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Abstract

We propose distributed link reversal algorithms<to circumvent communication
voids in geographic routing. We also solvestherattendant problem of integer
overflow in these algorithms. These are achievedtin two steps. First, we derive
partial and full link reversal algorithms that/do not require one-hop neighbor in-
formation, and convert a destination-diseriented directed acyclic graph (DAG)
to a destination-oriented DAG. We_embed these algorithms in the framework
of Gafni and Bertsekas [1] in“order to establish their termination properties.
We also analyze certain key,properties exhibited by our neighbor oblivious link
reversal algorithms, e.g., for any two neighbors, their ¢-states are always con-
secutive integers,‘and for any node, its t-state size is upper bounded by log(N).
In the second step, we resolve the integer overflow problem by analytically de-
riving/one-bit full link reversal and two-bit partial link reversal versions of our
neighbor, oblivious link reversal algorithms. We also discuss the work and time
complexities of the proposed algorithms.
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1. Introduction

1.1. Motivation

Consider a wireless sensor network (WSN) with a single designated sink node.
We shall focus particularly on an example application where the objective of
the WSN is to raise an alarm upon detecting an event (e.g., an intruder or an
incipient fire). An alarm packet originating at a node near thedocation of the
alarm event has to be routed to the sink node. For such purposes, geographic
routing [2] is a popular protocol for packet delivery. It is.sealable, stateless,
and reactive, and does not need prior route discovery. In,this-protocol, a node
forwards a packet to another node within its communication range (hence, called
a neighbor node) and closer to the destinatiom™Tiesican be broken arbitrarily,
for example, by using node indices. Sueh a protecol requires a node with a
packet to be aware of its own geographicallocation, and that of the sink and of
its neighbors. To each node, the next\hop, nodes that are closer to the sink are
defined as greedy neighbors, and wireless “links” are oriented from the nodes
to their greedy neighbors. The resulting routing graph is a directed acyclic
graph (DAG).

A DAG is said toybe destination-oriented when there is a directed path in
the DAG frond any node to the sink. A DAG is destination-disoriented if and
only if there exists anode other than the sink that has no outgoing link [1]. The
disadyantagedinode with no outgoing links is said to be stuck (as it is unable
toforward towards the sink a packet that it receives). A destination-oriented
network/ under geographic routing may be rendered destination-disoriented due
to various reasons such as node failures, node removal or radio jamming.. The
failure of geographic routing in the presence of stuck nodes is commonly referred
to as the local minimum condition [3]. Numerous solutions have been proposed
in the literature to pull the network out of a local minimum condition (See
Section 1.2 for details). However, all these solutions require knowledge of one-

hop neighbors (i.e., adjacent nodes) and their locations. Maintenance of one-hop
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neighbor information, in general, requires periodic transmissions of keep alive
packets.

We associate each node in the network with a unique numerical value, hence-
forth referred to as state. A link between a pair of neighboring nodes is oriented
from the node with the higher state to the node with the lower state. Thus
states (of all the nodes) determine the routing graph. The routing graph is
clearly acyclic.

Let us consider two natural protocols to determine link directions and if
nodes are stuck, in a design based on nodes’ states. Nodes could ocgcasionally
broadcast hello packets in order to determine whether theysare stuck or not.
Let us tag such a querying node. The node’s hello packet~contains its state.
All its alive neighbors with lower states acknowledgesthe/hello packet. If the
tagged node (querying node) does not receivetanyracknowledgment until a fixed
timeout period, it concludes that its stateyis the least among its alive neighbors,
i.e., it is stuck. Then, the node updates itsistate appropriately to reverse some
(or all) of the incident links. It also broadcasts the new state to facilitate
its neighbors to update the corresponding link directions. Thus all the nodes
always have an updated view of the directions of all their links.! The nodes
may store the updated- states of their neighbors. It enables them to make an
update if they determine that they are stuck. In an alternative scheme that
does not require each node to hold full state information of neighbors, whenever
a node breadcasts a’hello packet, all its neighbors respond with their full state
information. Then the tagged node not only can determine if it is stuck, but
cantalsouse/states of its neighbors to make an update and get out of its stuck
state. As before, it broadcasts the new state to its neighbors. While this
scheme saves some memory, it incurs substantial communication overhead for

each query (hello packet) broadcast. In either scheme, the link reversal processes

LFor correct data forwarding to the sink, any two neighbors must have a consistent view
of the direction of the link between them. Thus broadcast of the updated state is an intrinsic

part of all routing algorithms.
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associated with all the nodes reach an equilibrium when each node has at least
one directed path to the sink (i.e., none of them is stuck).

