot 
be treated as a small shift or drift in the process/equipment. 
The specification limits are generated using prior history and 
simulations. The values serve to determine the limits on the 
SQC chart and to target expected values. Based on the mean 
and standard deviation, 4 limits are set up: Upper Action 
limit (UAL), Upper Warning Limit (UWL), Lower Warning 
Limit (LWL), and Lower Action limit (LAL). Using these 
set of limits, Westem Electric Co. (WECO) [18] rules are 
applied to the data to determine when an “out-of-control”, 
or “out-of-specification”, signal is to be generated by the SQC 
system. 

Since the SQC method was to be generalized for all pro- 
cesses, and different processes inherently possess different 
dynamics and noise levels the choice of the sample size, n 
in (1) and ( 2 )  is fairly critical. It can be used to tradeoff 
the control stability with the delay in “out of control” signal. 
A small sample size allows the quick detection of changes 
in the equipment state, but has an increased probability of 
false alarms. A larger value of R, on the other hand, usually 
means lesser chance of false alarms and hence less jitter in the 
controller. However, it also introduces a smoothing effect that 
causes an increased lag between the time when an abnormal 
shift is observed versus when the SQC signals an “out of 

probability of false alarms. 
3The Individual (S) charts were not used for SQC to minimize the 

control” situation and the model tuning event is triggered. 
A given fixed sample size will not be the optimal choice in 
terms of the lag time to detect a fault and false alarm rate for 
different processes/equipment. Therefore, the ability to vary 
sample size was included in the SQC method. To facilitate the 
use of variable sample size, a method of generating the limits 
for the variable sample size has been developed. The effect 
of sample size upon the statistical coefficients used in setting 
the SQC limits is given in Appendix V. Since this PBL etch 
process on the AVP has been found to be reasonably stable 
over time, i.e., the machine and the process parameters do 
not vary significantly over a short time, the sample size used 
for averaging over time was chosen as 4. The coefficients 
corresponding to a sample size of 4 are also given in Appendix 
V. In order to calculate the SQC limits an estimate of the 
mean and standard deviation are needed. The following section 
explains the methodology for choosing the values for x and s. 

It was possible to consider multiple SQC charts with mul- 
tiple sample sizes (possibly one with a small and another 
with a large sample size), to attempt to reduce both the 
probability of false alarms and detect shifts or drifts with 
minimal lag. However, this approach was not taken since 
it would require a more complex algorithm to determine 
out of control conditions, and would probably need human 
intervention whenever the results from the two control charts 
were in conflict. Since part of the requirements were to keep 
the system reasonably free of human intervention, and simple 
for the operator to understand, we have limited ourselves to 
a single SQC chart. 

Model-Based SQC and Model Adaptation 

Model-based SQC has to accommodate the users need for 
requesting a different output for every wafer, if needed. This 
in turn means that the successive output values cannot be 
presumed to be samples from a known distribution, and hence 
SQC cannot be performed on the outputs. However, the model 
prediction is expected to track the observed output value for 
different targets, and hence the difference between the model 
prediction and the output values is a good indicator of shift 
in the process. 

The basis of the SQC procedure lies in the regression 
equation that is used to estimate the models’ coefficients. 

(3 )  
(4) 

where 
1) y is the actual output from the AVP (say ER), 
2 )  y is the output predicted by the corresponding model, 
3) f (x) is the equation of the model (the RSM for ER), 
4) x is the vector of input parameters, and 
5 )  t is the error term, that signifies the noise in the 

The term E is the key parameter for performing model based 
SQC. The theory of regression states that t is the confounded 
measure of the pure experiment error and the error in the 
models (lack of fit) [19]. It is a random variable distributed 

prediction error. 
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normally with N ( 0 ,  u) assuming insignificant lack of fit4 [15], 
where (T is the standard deviation of the error variable. This in 
tum means, as per (4), that the difference in the predicted and 
observed outputs( y - y) should a sample from the distribution 
for t. This forms the basis of the SQC charts, with mean value 
of 0.0 and standard deviation of CT [20], [21]. An unbiased 
estimate of u2 is the residual mean square error, generated by 
the ANOVA decomposition of the experiment design matrix 

In this work, a univariate SQC scheme is used where each 
observed output variable (ER and NU) is treated independently 
for SQC failures. A single model parameter is updated for 
each of the corresponding models. Optimal process conditions 
in terms of the input variables are generated to simultaneously 
maintain all the three outputs to target. The control strategy 
can be summarized as a multivariable control technique with a 
single coefficient (constant per model) update feedback policy, 
using an univariate SQC scheme. 

