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a b s t r a c t 

Opportunistic wireless content sharing via Mobile Ad hoc NETworks (MANETs) can in- 

crease throughput, lower latency, extend network coverage and reduce load on infrastruc- 

ture. While the benefits of content diffusion clearly depend on the underlying movement 

dynamics and content demand, the impact of these factors on diffusion remains largely un- 

explored. We analyze content sharing potential based on device encounters inferred from 

a large multi-site wireless LAN trace. We explore the impact of time, location, and number 

of sources on diffusion, finding that contexts with higher activity generally promote faster 

diffusion, while additional content sources improve diffusion mainly in the short-term. We 

then apply real-world demand patterns from a popular campus maps application to con- 

tent diffusion simulations. We find that up to 70% of map requests could theoretically be 

served from the peer network over the first 12 h . Finally, our analysis of the impact of 

trace uncertainties and individual device variation on diffusion potential reveals large dif- 

ferences based on the selected assumption and chosen source devices. We discuss these 

results and their implications for content-diffusion in MANETs. 

© 2016 Published by Elsevier B.V. 

1. Introduction 1 

Enabling wireless user devices to directly share 2 

common-interest content is a conceptually attractive 3 

approach to enhancing wireless networks. Each user de- 4 

vice caches content retrieved from the infrastructure and 5 

makes it transparently available to collocated peers, either 6 

pre-emptively or on demand. Devices’ content demands 7 

are preferentially served from a nearby peer with the 8 

infrastructure serving as a fallback when a cached copy 9 

is unavailable. The potential benefits of such a scheme 10 

include higher throughput, lower latency, greater spectrum 11 

reuse, extended network coverage and reduced load on 12 

infrastructure. 13 
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1.1. Motivating example 14 

We present a mobile map sharing application as a mo- 15 

tivating example. Suppose User A is using their mobile de- 16 

vice to navigate a geographic region after having down- 17 

loaded the region’s map from the infrastructure (e.g. a cell 18 

tower or wireless access point). Now suppose User B enters 19 

the same region and encounters User A. User A proceeds 20 

to pre-emptively share the map data with User B. Shortly 21 

afterwards, User B would also like to view a map of the re- 22 

gion. Rather than having to retrieve the mapping data from 23 

the infrastructure, User B already has a local copy available 24 

received earlier from User A. We highlight several potential 25 

benefits of this peer sharing: 26 

• Being in close geographic proximity allows the devices 27 

to transmit at lower power, reducing battery consump- 28 

tion and increasing opportunities for spectrum reuse in 29 

adjacent areas. 30 
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• User A and B can establish a short-range dedicated con- 31 

nection, increasing throughput. This is particularly im- 32 

portant if User B were to retrieve the map on demand, 33 

rather than receiving it pre-emptively. 34 

• The devices can communicate with very low latency as 35 

a result of the short-range nature of the connection and 36 

because the devices are not contending with other de- 37 

vices for access to the infrastructure. Again, this is im- 38 

portant for on-demand retrieval. 39 

• If User B is not in range of the infrastructure, User A 40 

effectively extends User B’s coverage by making other- 41 

wise unreachable content available. 42 

• Finally and in many cases most importantly, load has 43 

been taken off the fixed wireless infrastructure. Wire- 44 

less infrastructure and cellular data infrastructure in 45 

particular is often viewed as being in a perpetual state 46 

of underprovision. Partially offloading content delivery 47 

from the infrastructure onto a Mobile Ad hoc NETwork 48 

(MANET) may prove a useful strategy for reducing the 49 

necessary cost or frequency of infrastructure upgrades. 50 

Continuing the maps example, assume that some time 51 

later User A transitions to a new geographic region. As a 52 

result of A’s mobility, maps of the prior region are now 53 

available to devices in the new region. This is an example 54 

of how content may spread with the aid of device mobility. 55 

We have presented mapping as just one motivating 56 

example of MANET-based content sharing via diffusion. 57 

The use cases of content diffusion however generali ze to 58 

any application premised on or enhanced by the ability 59 

to move content quickly and efficiently. Content diffusion 60 

may prove particularly useful for other applications which 61 

like maps exhibit locality of reference [1] in content inter- 62 

ests, i.e. content interests tend to be spatially and/or tem- 63 

porally correlated. This includes web content, app content 64 

and even personal area networks (PANs) where a single 65 

user carries multiple cloud-connected devices synchroniz- 66 

ing identical data. 67 

68 
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84 

85 
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87 

88 

vice encounters and highlight why verifying the validity 89 

and then perhaps improving these assumptions would be 90 

beneficial. 91 

1.3. Paper structure 92 

The following section covers related work. Section 3 93 

provides background information on the area of content 94 

diffusion and formally defines how device encounters are 95 

inferred from wireless LAN traces. Our primary wireless 96 

LAN trace from a large university campus is described in 97 

Section 4 , along with its associated uncertainties in ses- 98 

sion timestamps. Our first set of simulations analyze uni- 99 

versal diffusion on the empirical trace, i.e. how quickly an 100 

arbitrary piece of content might spread throughout a net- 101 

work. These simulations are described in Section 5 and 102 

the results are presented in Section 6 . We then focus on 103 

a realistic application-specific use-case for content diffu- 104 

sion in Section 7 —diffusing electronic maps based on the 105 

LAN trace and on empirical usage statistics from a univer- 106 

sity navigation app. Section 8 provides a discussion of our 107 

findings regarding the impact of trace uncertainties and 108 

presents avenues for future work. Section 9 concludes the 109 

paper. 110 

2. Related work 111 

Our work fits broadly into the existing body of research 112 

around MANET [5] communications and Delay Tolerant Net- 113 

working (DTN) [6] . Though present-day device and proto- 114 

col support for seamless device-to-device communication 115 

is somewhat deficient, we are particularly motivated in 116 

our analysis by promising next generation protocols like 117 

Content-Centric Networking (CCN) [7] . The pertinent fea- 118 

ture of CCN (and similar protocols) is enabling trustworthy 119 

content to be retrieved from untrusted hosts. 120 

Most directly related to our work are empirical stud- 121 
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1.2. Contributions 

Though wireless peer-to-peer (P2P) content sharing i

an intellectually attractive approach to improving networ

efficiency and performance, a lacuna exists in the litera

ture around real-world parameters influencing content dif

fusion potential. Existing works [2,3] explore some facet

of epidemic content diffusion including the resulting net

work topologies and diffusion potential under various con

straints on participation. Our earlier work in [4] provide

a preliminary examination of how site, time of day, day o

week, number of content sources and empirical pattern

of content demand influence content diffusion potential in
wireless LANs. In the present paper we build on our prior 

work by analyzing the impact of uncertainty and variation 

in trace-driven diffusion simulations. We find diffusion po- 

tential to be relatively sensitive to the assumptions chosen 

to compensate for inherent timing uncertainties in wireless 

LAN traces. We also find a relatively large amount of vari- 

ability in diffusion potential between individual content 

source devices. We discuss currently accepted assumptions 

of the research community as they pertain to inferring de- 

d 136 

- 137 

, 138 

n 139 

- 140 
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ies of device mobility and encounters, and the ad ho

content diffusion opportunities these create. Eagle & Pent

land [8] recorded 9 months of Bluetooth encounters o

100 mobile devices given to students and faculty at MI

university. Wang et al. [9] recorded 3 days of Bluetoot

encounters of 41 “iMote” devices given to participants a

the 2005 Infocom conference. Su et al. [3] recorded de

vice encounters of two groups of students given PDAs, eac

group being around 20 students in size and the two exper

iments lasting 2.5 and 8 weeks, respectively. Hsu & Helm

[2] analyzed device encounter patterns in traces collecte

from four university campuses and the Infocom 200

conference. 