An update protocol is called neighbor oblivious if the updating node does
not need to know the exact values of states of its neighbors. Neighbor oblivious
protocols do not incur the overhead of discovery of full state information” of
neighbors, and thus save precious communication time and energy. An4ipdate
protocol is called finite state if node states always take values in finite set. The
space size can potentially be a function of the network size.

Gafni and Bertsekas [1] proposed a general class of distributed link rever-
sal algorithms for converting a destination-disoriented DAG. into a destination-
oriented DAG. They also described two representative algorithms, full link re-
versal and partial link reversal, of their generallassy Henceforth, we refer to
their algorithms as GB algorithms. In the GBfalgorithms, a stuck node’s update
depends on the exact values of states of its.neighbors. Secondly, the correctness
of the GB algorithms relies on the fact that states are a priori not bounded,
and nodes’ state grow without bound\as'the algorithm proceeds. Thus the GB
algorithms are neither neighbor oblivious nor finite state.

Our work is motivated by the question: Are there distributed, finite-state,
neighbor oblivious pretecols,that can pull a network out of its local minimum

condition and renderiit’ destination-oriented??

1.2. Related Literature

Kranakis‘et al. [4] introduced geographic routing protocols for planar mo-
bile,adthoc networks, called compass routing or face routing. This technique

guarantees delivery in a connected network, but requires a priori knowledge of

20One simple neighbor oblivious algorithm is to always make a stuck node increment its
state (taking integer values) by unity. This algorithm renders the network destination-oriented
but requires a huge number of updates. In particular, it is neither full link reversal nor partial
link reversal. Recall that each updating node broadcasts its state to determine if it stuck, and
then waits for a timeout period for acknowledgments. Consequently, this simple algorithm

results in significant energy expenditure and delay, and hence, is not desirable.
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full neighborhood. Karp and Kung [2] presented greedy perimeter stateless rout-
ing (GPSR) which also ensures successful routing over planar networks. Kalosha
et al. [5] addressed a beaconless recovery problem where the local planar sub-
graph is constructed on the fly. Chang et al. [6] presented route guiding proto-
col (RGP), a shortest path routing protocol to bypass voids, but that also’re-
quires communication of current states among neighbors. Yu et al. [7] diScussed
a void bypassing scheme when both source and sink nodes are mobilé. Leong et
al. [8] presented a new geographic routing protocol called greedy distributed span-
ning tree routing (GDSTR). GDSTR employs convex hulls which require main-
taining topology information. Casari et al. [9] proposed ladaptive load-balanced
algorithm (ALBA), another greedy forwarding protocol for WSNs. Some other
algorithms developed for mobile adhoc networksfinclude destination sequenced
distance vector (DSDV) routing [10], wirelessiwouting.protocol (WRP) [10], dy-
namic source routing (DSR) [11] and nodegelevation-ad hoc routing (NEAR) [12].
All the above algorithms require neighbor information at a stuck node, and some
even require more extensive topology ‘information (e.g., [8]).