The Individuals ( X )  chart5 is more susceptible to false 
alarms than the x charts. Since the etch process requires a 
minimal probability of false errors, hence SQC based on the 
X charts was not implemented. However, the user is provided 
the X chart via the graphical interface, a part of the user 
interface for running SPC on the nitride etch AVP. A brief 
description of the implementation of the SPC algorithms is 
provided in Section IV. It is also understood that using the x 
instead of the X charts for SQC leads to a smaller probability 
of false alarms at the cost of introducing a delay in detecting 
a fault that causes a shift in the equipment state [22]. 

If there is an SQC failure for the x chart, it is an indi- 
cation that the process has shifted and that the models need 
adaptation. Since a univariate algorithm is used, only a single 
parameter can be adapted based on the present and past values 
of the difference between the predicted and observed output. 
This parameter can either be a level shift (the constant term 
in the equation), or a gain term (a single coefficient). For 
simplicity, we have implemented the shift in the constant term. 
On an SQC failure for the Moving Average, the constant for 
model corresponding to the output parameter causing the SQC 
violation is updated. However, the magnitude of this update is 
bounded, so that the models do not chase a run-away process. 
Once the model is adapted, target-to-settings is achieved using 
the new model. 

The x chart trends follows the X chart with a delay. To 
prevent the controller from oscillating, it is required that the 
effect of the model tuning be backed out of the past samples. 
If this were not done the mean value would show a large 
deviation due to past samples, when in fact the model has 
adjusted for the deviation and brought the process to target. 
A similar effect would be noticed in the Moving Standard 
Deviation chart where a tuning would be marked by a large 
“glitch” in the SQC chart. Both these effects would cause false 
SQC failures and make the controller oscillate to instability. 

I 

4All the models for the process had insignificant lack of fit. Most of the 
residual variance could be attributed to pure error terms, estimated from the 
replicate runs. 

SThe S chart is one where the deviation of the observed values from 
predicted are plotted for each run. 

Although both past and present data is used to cali- 
brate/adapt the new models, forgetting factors are used to 
weight the present data more than the past. A filtered value 
of the mean over the last 25 samples is used to estimate the 
change in the model’s constant term. To remove the effect 
of the lag between the step where the machine state changed 
and the step where the SQC was triggered, “exponentially- 
weighted backing out” scheme was developed. The tuned 
parameter in the model is backed out past previous model 
adaptations/SQC failures, up to 25 wafers; and the resulting 
scheme serves two purposes: 

It prevents the data from the wafers which fall in the lag 
between the abnormal event and the trigger to cause an 
spurious SQC following the model adaptation, and 
It minimizes the over- or under- biasing of the calculated 
model update during frequent SQC failures. 

The choice of the forgetting factor is important to the stability 
of the SPC scheme. The methodology for choosing an appro- 
priate factor is not well defined in the literature [23], [24]. Prior 
knowledge of the process stability and behavior is the key to 
the choice of its value. Since the forgetting factor is used to 
exponentially weight the past, its value remains 0 5 X 5 1. 
We have used a filter factor of 0.55 (or forgetting factor of 
0.45), based on simulated experiments. 

After a wafer is processed any one, or multiple, output pa- 
rameters may fail the SQC for x. The models corresponding to 
the responses that fail SQC must be adapted. For the remainder 
of the parameters, the models are assumed to be unchanged. 
This is done to simplify the strategy, knowing full well that 
one of the parameters for which there was no failure may be 
critically close to failure and may fail in the next few steps. 