Of the aforementioned works, [2] and [3] explicitly an

alyzed ad hoc multi-hop message dissemination facilitate

by device mobility and encounters. Our own work compli

ments these prior studies by i) analyzing site, time of day

day of week and number of content sources as diffusio

parameters; and ii) providing new findings on application
specific diffusion, trace uncertainties and diffusion varia- 141 

tion. Furthermore, we perform our simulations using a late 142 

2012 trace, which compared to traces used in past studies 143 

is substantially newer (in some instances over a decade), 144 

nt diffusion in mobile ad hoc networks, Ad Hoc Networks 
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rger in size, and is collected with greater temporal and 

rocedural consistency across sites. 

A number of other studies [10–13] have characterized 

ireless network usage and user behavio ral patterns. In 

ddition to these, there have been a multitude of works 

n mobility models intended to describe the movement of 

evices in space and time, many of which are reviewed in 

4] . Again our work is complementary to these studies, 

ough we focus specifically on information diffusion po- 

ntial in the context of empirical data, not network char- 

cterization or mobility model ing. 

. Background and definitions 

.1. Opportunistic mobile content diffusion 

Opportunistic mobile content diffusion refers to the dis- 

mination of content directly between mobile devices 

uring incidental encounters, i.e. where and when op- 

ortunities naturally arise. Content may originate directly 

om a device or have been downloaded from an infras- 

ucture network at an earlier point in time. For example, 

 sensor reading may originate from a mobile device, while 

 cached web page originates from an Internet-connected 

frastructure network. Once one or more mobile devices 

ossesses a given piece of content, that content can be 

ared directly with other mobile devices. These other de- 

ices may then further propagate the content causing a 

ime respecting [15] ) transitive spread of content through- 

ut the network. Even a device with no interest in a piece 

f content may act as a data mule [16] that receives, caches 

nd then further propagates the content during subsequent 

pportunistic encounters. 

.2. Ideal diffusion 

We define ideal diffusion as a special case of opportunis- 

c content diffusion that takes place every time an oppor- 

nity arises. Essentially this is a form of flooding—each 

me two devices encounter, they share with one another 

eir respective contents. 

.3. Universal ideal diffusion 

One of the simplest questions that can be asked about 

eal diffusion potential is what is the maximum percentage 

f all devices in a network that an arbitrary piece of con- 

nt might reach after a given amount of time? Universal 

eal diffusion (referred to simply as “ideal diffusion” from 

ereon forward) can be simulated on a real-world mobil- 

y trace by firstly selecting a start time and assigning one 

r more devices as content “sources”. These sources then 

ct as origins of diffusion, sharing content with each en- 

untered device. At each time step where either a device 

nters the network for the first time or content is shared, 

e percentage of devices in the network which have re- 

ived the content is recalculated. Later in Section 5.2 , we 

rmally define the unreachable ratio which measures the 

roportion of devices in the network yet to receive the dif- 

sing content. 
lease cite this article as: B. Thomas et al., Opportunistic content

2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
.4. Application-specific diffusion 

While universal diffusion gives a broad idea about the 

trinsic diffusion potential of a network, it is also possible 

 analyze diffusion potential in the context of real-world 

pplication demand. In this paper we define application- 

ecific diffusion simulations to be those which account 

r realistic patterns of content demand, both in absolute 

ale of interested users and the times at which content is 

esired. Though not considered in this paper, application- 

ecific diffusion simulations may model other factors such 

s willingness to participate and minimum connection du- 

tions required for various content transfers to take place. 

ater, in Section 7.2 , we formally define the cache miss ra- 

o as our metric for measuring application-specific diffu- 

on potential. This describes the proportion of interested 

evices in the network which successfully received the de- 

red content from the P2P network, i.e. without having to 

sort to the infrastructure. 

.5. Wireless LAN trace- driven simulations 

In this paper we focus on understanding the content 

iffusion potential of large Wireless Local Area Networks 

LANs) based on trace-driven simulations. To be of use 

 diffusion simulations, a wireless LAN trace should for 

ach session that has taken place in the network include 

 record of i) connection time ii) disconnection time, iii) a 

nique access point (AP) identifier and iv) a unique user 

evice identifier. From these records it is possible to infer 

ncounters between user devices by identifying concurrent 

onnectivity of devices to a given access point. 

.6. Wireless LAN encounter definition 

In WLAN traces, mutual transmission range may be ap- 

roximated by simultaneous connectivity of a and b to a 

iven AP. We follow below with a formal definition of en- 

ounters in the context of WLAN traces where encounters 

re inferred based on concurrent connectivity to a static 

termediary (i.e. the AP): 

Let I d , p = {[ j d , p , 1 , k d , p , 1 ], … , [ j d , p , n , k d , p , n ]} be the set 

f intervals during which device d was connected to ac- 

ess point p , where k d,p,i < j d,p,i +1 . We then define the en- 

ounter set between devices d and e at p as: 

 d,e,p = 

⋃ 

I d,p ∩ 

⋃ 

I e,p (1) 

As an example, suppose devices d and e were connected 

 p for intervals {[10, 20], [25, 30], [32, 45]} and {[18, 22], 

1, 60]}, respectively. Then: 

I d,p = { [10 , 20] , [25 , 30] , [32 , 45] } 
I e,p = { [18 , 22] , [41 , 60] } 
 d,e,p = 

⋃ { [10 , 20] , [25 , 30] , [32 , 45] } 
∩ 

⋃ { [18 , 22] , [41 , 60] } 
= { 10 ... 20 , 25 ... 30 , 32 ... 45 } ∩ { 18 ... 22 , 41 ... 60 } 
= { 18 ... 20 , 41 ... 45 } 

dicating d and e encountered at p during the interval set 

18, 20], [41, 45]}. 
 diffusion in mobile ad hoc networks, Ad Hoc Networks 
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Table 1 

Properties of the analyzed sites. 