Gafni and Bertsekas [1] introduced a general class of link reversal algo-
rithms to maintain route$S to the destination. They also presented two par-
ticular algorithms, the*full'link/reversal algorithm and the partial link reversal
algorithm. The GBualgorithms were designed for connected networks. In a
partitioned network, GB algorithms lead to infinite number of state updates
without ever converging. Corson and Ephremides [13] presented lightweight
mobile’routingy(LMR), a variant of GB link reversal algorithms. Park and Cor-
son™[14] proposed temporally-ordered routing algorithm (TORA) for detecting
and dealing with partitions in the networks. TORA is also an adaptation of
GB partial link reversal algorithm and employs extended states that include
eurrent time and originator id. GB link reversal algorithms have also moti-
vated several leader election algorithms which are an important building block
for distributed computing, e.g., mutual exclusion algorithms or group commu-
nication protocols. Malpani et al. [15] built a leader election algorithm on the

top of TORA for mobile networks. Ingram et al. [16] proposed a modification
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of the algorithm in [15] that works in an asynchronous system with arbitrary
topology changes. All these link reversal algorithms employ state variables that
either require infinitesimal precision (e.g., current time) or grow unbounded,
thus imposing enormous memory requirements. Further, state updates in these
algorithms require frequent information exchanges among neighboring nodes,
and also network wide clock synchronization, thus imposing significatien,coms=
munication overhead. These drawbacks render the above algorithms“unsuitable
for large mobile networks with lightweight mobile nodes. We“focus,on con-
nected ad hoc networks with single destination and develop neighborfoblivious
and memory-savvy link reversal algorithms.

Busch and Tithapura [17] analyzed GB algorithms (full and partial link re-
versal), and provided asymptotic upper and lowet bounds on the work (number
of node reversals) and the time needed until*theseralgorithms converge to a
destination oriented DAG.

Charron-Bost et al. [18] proposed a new framework for link reversal based
on binary link labels as opposed to 'GBjalgorithms whose link reversals are
based on node labels (i.e., states).“\Recall that in GB algorithm dynamic node
states are used to establish link directions, and also to selectively reverse them.
On the other hand, ,Charron-Bost et al. [18] assumed the existence of some
mechanism that informed modes of initial directions of all links incident on
them, and employed link-labeling only to decide which of these links should be
reversed. After eachreversal, the nodes are somehow aware of the link directions
of all links incident on them. See next subsection on the advantage of the node-
based operation. Notwithstanding this difference, from an operational point of
view, the ‘GB full and partial link reversal schemes are special cases of the class
of schemes proposed in [18]. The authors in [18] analyzed work complexities of
any arbitrary node in a routing graph under their class of schemes (including
the GB full and partial reversal algorithms). In subsequent works, Charron-
Bost et al. presented the exact expressions for the time complexities of any
arbitrary node under the GB full and partial reversal algorithms in [19] and

[20] respectively.
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1.3. Our Contributions

We focus on connected ad hoc networks (e.g., WSNs) with a single desti-
nation.®> We propose neighbor oblivious full and partial link reversal (NOLR)
algorithms in which a stuck node does not need full information on states of
one-hop neighbors to execute its state update. However, as discussed earlier, a
node still has to communicate with its neighbors in order to determiné if. it is
stuck. But this communication only involves a hello packet and its acknowledg-
ments, and thus is “lightweight”. We then embed our NOLR/algorithms into
the framework of the GB algorithms. The embedding provides a method to
assert that our proposed algorithms render the network destination-oriented.

In GB and NOLR algorithms, the state spaces are (countably) infinite. The
reason is that in both the algorithms each nodé’s state grows without bound
with the number of link reversals. The algorithms therefore cannot be realized
in a real operating environment with onlywa, finit¢"number of bits to represent
states, when repeated link reversals may be encountered. We show that simple
modifications of our NOLR algorithms result in finite-state link reversal algo-
rithms. At each node, in addition, to the initial state, the full link reversal
algorithm requires only & one-bit dynamic state and the partial link reversal
algorithm requires only .a two-bit dynamic state.

We now compare our work with that of Charron-Bost et al. [18]. These
authors assume that nodes can explicitly determine the directions of the incident
links and-and can explicitly change these directions (see Assumptions (a) and (b)
in [18{ Page 147]). Their schemes are link-centric. On the other hand, our link
reversal algorithms are based on node states, and the link directions are directly
inferred from these states. The link-centric schemes require one bit per link to
implement link reversal. In a real network, the incident nodes must however

hold these link-labels, and after each reversal, must communicate the new link

3If routing to multiple destinations is required, for each destination, a logically separate
copy of our algorithm should be run. This limitation is inherent to the class of GB link reversal

algorithms (see [1, 13, 14, 15, 16]).
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labels and link directions to the corresponding adjacent nodes (neighbors). This
requires O(N) storage and significant communication overheads at each node
in the worst case. As we will see below, our node-centric algorithms require
each node to store only log N bits for the node index and an additional two
bits to execute our proposed link reversal schemes. Moreover, in our schemies,
the nodes do not need to communicate individually to their neighbors<after a
reversal; they just broadcast the new state.