The theory of regression states that if the model has a 
good fit then the lack of fit is small compared to the pure 
experiment error (noise in the system), and the prediction error 
standard deviation remains constant over the convex hull of 
the experiment space [25]. This implies that whenever a SQC 
alarm is generated based upon an s chart failure, the process 
models represented in ( 3 )  and (4) are probably no longer valid, 
and new models may have to be created. The source and the 
corrections for a s chart violation are not as simple to analyze 
[26] as the x chart violations. Therefore no automated action 
is built into the controller. 

It is known from literature that the use of univariate 
techniques can affect the false alarm and failure to detect out 
of control signal probabilities when the outputs under SQC 
are correlated [27]-[30]. It is known from the models that 
the controlled outputs (ER and NU) for the PBL process 
are correlated. However, we have chosen a univariate SQC 
technique for simplicity. It was also noticed during routine 
operation of the controller that in spite of the univariate 
SQC charts, the controller behaved stably and was able 
to keep the process under control specifications. For the 
subsequent controllers developed under MMST, multivariate 
SQC schemes have been used. 

Implementation 
The sensor interpretation and SQC/SPC algorithms de- 

scribed above have been implemented as a part of a program 
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called AVPSPC. AVPSPC is a generic model based statistical 
process control software package driven by user defined files. 
This software was written, in its entirety, in C. The platform 
is Unix with X Window System and Motif. The target machine 
is a Micronics 386 PC with SCO Unix. The main development 
system is a SUN SPARCstution. 

C code has been implemented that takes the datalogger 
values6 of the EPT (endpoint trace) and calculates a value 
for nonuniformity (as a percentage of the etch rate). The 
code has been integrated with the machine control software 
on equipment. The OES (optical emission signal) becomes a 
sensor for the in-situ measurement of the etch rate and etch rate 
uniformity for each wafer, providing values of these metrics 
at the conclusion of the etching of each wafer. 

The off-line activities that precede SPC are entered using 
a menu- and form-driven interface that allows the control 
engineer to input the controller configuration (i.e., SQC pro- 
cedure, sample size and tuning mechanism), forgetting factor, 
SQC limits, spec. limits, etc.. The details of the software and 
configuration procedures will not be described in detail in this 
paper. 

Iv.  EXPERIMENTS AND RESULTS 

With the appropriate sensors in place, the static RSM model- 
ing completed, the control strategy defined and all the software 
tools integrated, the last test prior to the implementation of the 
process control mode of operation was the verification of the 
system's ability to correctly recover from deliberately induced 
hardware errors. 

SPC Verification Experiments 
A set of fifty PBL etch experiments were run on the same 

AVP in order to test the controller concept and the associated 
hardware and software. In order to expedite the violation of the 
SQC rules, which is the requirement for initiating the retuning 
of the model, some of the hardware parameters included in the 
modeling were deliberately misadjusted in a fashion that was 
unknown to the controller, in several stages. 

1) Wafer Hardware status prior to wafer run. 
2) W-01 Normal. 
3) W-10 RF Limit changed such that delivered RF was 20% 

greater than that specified by the menu. 
4) W-13 RF Limit further adjusted such that delivered RF 

was 40% greater than that specified by the menu . 
5) W-16 0 2  Calibration Table also misadjusted so that 0 2  

flow was 60% of the menu value. 
6) W-17 0 2  Calibration Table again misadjusted so that 0 2  

flow was 50% of the menu value. 
7) W-18 0 2  Calibration Table again misadjusted so that 0 2  

flow was 200% of the menu value. 
8) W-26 RF Limit table and MFC calibration values reset 

to correct values. 

6The control parameters and observables are sampled at regular intervals 
in time and stored in a database. 

Results 
The results of the verification experiments mentioned in 

the previous section are presented in the form of SQC charts 
that illustrate the (actual-predicted) values for each wafer. For 
each of the parameters ER and NU, three SQC charts are 
shown: Individuals (X), Moving Average (x), and Moving 
Standard Deviation ( 5 ) .  Each chart shows the cumulative run 
number on the abscissa7, and the individual values or statistical 
moments of the deviations between the model prediction and 
actual values of the outputs', on the ordinate. Plotted in 
the Individual, Moving Average and the Moving Standard 
Deviation charts are the individual values, the 4 sample means 
and the 4 sample standard deviations, respectively. The six 
WECO SQC limits and the specification limits (outside the 
3a limits) [I81 are also specified on each SQC chart . Figs. 
4 and 6 are the Individual charts for the ER and NU. These 
charts illustrate the behavior of the output caused by equipment 
state changes which were unknown to the controller, and the 
results of the subsequent action by the controller to re-center 
the process such that the output comes closer to the predicted 
value. The Moving Average and Moving Standard Deviation 
charts are useful for analyzing the controller's behavior (e.g., 
the lags, the reason for SQC violations, etc.). 