Site name MACs APs Sessions MACs:APs Sessi

St Lucia 20 339 2 005 448 136 10.14 22 .03

Gatton 731 258 13 867 2.83 18 .97

Herston 1 323 115 19 066 11.50 14 .41

Ipswich 469 167 5 736 2.80 12 .23

P.A. Hospital 782 92 12 095 8.50 15 .47

Our encounter definition is equivalent to that used b

Hsu & Helmy in [2] and is only an approximation of actua

encounters. The first key assumption is transitive reach

ability, i.e. if devices d and e are in transmission rang

of AP p , then d and e are in transmission range of eac

other. The second key assumption is that d and e neve

encounter at p unless both are simultaneously connecte

to p . Clearly these assumptions do not precisely captur

real-world encounters—devices connected to the same A

may not be in mutual transmission range, devices con

nected to different APs may be in transmission range an

devices may encounter one another outside of the rang

of APs. Though imperfect, our encounter definition serve

as a useful approximation and is consistent with the ear

lier work of Hsu & Helmy in [2] . Throughout this pape

we will however draw attention to the sensitivity of dif

fusion results as they pertain to assumptions about othe

sources of uncertainty. In doing so we highlight why en

counter definitions and other uncertainties still ought to b

validated and improved upon accordingly by the broade

research community. 

4. Uncertainties in trace-driven simulations 

4.1. The UQ trace 

The UQ trace is a record of all IEEE 802.11 (Wi-Fi

Access Point (AP) sessions collected from the multi-sit

University of Queensland (UQ) wireless network between

Nov. 27–Dec. 11, 2012. The trace contains 549,002 session

from 23,931 unique MAC addresses connecting to 3 081 AP

across 24 discrete geographic sites. Sites include univer

sity campuses, hospitals, research stations and AP installa

tions at other UQ-affiliated locations throughout the stat

of Queensland, Australia. Each record in the trace corre

sponds to a single session whose details include i) con

necting MAC address, ii) AP name, iii) site name, iv) ses

sion start time and v) session end time. 

Most of the 24 sites in the UQ trace are relatively sma

with fewer than 50 APs. As our primary interest in this pa

per is content diffusion potential at large sites, we limi

our analysis to the 5 sites with 50 or more APs. Our anal

ysis excludes one unknown “site” with 337 APs known a

“Root Area”. The Cisco Network Control System Configura

tion Guide [17] suggests that Root Area is a default labe

applied to APs which do not belong to a particular site o

at least have not had any site-specific label applied. Th

session volume over time for each of the 5 selected sites i

illustrated in Fig. 1 and each site’s numeric properties an

general characteristics are summarized in Table 1 . For con

venience, Table 1 includes the derived ratios MACs:APs
Please cite this article as: B. Thomas et al., Opportunistic conte

(2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
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223 .5 Large university campus 

53 .75 Medium university campus 
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Fig. 1. Per-site session volume. 

sessions:MACs and sessions:APs which we refer t

when describing our results in Section 6 . 

4.2. Session timeframe uncertainties 

A degree of uncertainty exists in the start and en

times of sessions in the UQ trace. The first cause of this un

certainty is a trace collection infrastructure which sample

and timestamps information about users connected to eac

access point periodically rather than instantaneously. Th

second cause of uncertainty arises from the fact that th

collection infrastructure times out users after 30 min o

inactivity, though does not explicitly record in which ses

sions this timeout has occurred. For content diffusion anal

yses in Sections 6 and 7 of this paper, we present our find

ings under both optimistic and pessimistic session lengt

assumptions which take into account these uncertainties. 

4.2.1. Periodic timestamping 

UQ deploys Cisco APs which are centrally managed by 

Cisco Network Control System (NCS) [17] . The NCS period

ically polls APs for information about currently connecte

users. Importantly, the NCS does not use precise timestam

information from APs about the time individual users con

nect or disconnect. Rather, the NCS applies its own curren

timestamp at the time the data is recorded. This implie

that session start and end timestamps which appear in ou

trace are greater than or equal to the true time at whic

the corresponding event occurred. More formally, for a ses

sion recorded as spanning the time interval [ u , u ′ ], the rea

session time interval is [ v , v ′ ] such that v ≤ u and v ′ ≤ u
nt diffusion in mobile ad hoc networks, Ad Hoc Networks 
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Table 2 

Optimistic and pessimistic session length adjustments. 

Source of uncertainty 

Adjustment Periodic Timestamping Connection Timeouts 

Opt. start −10 min –

Opt. end – –

Pess. start – –

Pess. end −10 min −30 min iff session > 30 min 

the derived session will in the majority of cases end 366 

at a time prior to when the session truly ended. Leav- 367 

ing the reported session start time as-is ensures that 368 

the derived session starts at least as late as the session 369 

truly started. 370 

• optimistic : leave reported session end times as is, subtract 371 

10 min from reported session start times . Leaving the ses- 372 

sion end time as-is ensures the derived session ends 373 

at least as late as the real session. Subtracting 10 min 374 

from the reported session start time ensures the de- 375 

rived session will in the majority of cases start at a 376 

time prior to when the session truly started. 377 

4.2.2. Connection timeouts 378 

The second form of session duration uncertainty is 379 

caused by timed out connections—some 802.11 devices will 380 

occasionally fail to explicitly disconnect from the network 381 

upon leaving. The Cisco hardware from which our trace is 382 

derived disconnects such users from the network automat- 383 

ically after a 30-min window of inactivity. For those users 384 

who have timed out, we would like to subtract 30 min 385 
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(

g. 2. Gap sizes (minutes) between chronologically consecutive start 

eft) and end (right) timestamps in the source trace. Timestamps with 

ro gap omitted. 

ased on empirical observation, we add the further con- 

raint that u ≤ v ′ , leaving us with v ≤ u ≤ v ′ ≤ u ′ . The sub- 

e implication of this constraint is that a session which 

oth starts and ends inside of a single reporting interval 

ever appears in our trace. When analyzing the trace, we 

oticed that very short sessions never occurred. We con- 

cture that internally the Cisco NCS compares an AP’s con- 

ected users across consecutive reporting intervals to infer 

hich users have disconnected during the interim. When a 

ser connects and disconnects during a single reporting in- 

rval, neither report witnesses the connection and so the 

ssion is never recorded. 