It must however be noted that the evolutions of the routing~graph under
our full and partial reversal algorithms are identical to the evolutions under the
corresponding schemes of Charron-Bost et al. [18]. So, our cenvergence results
may also follow from [18, Corollary 3.8], if one could formally-establish an anal-
ogy between our framework and protocols and thase imy[18]/ This however is not
obvious. We instead embed our algorithms withinsthe GB framework in order
to establish the algorithms’ correctness and convergence. Due to operational
equivalence of the corresponding algorithms, the asymptotic work complexity
bounds of [17] and the exact work and time complexity results of [18, 19, 20]

apply to our algorithms as well.

1.8.1. Assumptions

We assume that new nodes or links are not added to the existing network.
Our framework/does not @pply to mobile settings where the connection topology
keeps changing. Thegé assumptions are identical to the assumption in [18] that
the undeérlying undirected graph (called support) does not change with time. The
last, 'seetion contains a discussion of how addition of new nodes or links affects
our algorithms. Our algorithms also rely on the assumptions that the nodes are
equipped with distinct indices belonging to an ordered space and that each node
Kknows hmax, the maximum of the initial node heights (see Section 3.1). Finally,
we also assume that broadcasts and acknowledgements are received without

error.
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1.4. Organization of the Paper

The rest of the paper is organized as follows. In Section 2 we provide an
overview of the GB algorithms. In Section 3 we discuss full link reversal. We be-
gin with the NOLR proposal, but with a countably infinite state space. Theny
we make an observation that renders the NOLR algorithm into a finite-state
algorithm without loss of correctness. In Section 4, we address partial‘link re-
versal, and pass through the same trajectory as for full-link reversal- an NOLR
algorithm with infinite states followed by a finite-state version. An Section 5, we
discuss the work and time complexities of the proposed algorithms. We end the

paper with some concluding remarks in Section 6.

2. Overview of GB Algorithms

Consider a WSN with a designated destination node and nondestination
nodes {1,2,..., N}. The nodes are assumed 0 have static locations. Two nodes
are neighbors if they can directly communicate, and then we say that there is a
link between them. Link reversal schemes can be used in geographic forwarding
by assigning unique statesg@izas, ../, ayn, to the nodes. The states are totally
ordered by a relation < 'in the sense that for any two nodes ¢ and j, either
a; < aj or a; < agb but'not/both. These states are used in assigning routing
directions to links. Thelink between a pair of neighbors is always oriented from
the node withithe higher state to the node with the lower state.

In GB algorithms, the state associated with a node ¢ is a pair of numbers
(h;y%)fof full Teversal and a triplet of numbers (p;, h;, i) for partial reversal,
where h; (called i’s height) and p; (called i’s p-state) are integers.* The ordering

<‘omsthe tuples in each case is the lexicographical ordering.’ For a node 4, let C;

4The heights (h;s) are initialized to either hop counts or distances from the destina-
tion (evaluated from either actual or virtual locations [21]), with the destination’s height

being zero. All p-states are initialized to 0.
5For tuples a,b of the same dimension, a > b iff a; > b; where i is the smallest index such

that a; # b;. Thus even if the heights and p-states of two adjacent nodes are identical (e.g.,
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denote the set of i’s neighbors. Also, let h = (hy,...,hx) and p = (p1,...,pN)-

Then, the forwarding set of node ¢ can be written as
Fi(h) = {j € Cil (hy,5) < (hi 1)}
for full reversal, and
Fi(p,h) ={j € Ci| (pj. hj,j) < (pishi, i)}

for partial reversal. Clearly, node i is stuck if Fy(h) = @ (for full-reversal), or
Fi(p, h) = 0 (for partial reversal). Node 7, to determine if it is stuck, broadcasts
its state. All its alive neighbors with lower states acknowledge. (Recall that a
few of the neighbors might not be awake due to battery outage). If node i does
not receive any acknowledgment until an a prieri fixed timeout, it concludes
that its state is the least among its neighbors; itenpithis stuck.