The following is a detailed analysis of the SQC charts 
pertaining to ER, as ER is far more sensitive to the misadjust- 
ments than NU, hence causing significant SQC failures and 
corresponding control actions. During all these runs, the target 
values of ER and an NU were 5OA/s and 5.0%, respectively. 
It is important to note that the generalized SQC procedure 
does not require that the targets remain constant, the SQC is 
performed on the deviation from the model prediction. If the 
optimizer is able to generate the equipment control settings 
that results in the model prediction being same as the target 
then the SQC is performed on deviation from target, and hence 
does not depend on the target value chosen. These target values 
have been modified after the verification experiments were 
completed. 

The first 5 (up to Run#lO) wafers were run to baseline 
the process and start the Moving Average (Figs. 5 and 7) 
and Moving Standard Deviation (Figs. 8 and 9) charts that 
require a 4 sample delay at startup. It is important to note that 
model tuning is based solely on the SQC performed on the 
Moving Average. Therefore even though the individual values 
of the deviation were large, the mean took 4 samples to realize 
the large deviation. A closer observation of the control charts 
reveal three features: 

The mean lags the individual samples since there is an 
averaging over 4 samples. The averaging thus results in 
a delay in detecting a deviation and prompting an SQC 
violation. 
The smaller the deviation from the model prediction, 
larger the time lag before the WECO rules triggers. This 

'Note that although the starting run numbers for the different charts are 
slightly different due to the graphical interface software, the run numbers are 
consistent between charts. 

*The mean and standard deviation charts start up with a lag since it  takes a 
4 sample start up before a valid value of the mean or standard deviation can 
be calculated. 
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Fig. 4. Individuals chart for (actual-model) of etch rate. 
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Fig. 5. Moving average chart for (actual - model) of Etch Rate. 

is because the WECO rules require a certain probability of 
rejecting the null hypothesis (that there is no abnormality). 
The number of samples required to attain the probability 
is lower for larger deviations. 
The larger the deviation, the smaller is the lag between 
the mean and the individuals. 

Once the Moving Average chart is able to detect the deviation 
(Run#lO), it immediately signals an SQC failure in the chart 
(by placing an “x” in the data point) and invokes the model 
tuning procedures. The effect of the model tuning is seen as the 
first large discontinuity (before Run#l 1) in the chart in Fig. 4, 
where tuning the model makes the deviation from target for the 
next wafer close to 0. The deviation from the model prediction 
is approximately -2.OAls. Since this is within the o of the 
model (which is set to 3.5A), there is no further SQC violation 
seen, as the SQC procedures interpret the small deviation as 
noise rather than an abnormality’. 

The next significant discontinuity (RunMO) was seen for 
wafer W-10 where misajdusting the RF limits in the calibration 
table caused the RF generator to increase delivered RF power, 
which resulted in an etch rate increase, but only enough to 
place it just above the upper lo band. This would require 4 out 
of 5 samples between 1 and 2 (T for SQC to fail. There would 
be a 5 to 7 sample delay before the failure was to be registered 
on the Moving Average chart. Therefore the RF table was 
further misadjusted (Run#23), causing the generator to deliver 
higher power, and subsequently causing the deviation in ER to 
increase further (W-13). This caused a SQC violation with a 
2 sample delay, causing the model to retune and bringing the 
ER close to target (Runs#25 & #26). Notice, that the Moving 
Average follows the SQC chart with a delay, as explained 

’The S on same side of mean rule, which takes care of such small biases in 
the data, was accidentally shut of by repeated Moving Standard Deviation 
failures in the NU chart. This problem was later debugged and worked 
correctly for the NU at a later point in the experiment. 