The NCS uses a nominal polling interval of 5 min . Re- 

orting is a low priority task competing with other tasks 

r computational resources and so some variation exists 

round the nominal 5-min interval. The nature of the trace 

akes it impossible to precisely determine the time period 

etween any two consecutive reports. This is because i) no 

xplicit report ID is recorded in the trace and ii) a single 

port may take on the order of seconds to complete, re- 

lting in sessions with different timestamps even within 

 single report. Therefore it can be uncertain whether ses- 

ons with close but different timestam ps belong to the 

me or different reports. We can however determine the 

istribution of gap sizes between all chronologically con- 

cutive session start or end timestamps to get an approx- 

ate idea of typical reporting intervals. Fig. 2 is a his- 

gram of the non-zero gap sizes between chronologically 

nsecutive timestamps in our trace. As can be seen, gap 

zes are typically on the order of 5 min , with some vari- 

tion. Gap sizes of 1 min or less are likely sessions being 

corded as a part of a single report, while gap sizes be- 

een 1 and 5 min may either result from a single slow 

port or commencement of a new report. We note addi- 

onal smaller peaks around 10 and 15 min gap sizes. We 

ggest such peaks may be caused by low traffic periods 

uring which not a single new user connected or discon- 

ected from the network during a given reporting interval. 

his would result in one or more empty reports causing 

e gap size between consecutive timestamps in the trace 

 widen to approximately some multiple of 5 min . 

Based on the gap sizes in Fig. 2 , our first step in de- 

ving pessimistic and optimistic traces from the original 

ace is to make the following adjustments: 

• pessimistic : subtract 10 min from reported session end 

times, leave reported session start times intact . Subtract- 

ing 10 min from the reported session end time ensures 
lease cite this article as: B. Thomas et al., Opportunistic content

2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
om the reported session end time. Unfortunately, our 

ace does not distinguish between users who have explic- 

ly disconnected from the network and those which have 

med out. For sessions longer than 30 min in duration, 

ere is therefore no way to tell whether the user explicitly 

isconnected from the network or was subject to the 30- 

in timeout. Again, we make session start and end time 

djustments to derive pessimistic and optimistic traces: 

• pessimistic : for all sessions reported as longer than 30 min 

in duration, subtract 30 min from the reported end time . 

Subtracting 30 min from the end time of all sessions 

longer than 30 min ensures that the duration of any 

timed out session is not overestimated. The side effect 

is that any session longer than 30 min which did not 

timeout also has its duration shortened in the derived 

trace. 

• optimistic : leave all session end times as is . Leaving ses- 

sion end times as-is ensures the derived sessions end at 

least as late as the real sessions ended. The side effect 

is that sessions which did timeout are overestimated in 

duration by 30 min . 

We summarize all optimistic and pessimistic session 

djustments in Table 2 . 

. Simulating universal diffusion 

.1. Simulation overview 

Using our empirical traces, we perform multi-site, 

ulti-source simulations for a variable number of source 
 diffusion in mobile ad hoc networks, Ad Hoc Networks 
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Table 3 

Diffusion start times and traffic level (concurrent sessions) they represent. 

Time Traffic characteristic 

Wed 12:06PM, Nov 28 Weekday Peak 

Thu 04:52AM, Nov 29 Weekday Trough 

Sat 03:38PM, Dec 01 Weekend Peak 

Sun 04:56AM, Dec 02 Weekend Trough 

devices, variable diffusion start times and under both pes- 413 

simistic and optimistic session length assumptions. Our 414 

simulation models ideal content diffusion by means of Dis- 415 

crete Event Simulation (DES) implemented as a set of cus- 416 

 417 

s 418 

- 419 

- 420 

421 

t 422 

) 423 

e 

c 
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s 425 

426 

s 427 

 428 

- 429 

y 430 

a 431 

 . 432 

d 433 

- 434 

- 435 

- 436 

t 437 

 438 

- 439 

e 440 

- 441 

vices are sampled with replacement. Therefore | F ∩ F ′ | ≥ 0 442 

for source device sets F and F ′ sampled for two different 443 

trials. 4 4 4 

An event in our DES is when a device either connects 445 

to or disconnects from an AP. When a connection event oc- 446 

curs, we record the device as connected and look for other 447 

devices simultaneously connected to the same AP. If the 448 

device which has just connected possesses the content be- 449 

ing diffused (either because it’s a source device or has re- 450 

h 451 

a 452 

t, 453 

- 454 

- 455 

 456 

457 

s 458 

f 459 

t 460 

461 

) 

, 462 

s 463 

- 464 

y 465 

e 466 

s 467 

l 468 

n 469 
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- 471 

- 472 

n 473 

s 474 

- 475 

476 

d 477 

k 478 

s 479 

- 480 

e 481 

k 482 

- 483 

s 484 

485 

486 

487 

- 488 

489 

- 490 

e 491 

e 492 

e 493 
tom Shell, Python and Go scripts. In total we perform

10,0 0 0 universal content diffusion simulations. This entail

simulating all combinations of 5 sites, 5 quantities of con

tent source devices, 4 diffusion start times and 2 assump

tions. For each combination, we perform 50 trials ( 5 × 5 ×
4 × 2 × 50 = 10 , 0 0 0 ), where each trial elects a random se

of devices to act as content sources. The RUN_UNIVERSAL(

function in Algorithm 1 summarizes this procedur

Algorithm 1 Universal Diffusion Simulations. 

1: function Run_Universal () 
2: sites = { St. Lucia, Gatton, Herston, 

Ipswich, P.A. Hospital } 
3: times = { Wed 12:06PM Nov 28, 

Thu 04:52AM Nov 29, 
Sat 03:38PM Dec 01, Sun 04:56AM De

02 } 
4: sources = { 1, 2, 4, 8, 16 } 
5: for ∀〈 s, t, u 〉 ∈ { sites × times × sources } do 

6: simulate ( s, t, u ) 
7: end for 
8: end function 

9: 

10: function Simulate ( site, start, sourceCount) 
11: for i = 1 to 50 do 

12: sourceMAC s = RandSources ( sit e , start , 
sourceCount) 

13: SimulateDiffusion ( site, start, sourceMACs )
14: end for 
15: end function 

which is run over optimistic and pessimistic input trace

separately. 

The 5 simulated sites are those shown in Table 1 . A

previously mentioned, these are the five largest sites in

the UQ trace. The 4 diffusion start times are chosen to oc

cur during traffic periods corresponding to i) a weekda

peak ii) a weekday trough iii) a weekend peak and iv) 

weekend trough. These times are summarized in Table 3

Each simulation commences with 1, 2, 4, 8 or 16 selecte

devices as content sources. Though source devices are se

lected at random for each of the 50 trials, they are sub

ject to the constraint of having to be present in the net

work (connected to an AP) at the relevant diffusion star

time. This ensures diffusion commences concurrently from

all source devices. Note that for any single trial, source de

vices are sampled without replacement and so each sourc

device is unique. Across multiple trials however, source de
Please cite this article as: B. Thomas et al., Opportunistic conte

(2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
ceived it from someone else), it shares the content wit

all simultaneously connected devices at the same AP. If 

device already connected to the AP possesses the conten

then that device shares the content with the newly con

nected device. When a disconnection event occurs, we re

move the record of the device being connected to the AP.