The GB algorithms distributively update the states of stuck nodes so that a

destination-oriented DAG is obtained. Thesalgorithms are as follows.

Full link reversal. In this algorithmya stuck node reverses the direction of all

the incoming links. Node i_updates it$ state as follows.

Algorithm 1 GB Fulllink reversal
1: if F;(h) = 0 thén

2: h; < max{hj| Je Cl} +1

3: end if

Remarks 2:1. FEvidently, a node i, if stuck, leapfrogs the heights of all its neigh-
bors after an iteration of the above algorithm. All neighbors thereby enter the

forwarding set of node 1.

Partial link reversal. In this algorithm, every node keeps a list of its neighbors

that have already reversed their links to it. If a node is stuck, it reverses the

if both have equal hop counts from the destination), their distinct indices can be used to set

the direction of the connecting link.

10
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directions of links to all those neighbors that are not in the list, and empties
the list. If all its neighbors are in the list, then it reverses the directions of all

the incoming links, and empties the list. Node i updates its state as follows.

Algorithm 2 GB Partial link reversal
1: if Fy(p,h) = 0 then

2: p; < min{p;| j € C;} +1
3: if there exists a j € C; with p; = p; then

4: h; <= min{h,| j € C; with p; =p;} —1
5: end if
6: end if

Remarks 2.2. The update rule (Line 2) ensures that for neighboring nodes p;s
are always adjacent integers. For a stuck node i, the h; update (Lines 3-4)
ensures that, i does not reverse the links towthe neighbors that have updated

states since i’s last update.

Note that all the nodes run Algorithm 1 (or Algorithm 2 in case of partial
link reversal) asynchronously, i.e., their reversals can follow any arbitrary timing

and order. Gafni and/Bertsekas [1] show the following properties.

Proposition 24. (a)iStdrting from any state h (or (p,h) in case of Algo-
rithm 2)sAlgovithms 1 and 2 terminate in a finite number of iterations

yieldingndestination oriented DAGS.

(b)nAlgerithm 1 results in the same destination-oriented DAG regardless of the

timing and order of reversals. The same holds for Algorithm 2.

(c) Algorithms 1 and 2 are such that only those nodes that do not initially have
a greedy path to the destination update their states at any stage.

Remarks 2.3. The updates at a stuck node, in both Algorithms 1 and 2, depend
on knowledge of states of neighbors (see Line 2 in Algorithm 1 and Lines 2, 8, 4
in Algorithm 2). After each link reversal, the updating node needs to broadcast

11
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its new state, and its meighbors need to gather this information in a reliable
fashion (e.g., using an error detection scheme). In the following sections, we see
how to avoid these exchanges, a desired level of ignorance that we call neighbor

obliviousness.

3. Full Link Reversal

3.1. Neighbor Oblivious Full Link Reversal

The main idea may be summarized as follows. Suppose that the algorithm is
such that a node, at any stage, knows the entire range of heights ofits neighbors.
Then it may execute a full reversal by raising its height, to a value higher than
the maximum in the range. Note that the updating nede does not need to know
the exact states of its neighbors, so valuable communication time and energy

are saved.
Notation. The notation used is listed:below for ease of reference.
e [N]={1,2,..., N} is the set_ofnodes (or node indices).

o t; € Z4 is the number of height updates made by node ¢; this is initialized
to 0 for all 4.

o hi(t;) € Ziy+ = Zf\{0} is the height of node ¢ after ¢; updates; h;(0)
refers/toithe initial height. The destination’s height is 0.

o a; = (t;, hi(t;),4) is the state of node 4; ¢; is referred to as its t-state.

e (; ig'the set of neighbors of i, i.e., those with which ¢ can directly com-

municate.

o Fi(h) ={j € Ci| (h;(t;),7) < (hi(ts),?)} is the forwarding set of node i,
given the heights h = (hq(t1), ha(t2),..., An(tN)).