~ _ _ ~  - _ _ _ _  - +  - - - - - - - - - - _ _ _  - 

Fig. 6 Individuals chart for (actual - model) of nonunifonnity. 

Fig. 7. Moving average chart for (actual - model) of nonunifonnity. 

in Section 11. To prevent the controller from oscillating, the 
effect of the model tuning is backed out of the past samples. 
This backing out of the model in tum meant that the mean 
was suddenly close to target after a model tuning event is 
triggered, in a manner uncharacteristic of the gradual nature of 
Moving Average charts. Much smaller glitches, characteristic 
of an exponentially weighted filtering, are encountered on the 
control charts. 

The next two wafers were run with the MFC miscalibrated 
(along with the RF). At this point, the optimizer requested a 
flow of lOsccm but only about 5sccm was delivered. This low 
flow rate could not be controlled to within the hardware control 
specification limits, causing the hardware controller to signal 
flow problems, leading to a machine error. Therefore, these 
runs are not recorded in the SQC charts. The SPC system, 
however, joumals these machine failures. On wafer W- 18 
(before Run#27) the flow meter was uncalibrated in the other 
direction, so as to provide greater than the requested flow. The 
effect was similar to the RF misadjustment - the controller was 
able to recover from the problem (as observed on Run#29). 

Finally, both the RF and 0 2  MFC were reset back to their 
original, correctly calibrated values (W-26), at which point 
the observed ER was much smaller than the corresponding 
prediction (after Run#31). SQC violation was observed after 
2 wafers (when the mean value picked up the deviation - 
Run#34). Of the 4 runs used to calculate the Moving Average, 
2 of them had small deviations. Consequently, the Moving 
Average did not “catch up” with the value of the deviation (i.e. 
did not attain the maximum value). However, the deviation 
was large enough to trigger an SQC alarm based on the value 
of the Moving Average and the controller was activated. As 
a result the final value of the required model adjustment 
calculated by the SPC feedback loop (with a filter factor 
of 0.55, and using only 2 observations with the abnormal 
deviations of observed values from model prediction) was 
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smaller than that of the value required to bring ER to target. 
This is evident in the charts, where the Individuals chart shows 
a large deviation in spite of the tuning (Runs#35 & #36), 
and the Moving Average chart shows “spikes” that are due 
to the Moving Mean gradually attempting to catch up with the 
deviation of the Individuals. Two more tunings were necessary 
to bring the outputs back close to target (before Runs#37 & 
#42). 

With this portion of the process control verification experi- 
ments successfully completed, approximately 10 more wafers 
were run with differing target values, ER ranging from 60A/s 
to 45A/s, and NU from 20% to 5%. In most of the cases 
deviations of the actual values from the model predictions 
were small. However, it is observed that the deviation from 
model prediction were not always close to zero (especially 
when a high ER and a high NU were jointly desired). This may 
have resulted from an inherent limitation of the model tuning 
methodology. Where as in reality the change in the equipment 
state may have required more than one of the coefficients to 
have changed, the present strategy only allows for the model 
to be “shifted”, or “translated’. Therefore, it is conceivable 
where a slope change (e.g. coefficient for RF or 0 2 )  was 
actually required, a change in the constant term would suffice 
if the change was small, but not if the change was large. This 
limited tuning policy would eventually show up in bad model 
predictions especially at the edge of the model’s domain. 

The SQC charts for the NU (Figs. 6 and 7) show that 
NU is less sensitive to the perturbations than ER. However, 
a downward trend is noticed due to the RF change (after 
Run#19) (faster ER resulting in smaller NU), which was then 
tuned back to almost zero deviation from the target value 
(Run#35). A similar change was observed when back sides of 
wafers were etched (Runs#43 - #47), which was then corrected 
for by the SPC system by tuning the model (Run#48). It is also 
important to notice, from the Moving Standard Deviation chart 
(Fig. 9), that the NU was in fact better controlled than what 
the model predicted. Most of the moving standard deviation 
points in the chart are smaller than 4.0%, and a fairly large 
number is below 3.2%, whereas the residual standard deviation 
for the corresponding model is 8.6%. This may have been due 
to the fact that the equipment state has drifted to a regime 
where the NU is fairly insensitive to small perturbations. 
However, this caused SQC failure on the Moving Standard 
Deviation charts where the standard deviation frequently went 
below the lower control limit. Normally, such an error is 
indicative of the model not being valid. These failures were 
“journaled”, where no action was taken, but the failures were 
recorded. 