5.2. The unreachable ratio 

The unreachable ratio , coined by Hsu & Helmy in [2] , i

the name of the metric used to describe the percentage o

all devices in a network yet to receive a piece of conten

being diffused. The unreachable ratio is defined as: 

u = 

(| A | − | B | ) − (| C| − | B | ) 
| A | − | B | (2

where A is the set of all devices seen since diffusion began

B is the set of source devices and C is the set of all device

that have received or always possessed a copy of the dif

fusing content. The simulation tracks the set A by simpl

maintaining a list of unique device IDs that appear sinc

the start of the simulation. The number of source device

B is selected from the list {1, 2, 4, 8, 16}, with individua

source devices varying for each simulation run (line 4 i

Algorithm 1 ). Finally, the simulation maintains a flag fo

each device to indicate whether it has received the con

tent. Source devices for a specific simulation run are con

sidered to be in possession of the content for the duratio

of that run. For every simulation step, the size of set C i

simply determined as the total number of devices in pos

session of the content. 

As a result, the unreachable ratio changes over time an

is recalculated whenever a new device enters the networ

or content is shared with a device. When a device enter

the network for the first time, the unreachable ratio in

creases. When a device receives content, the unreachabl

ratio decreases. Note that a device’s exit from the networ

does not affect the unreachable ratio—the unreachable ra

tio is calculated over all devices seen so far, not all device

instantaneously connected. 

6. Universal diffusion results 

6.1. Results presentation overview 

Throughout this section, we refer to Figs. 3 –6 to illus

trate our findings. 

Fig. 3 is a heatmap of the time taken for the unreach

able ratio to drop to 50% under all combinations of th

simulated parameters. The purpose of Fig. 3 is to provid

a coarse summary measure of diffusion performance—th
nt diffusion in mobile ad hoc networks, Ad Hoc Networks 
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g. 3. Time taken to reach a 50% unreachable ratio (days). Striped 

uares indicate insufficient source devices were available to run the sim- 

ation, with the exception of Herston with 1 source device/pessimistic 

sumption/Saturday peak which simply never reached the 50% unreach- 

le ratio. 

me taken for diffused content to reach half of all devices 

 the simulated network. 

Figs. 4 and 5 depict the unreachable ratio over time 

r each site using different combinations of diffusion start 

me and number of content sources. The results in Figs. 4 

nd 5 are based on the previously defined pessimistic 

nd optimistic assumptions respectively. Whereas Fig. 3 

resents a coarse measure of diffusion (time to 50% un- 

achable ratio), Figs. 4 and 5 offer a more detailed view 

f the progression of information diffusion over the sim- 

lated period. The unreachable ratio as presented in each 

ne in Figs. 4 and 5 is an average calculated over the 50 

ials of information diffusion we perform for each com- 

ination of 〈 site, session length assumption, diffusion start 

me, number of content sources 〉 . 
Fig. 6 is designed to quantify the variation in diffu- 

on performance across individual trials. That is, whereas 

igs. 4 and 5 illustrate the overall expected level of diffu- 

on potential, Fig. 6 highlights how some individual de- 

ices can be more effective at diffusing content than oth- 

rs. All results in Fig. 6 are based on simulations conducted 

sing a single source device starting at the Weekday Peak 

me (see Table 3 ). 

.2. Analysis across simulated parameters 

.2.1. Influence of site 

The most obvious finding in Figs. 4 and 5 is that 

e rate of information diffusion is dependent on the 
lease cite this article as: B. Thomas et al., Opportunistic content

2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
te analyzed. Recall that all site traces were collected 

 a uniform time period, under a single administra- 

ve domain, are all from 802.11 Wi-Fi networks and 

ere all processed in the same manner. The differ- 

nce in rate of diffusion cannot therefore be discounted 

s caused by heterogeneous trace sources. It is not 

ompletely clear what the dominant drivers are be- 

ind this variation, though we follow with a preliminary 

ypothesis. 

St Lucia, by far the largest site, has a very strong ten- 

ency to outperform other sites in content diffusion un- 

er all parameter combinations, with only a small num- 

er of exceptions in the first few days of diffusion. 

t Lucia also has the highest ratio of sessions:APs 
nd sessions:MACs and the second highest ratio of 

ACs:APs , as seen in Table 1 . All else being equal, higher 

alues for these three ratios would increase the rate of 

formation diffusion, as they imply higher levels of net- 

ork activity. We therefore offer the hypothesis that St 

ucia demonstrates superior diffusion capability as a re- 

lt of either its generally higher rate of campus activ- 

y or larger size. Ipswich, the smallest site as measured 

y both unique MACs and number of sessions, has a rela- 

vely strong tendency to underperform other sites in in- 

rmation diffusion with a few exceptions. Ipswich also 

as the lowest ratios of MACs:APs , sessions:APs and 

essions:MACs . Again, all else being equal, these lower 

tios would adversely affect diffusion performance. As 

ch, we offer the hypothesis that Ipswich demonstrates 

ferior diffusion capability either as a result of its gen- 

rally lower rate of campus activity or smaller campus 

ze. We acknowledge that the size/ratios hypothesis alone 

 not enough to fully explain the observed behavio r and 

at further investigation is needed to discover other con- 

ibuting factors. For example, the relative diffusion perfor- 

ance of P.A. Hospital, Gatton and Herston shows less uni- 

rmity across simulation parameters, even though these 

ree sites vary substantially in size and ratios as shown 

 Table 1 . 

.2.2. Influence of number of source devices 

Intuitively, increasing the number of devices acting as a 

ontent source increases the rate at which content diffuses 

roughout the network. In our simulations, the change 

 rate of information diffusion as a function of using a 

igher number of source devices is in fact monotonically 

on-decreasing. This is because the source devices used in 

 simulation with i source devices are a subset of those 

sed in the otherwise same simulation with j source de- 

ices, where i < j . 

We note that additional source devices often make a 

arked difference on the rate of diffusion, particularly over 

e short-term. Over the longer term, we observe that the 

umber of source devices has relatively little influence on 

iffusion potential and is often negligible by the end of 

e trace period. This finding suggests that much of the 

enefit of additional source devices is in the form of con- 

nt reaching devices sooner, though most of these devices 

ould receive the same content in due course with fewer 

urces, albeit not as quickly. 
 diffusion in mobile ad hoc networks, Ad Hoc Networks 
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Fig. 4. Unreachable ratio based on number o

6.2.3. Influence of day and time 

Day and time appears to affect the rate of diffusion dif

ferently depending on site and number of source devices

For example, by comparing across individual rows in Fig. 

one can observe that there is no strict ordering of ligh

and dark cells which applies to all rows. One pattern w

did observe in Figs. 4 and 5 is that when diffusion be

gins on a weekend there tends to be more activity in th

upper left hand corner of the subplot. We conjecture tha

the lower session volume during the weekend period (se

Fig. 1 ) translates to fewer opportunities for content to dif

fuse and so the rate of diffusion tends to remain low ove

the weekend. As a rule, diffusion tends to take longer t

reach the 50% unreachable ratio ( Fig. 3 ) when starting o

weekends, though this pattern is not universal. 