After running the SPC verification experiments, which were 
designed to test the SPC methodology, a series of production 
wafers were run without any problems. The only noticeable 
feature is a large spike in the later portion of the chart in Figs. 
4 and 5 (Run#75 & #76). This was the result of a different 
material (Nitride deposited by a different process). Similarly 
the NU (Figs. 6 and 5 )  increased significantly. However, both 
ER and NU models were retuned after a small lag (Run 
#77) and the wafers for the remainder of the lot were all on 
target. 

I \  I 
I II 
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Fig. 8. Moving standard deviation chart for (actual - model) of etch rate. 
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Fig. 9. 
mity. 

Moving standard deviation chart for (actual - model) of nonunifor- 

V. CONCLUSION 

This paper has demonstrated the general concepts, and the 
specific details, of operating a plasma etch process under 
the process control mode of operation. This mode allows 
the Operator to define the process not in terms of the con- 
trol settings, but in terms of the requirements of all the 
measured observables. With sensors available for the in- 
situ measurement of these observables, an SQC procedure 
has been developed to monitor the (actual-predicted) val- 
ues of these observables. When it is determined from SQC 
methods that the deviation from the anticipated result is 
statistically significant, the value of the constant term of the 
process/equipment model is updated in the original polyno- 
mial process model. An optimizer then automatically re-tunes 
the process, and provides a new recipe that comprehends 
the latest equipment state and considers all the observables, 
so as to keep all of them aimed at their respective target 
values. 

To date, over 1000 wafers have been run in this mode of 
operation. As demonstrated in part in Figs. 4-9, each re-tuning 
of the process has vectored the system in the right direction, 
with the process observables tending closer to the predicted 
values. One of the interesting points to be made is that this type 
of model-based recovery is possible, even though the original 
model is no longer absolutely valid. Specifically, between the 
time of the original modeling work, and the implementation 
of this control algorithm, the baseline process (roughly at 
the center-point of the original experimental domain) had a 
significant decrease in ER from 60 to 50 A/sec. So while the 
original model is no longer valid, it still vectors the system in 
the proper direction when unexpected events drive the process 
astray. 
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VII. APPENDIX: 
CALCULATION OF SQC LIMITS 

and 

(7) 

where, 
[n] is the sample size, 
[U] is the degrees of freedom, and in this case = n - 1, 
[U,/,] is the value of the unit random variable with a 
normal probability distribution with a tail probability of 

[ x % ~ , ]  is the value of the unit random variable with a 
chi-squared probability distribution with a tail probabil- 
ity of (1 - a/2),  
[x~ l - , lz ) ]  is the value of the unit random variable 
with a chi-squared probability distribution with a tail 
probability of (a/2) ,  and 
[c4] is the correction factor to account for the estimate 
of the population standard deviation from the sample 
standard deviation (it is a function of n). 

(1 - 4% 

For the chart the SQC limits can be expressed as: 
UAL = X + Ajiol * s 
UWL = X + AjRZ5 * s 
LWL = X - A P Z 5  * s 
LAL = X - Aldol * s 

UAL = B:oOl * s 
UWL = BiOz5 * s 
LWL = B,975 * s 
LAL = B,,,, * s 

For the case of 4 samples: the values of A, B coefficients are 

For the s chart set parameters as 

A'iol = 1.676 
Ai;,, = 1.063 

= -1.063 
A:;,, = -1.676 
BiOOl = 2.522 

Bi975 = 0.291 
B,,,, = 0.098 

BjOZ5 = 1.911 

For individuals chart the action and warning limits are found 
by equations similar to that of the x chart, where the As are 
multiplied by fi (n  = sample size; 4 in this case). Along with 
these, the user has to specify a set of specification limits. 
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