6.2.4. Influence of session length assumption 

The general patterns of content diffusion are compa

rable between simulations performed over the pessimisti
Please cite this article as: B. Thomas et al., Opportunistic conte

(2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
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 devices and diffusion start time (pessimistic). 

and optimistic traces. Comparing Figs. 4 and 5 side b

side, we do however note meaningful absolute differ

ences in rates of diffusion, particularly over the short

term. This finding suggests that assumptions around trac

uncertainties may not drastically affect the general dif

fusion behavior, though may meaningfully bias absolut

results. 

6.3. Diffusion potential variation across devices 

Fig. 6 demonstrates substantial variation in rates of dif

fusion across randomly selected source devices. We note t

the reader that due to a flaw in visual perception, human

tend to incorrectly estimate the relative gap sizes betwee

two lines with widely varying slopes [18] . Even in the S

Lucia case, where the shaded region appears small due t

this phenomenon, the gap size measured vertically is quit

large in many regions. 
nt diffusion in mobile ad hoc networks, Ad Hoc Networks 
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6.3.1. Short-term variation 614 

Nearly all sites exhibit low to moderate variation in dif- 615 

fusion potential over the short-term ( < 1 day), as the un- 616 

reachable ratio tends to be uniformly high when content 617 

is just starting to diffuse. St Lucia is a notable exception, 618 

with P 95 − P 05 ≈ 0 . 5 near the beginning of the trace. Given 619 

that St Lucia has already been identified as the site with 620 

the greatest content diffusion potential, it is not surprising 621 

to find some simulations in which a low unreachable ratio 622 

is realized almost instantaneously, increasing variation. 623 

6.3.2. Medium-term variation 624 

We observe at all sites a moderate to large variation 625 

in unreachable ratio at some point over the medium-term 626 

( ≈1 day–9 days). In some cases, P 95 − P 05 � 0 . 5 . Generally 627 

speaking, it is medium-term diffusion potential which ex- 628 

hibits the greatest variability. 629 

6.3.3. Long-term variation 630 

We note that in about half of all cases the variabil- 631 

ity seems to decrease substantially nearing the end of 632 

the trace period, often such that P 95 − P 05 < 0 . 2 . In other 633 

cases, the variability remains much higher even nearing 634 

the end of the trace, sometimes with P 95 − P 05 ≈ 0 . 5 . St 635 

Lucia is the only site which exhibits low long-term vari- 636 

ation under both optimistic and pessimistic session length 637 

assumptions. Ipswich, Gatton and P.A. Hospital all exhibit 638 

low long-term variation under optimistic assumptions, but 639 

higher variation under pessimistic assumptions. Herston 640 

reverses this pattern, with relatively low long-term varia- 641 

tion under a pessimistic assumption but high variation un- 642 

der an optimistic assumption. 643 

Overall, all sites are susceptible to widely varying dif- 644 

fusion potential across source devices at one point or an- 645 

other throughout our simulations. For those wishing to 646 

accurately model content diffusion or design applications 647 

where the diffusion potential of individual devices is im- 648 

portant, we suggest that the variation in diffusion potential 649 

across individual devices is an important consideration. 650 

6.4. Summary of universal diffusion results 651 

We observe that weekday starts to the process lead 652 

to faster diffusion, as do more content sources. We also 653 

find that for the largest site (St. Lucia) exhibits the fastest 654 

content diffusion rate, as expected. More interestingly, the 655 

diffusion rate is comparable for both optimistic and pes- 656 

simistic assumptions in this larger site, suggesting that the 657 

large population size of the site dominates its diffusion 658 

rate regardless of session connection times. A similar trend 659 

is evident for the number of source devices for this large 660 

site that appear to have minor effect on diffusion poten- 661 

tial, suggesting that the certain underlying correlations in 662 

space, time, and between nodes are governing the diffu- 663 

sion, rather than the number of copies of content in the 664 

network. Finally, for this larger site, we note the differ- 665 

ence between weekday and weekend diffusion speed hav- 666 

ing higher and lower rates respectively. However, the time 667 

of day at which diffusion starts on a weekday or weekend 668 

does not appear to make a major difference to the diffu- 669 

sion speed. 670 
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Fig. 7. Probability density—number of map users on any given day. 
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Fig. 8. Probability density—number of map users in any given hour of the 

day. 

7. Simulating application- specific diffusion 671 

In this section we examine a concrete use case of infor- 672 

mation diffusion—sharing electronic maps. Our simulations 673 

draw upon both the UQ trace and the JCUNav trace (de- 674 

scribed next) to model diffusion of maps between wire- 675 

less devices. From the UQ trace we use the same set of 676 

sessions and inferred encounters used earlier in our uni- 677 

versal diffusion simulations. We then project the daily and 678 

hourly usage patterns from the JCUNav trace ( Figs. 7 and 8 ) 679 

onto the UQ trace to simulate demand for maps through- 680 

out each simulated day and quantify the number of users 681 

whose demand could have been served from the MANET. 682 

7.1. The JCUNav trace 683 

JCUNav [19] is a popular Apple iOS mobile campus nav- 684 

igation application at James Cook University ( JC U, not UQ), 685 

written and maintained by the primary paper author. For 686 

450 days spanning 6th September, 2012–29th November, 687 

2013, application usage statistics were gathered from JCU- 688 

Nav using the Flurry Analytics [20] logging framework. 689 

Two key pieces of information were extracted from the 690 

logged data: i) a count of daily JCUNav users each day over 691 

the trace period and ii) a frequency distribution aggregated 692 

over the entire trace period describing the daily distribu- 693 

tion of application usage delineated into 24 1-h buckets. 694 

Fig. 7 illustrates the distribution of number of daily JCUNav 695 

users (Freedman-Diaconis binning [21] ). Fig. 8 illustrates 696 

the distribution of application usage throughout the day, 697 

retaining the original hourly binning of the JCUNav trace. 698 

7.2. Simulation overview 699 

Using the first seven days of trace from the St Lucia 700 

campus (the largest site in the UQ trace), we simulate ideal 701 

maps diffusion over seven discrete time periods, one pe- 702 

riod for each day of the week, based on the statistics from 703 

Figs. 7 and 8 . For each day we perform 50 simulation trials 704 

and average the results. Our map demand simulations are 705 

summari zed in Algorithm 2 which is run over optimistic 706 
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Table 4 

Day of week scale factors. 

Day Pessimistic Optimistic 

Monday 1.322 1.286 

Tuesday 1.337 1.297 

Wednesday 1.369 1.330 

Thursday 1.359 1.337 

Friday 1.175 1.178 

Saturday 0.24 0.307 

Sunday 0.198 0.265 

• Randomly sample m times from the time of day dis- 742 

tribution illustrated in Fig. 8 (Line 17). The m sampled 743 

times become the individual times of day each map re- 744 

questing user would like to see the map, and we call 745 

this vector T . A limitation of the JCUNav trace is that 746 

there is no way to discern between users who are on 747 

and off campus. As a simplifying assumption, we as- 748 
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P

(

lgorithm 2 Maps content demand simulation. 

1: function Run_App_Specific () 
2: days = { Wed Nov 28 7am–7pm , . . . , 

Tue Dec 4 7am–7pm } 
3: site = St Lucia 
4: for ∀〈 d, s 〉 ∈ { days × site } do 

5: simulate ( d, s ) 
6: end for 
7: end function 

8: 

9: function Simulate ( day, site ) 
0: for i = 1 to 50 do 

1: � returns scalar 
2: numUsers = SampleDailyUsers () 
3: uqCoe f f icient = 3 

4: numUsers ∗= uqCoe f f icient 
5: numUsers ∗= ScaleFactor ( day ) 

6: � returns list of length | numUsers | 
7: dT imes = SampleDemandTimes ( numUsers ) 
8: d T imes = { d | d ∈ d T imes ∧ d ≥ 7am 

∧ d ≤7pm} 
9: SimulateDiffusion ( day, site, dT imes ) 
0: end for 
1: end function 

nd pessimistic input traces separately. Each key step is de- 

ribed in more detail shortly. 

The previously covered UQ trace describes device en- 

unters though does not describe application usage pat- 

rns of the studied devices. Conversely, the JCUNav trace 

escribes application usage patterns of a set of studied de- 

ices though does not describe device encounters. To simu- 

te diffusion of maps, we therefore project the usage pat- 

rns of the JCUNav trace onto the encounter pattern of the 

Q trace. We describe our procedure for achieving this in 

e following steps, which we perform for each individual 

mulation. We perform 50 simulation trials for each of the 

 days under both pessimistic and optimistic assumptions, 

r a total of 50 × 7 × 2 = 700 simulations: 

• Draw one random sample from the daily users proba- 

bility distribution in Fig. 7 ( Algorithm 2 , Line 12). This 

will be the number of users who would like a copy of 

the map in a given simulation. 

• Multiply the random sample by the UQ scale coefficient 

(Line 14). The UQ St Lucia campus population is larger 

than the JCU Townsville population by around a factor 

of three and so we must multiply the daily user counts 

by the UQ scaling coefficient—3. Let the result of this 

multiplication be called n . 

• Multiply n by the day of week scale coefficient (Line 15). 

The level of campus activity at UQ varies depending 

on the day of the week, particularly between weekdays 

and weekends. To account for this variability, we apply 

a scaling factor that is equal to the number of UQ net- 

work users on the given simulation day divided by the 

average number of UQ network users across all simula- 

tion days. Table 4 lists the scale factor for each day of 

the week under both pessimistic and optimistic session 

length assumptions. Let the result of this multiplication 

be m . 
lease cite this article as: B. Thomas et al., Opportunistic content
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sume a user to be on campus if the map is requested 

between 7am –7pm and off campus otherwise. Any time 

t ∈ T that falls during an off campus period is discarded 

from T (Line 18), essentially reducing the number of re- 

questing users for the simulation day to only those who 

requested the map while on campus. 

• For the given simulation day, assign one device DEV t 

from the UQ mobility trace to each time t ∈ T . DEV t 

must be a device that is online in the UQ trace at 

time t , as we make the simplifying assumption that a 

user on campus is always connected to an access point 

and recall that all of our users in T are considered on 

campus. 

At this stage, we have assigned a randomly chosen set 

f devices to serve as users interested in the map on a 

iven day, and have defined the time of day each individ- 

al user requests the map. We then construct a DES similar 

 that described earlier in Section 5 . This time however, 

ther than beginning the simulation with a fixed number 

f content sources, we add “demand” events corresponding 

 each time of day a device would like to view the map. 

 demand event can result in one of two outcomes: i) a 

che miss : the device does not currently possess the map 

nd so must retrieve the map from the infrastructure or ii) 

 cache hit : the device has received the map via diffusion 

t some time prior to when it would like to view the map, 

 which case there is no need to resort to the infrastruc- 

re. As in the universal content diffusion, the content (in 

is case the map) diffuses between devices when a device 

ith the content encounters a device without the content. 

or the map simulation, the first demand event will always 

sult in a cache miss, as nobody in the network possesses 

e map. This first device is then capable of spreading the 

ontent via diffusion. Each subsequent map demand may 

ither result in a cache hit or cache miss, depending on 

hether the map reached the demanding device via diffu- 

on before being requested. 

There are a few additional assumptions worth not- 

g. Firstly, we break the simulations down into individual 

ays, rather than running a single simulation over the en- 

re trace period. Secondly, we assume that the map con- 

nt is flushed from all user’s caches at the end of the day. 
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Fig. 9. JCUNav diffusion partitioned by day (pessimistic). 
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more diffusion potential than Saturday in pessimistic sim- 813 

ulations, while the pattern is reversed in optimistic simu- 814 

lations. Similar reversals are observable between weekdays 815 

also. 816 

Aside from the re-ordering of some day’s diffusion po- 817 

tential between optimistic and pessimistic simulations, we 818 

draw attention to substantial absolute differences in dif- 819 

fusion potential based on the chosen assumption. Under 820 

the pessimistic assumption weekends and weekdays ex- 821 

hibit cache miss ratios of around 95–87% and 78–72%, re- 822 

spectively. In con trast, under optimistic assumptions these 823 
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Fig. 10. JCUNav diffusion partitioned by day (optimistic). 

This has to do with a limitation of the JCUNav trace, whic

is that there is no way to identify which users are repea

users across multiple days, meaning it is not possible to es

tablish who already does and does not have the map ove

two or more consecutive days. 

The measure we are interested in for the map diffusio

simulation is the cache miss ratio , defined simply as: 

z = 

Cache Misses 

Cache Hits + Cache Misses 
(3

The cache miss ratio z reflects the number of times 

device which would like the map has to resort to the in

frastructure, as opposed to receiving the content ahead o

time via diffusion. A lower cache miss ratio therefore im

plies a more effective MANET. 

7.3. Simulation results 

Figs. 9 and 10 illustrate the simulation results. We not

firstly the pronounced difference in rate of diffusion be

tween weekdays and weekends, with weekdays demon

strating greater diffusion potential. This result is consis

tent with our earlier findings in universal diffusion. Though

particular days clearly demonstrate superior diffusion po

tential even when controlling for weekdays/weekends, th

exact order is not consistent between pessimistic and op

timistic simulations. For example, after 12 h Sunday ha
Please cite this article as: B. Thomas et al., Opportunistic conte
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ratios fall to around 69–61% and 40–28%. For weekend

this represents a difference of over 25% and for weekdays 

difference of as much as 40%. As absolute differences thes

are non-trivial and again demonstrate the sensitivity of dif

fusion potential to trace uncertainties. 

In summary, our results have highlighted that, for trace

based simulations of content diffusion in MANETS, uncer

tainties arising from the timestamps in traces can con

tribute up to 40% difference to the observed diffusion po

tential. This effect is higher for busier times, such as week

days, where more encounters happen and therefore the cu

mulative effect of uncertainties results in a larger overa

difference in diffusion rate. 

8. Discussion and future work 

The results presented in this paper elucidate a numbe

of tangible factors influencing rates of information diffu

sion. However, our comparison of diffusion potential unde

optimistic and pessimistic assumptions also highlights dif

fusion’s sensitivity to trace uncertainties. Some traces lik

the UQ trace embed uncertainties regarding session star

and end times which are the result of periodic rather tha

instantaneous sampling of connected devices. Other form

of uncertainty however are more general and intrinsic t

wireless traces collected from the view of the wireless in

frastructure. Namely: 

Disconnection time errors : ideally, associations in wire

less networks are explicitly terminated by either the use

or infrastructure device. In practice, a user device may sim

ply travel out of range of the infrastructure or otherwis

fail to explicitly request a disconnection. In such cases

wireless networks such as 802.11 (Wi-Fi) typically rely o

inactivity timeouts to trigger session termination. A Wi-F

timeout may be on the order of 30 min , as is the case i

the UQ trace. This creates a session end time uncertaint

leaving no way to determine the portion of the timeou

period simply spent inactive versus actually absent from

the network. Moreover, a device which both exits and re

enters the network inside the timeout window may neve

be flagged as having been disconnected for the period o

absence. 

Encounter inference errors : Our own study as well a

prior work [2] have made the simplifying assumptio

that simultaneous connectivity of devices to an acces

point implies the devices are in transmission range o

each other. As described earlier, this assumption inevitabl

induces both errors of om ission and commission—device

not simultaneously connected to an AP may actually be i

transmission range and devices which are simultaneousl
nt diffusion in mobile ad hoc networks, Ad Hoc Networks 
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connected to an AP may not be in transmission range. As 872 

with disconnection uncertainties, the magnitude of this 873 

error remains unquantified. 874 

Given the differences we observed in diffusion poten- 875 

tial between optimistic and pessimistic session length as- 876 

sumptions, we suggest an important area of future work 877 

will be addressing the aforementioned spatial and tempo- 878 

ral trace uncertainties. We suggest that a valuable contri- 879 

bution in this area would be an encounter trace collected 880 

from the device’s point of view, rather than the infras- 881 

tructure. Though examples can be found in the literature 882 

of where this has been done, they tend to be suscepti- 883 

ble to one or more of the following problems: i) the ex- 884 

periment is contrived [3,8,9] (e.g. devices handed out to 885 

graduate students) ii) the sample size is small (e.g. 10–300 886 

devices) [3,8,9,22] iii) the instrumented devices are geo- 887 

graphically sparse [22] iv) the trace is dated [3,8,9] . One 888 

avenue for collecting this data within a university or or- 889 

ganization may be to instrument one or more site-specific 890 

“apps” on smartphones and tablets to gather such data. For 891 

example, the majority of students at university X may have 892 

the official X app installed, making for a large sample that 893 

is geographically dense, less contrived and recent. 894 

Another area for future research is broadening the 895 

scope of analyzed trace environments. Also of interest is 896 

understanding the way in which the next generation of 897 

networked devices and applications intend on harnessing 898 

MANET communication to enhance the utility of wireless 899 

devices beyond what is possible in infrastructure-only net- 900 

works. While analysis of device encounters has been seen 901 

many times in the literature, there is a lacuna around how 902 

these encounters are (if at all) being used today for content 903 

dissemination and a need for a less scattered and more 904 

systematic review of their proposed uses in future. 905 
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. Conclusion 

Our analysis of MANET-based content diffusion reveals 

veral important factors influencing diffusion potential. 

irstly, the rate at which content spreads throughout a 

etwork is highly site-dependent, even across sites of the 

me type (university campuses) and even when the trace 

llection is controlled for both network type and collec- 

on period. Secondly, the time at which content is in- 

oduced into the MANET greatly influences the success 

f information diffusion over the short-term. In particu- 

r, content introduced into the network over the weekend 

ffers higher initial delay in reaching other devices than 

ntent which is introduced during the working week. 

his finding is consistent across both universal diffusion 

nd application-specific diffusion simulations. Thirdly, the 

umber of source devices used to diffuse a message can 

reatly influence the rate of diffusion, particularly over the 

ort-term. 

While our analysis has studied the impact of content 

emand and mobility context on diffusion dynamics, there 

main practical considerations for implementing such a 

eer-to-peer content sharing architecture. Ensuring fair- 

ess and cooperative behavio r among peer devices will be 

 primary requirement. Ultimately, users of electronic de- 

ices have their own applications running, and will need 
lease cite this article as: B. Thomas et al., Opportunistic content

2016), http://dx.doi.org/10.1016/j.adhoc.2016.02.022 
ssurance that their participation in a peer-to-peer con- 

nt sharing network will not quickly deplete their bat- 

ry or slow down their device. Such objectives can be 

et through setting limits on the portion of battery energy 

r CPU time allocated for content relating. Most impor- 

ntly, the users need to perceive the value of participating 

 content sharing, supported by mechanisms for ensuring 

at their peers are cooperating openly for content shar- 

g. For instance, reputation-based mechanisms can pro- 

ide users that share content more often higher priority 

r when these users demand content from the network. 

n interesting direction for future work is to design and 

st such mechanisms. 

One of the key contributions of this paper is to high- 

ght the impact of the aforementioned parameters on dif- 

sion potential. Another equally important contribution 

owever has been to illustrate that assumptions that are 

osen when confronted with trace uncerta inties can lead 

 large absolute differences in results. In our simulations 

f maps diffusion for example, we observed a 25–40% dif- 

rence in diffusion potential between pessimistic and op- 

mistic assumptions after 12 h . In addition to trace un- 

ertainties, we have also highlighted in this paper that 

ere exists substantial variation in diffusion potential be- 

een devices—a fact easy to overlook when results are 

resented simply in terms of averages. We expect this as- 

ect of our analysis to motivate the research community 

wards refining common assumptions and documenting 

trinsic variations around averaged results. 
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