® hmax = max{hi(0),...,hn(0)}.

The algorithm is simple. Node ¢ updates its state a; as follows.

12
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Algorithm 3 Neighbor oblivious full link reversal
1: if F;(h) =0 then

2: t; < t; +1
3: hz(tl) < hi(ti — 1) + hmax

4: end if

Remarks 3.1. Node i, if stuck, updates its state such that the new height $ur-
passes the heights of all its neighbors (see Line 2). This reverses all the imecoming

links, a fact that we will prove in Proposition 3.2.

Node i broadcasts a hello packet to determine if it is.stuek. The lack of
feedback (silence) following a broadcast suffices to determinedf F;(h) is empty
or not. However, node ¢ does not need to know"the states of its neighbors to
perform updates (see Lines 2, 3 in Algorithm3), “Othernodes also independently
and asynchronously execute similar algorithms. All the nodes broadcast their
new states whenever they update. Timing and order of state updates can be
arbitrary.

We emphasise that the updating node broadcasts its new state
merely to facilitate its neighbors to update the corresponding link
directions. It could instead broadcast any message that serves this
purpose. For instance a node could broadcast a bit string with as
many bits as the number of its neighbours, with each bit indicat-
ing the link direction to an associated neighbour. The length of this
bit string would not increase with time. Moreover, the neighbour-
ing nodes do not need to store this broadcast message for use at a
later stage. We now proceed to state and prove some of the properties of

Algorithm 3).

Proposition 3.1. (a) The height of a node i in t-state t; is explicitly given by
hi (tl) =h (0) + tilmax-
(b) For any node i, and t; € Zy, we have t;hmax < hi(t;) < (t; + 1)hmax.

13
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c¢) For any two neighbors i and j, and t;,t; € Z we have the following impli-
Y g J J + g
cation

t; > tj = hz(tl) > hj(tj).

(d) For any two neighbors i and j, at any stage of the algorithm, we have

0<|t;—t; <15
(e) For any node i, t; < N at any stage of the algorithm.

Proof 1. (a) This follows immediately from the height update rule (Line 3 in
Algorithm 3).
(b) This follows from (a) and 0 < h;(0) < hpax.

(¢) The implication holds because hi(t;) > tihmax andh;(t; < (tj+1)hmax (see (b)).

(d) Without loss of generality, assume t; > t;. Wesclaim that ¢t; < t; +1. We
prove the claim via contradiction. Suppose t; >t;+1. Node i must have reached
this state through t;+1 because t; is initializedtoyzero and is incremented by one
each time node i updates its state. When node i’s t-state was t; + 1, from (c)
hi(t; +1) > h;(t;), and thereforevit had an outgoing link to node j. Thus,
1 would not have updated itsyt-stateto t; + 2 or higher. This contradicts our
supposition, and proves'the claim.

(e) Observe that any ome hop neighbor of the destination never updates its
heights; it always has an’ outgoing link to the destination. Consequently, for
any such node, saymode i, t; = 0 at any stage of the algorithm. Now, assume
that forsa node j, t; > N at some stage. Then, there is pair of neighbors k and
[ suchithat | ti'—t; |> 2. But this contradicts part (d). Thus, we have the bound

t; < N for any node 1.

6The analogous property for the link-centric full reversal algorithm of Charron-Bost et
al. [18] is asserted in [19, Propositions 2 and 3]. Our partial link reversal protocol also exhibits
this property (see Proposition d). This is expected because of the fact that every execution
of the partial link reversal on any directed routing graph corresponds to an execution of full

link reversal on a transformed graph (see [20])

14
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k ‘éhma}xﬂ :
hi(ts) it +1)
: | _] :
l : | :
: h[(tz)

4. | 2 | =
I bv,hma.x = Nmax=T hmax ‘

Figure 1: An illustration of Algorithm 3 at a stuck node ¢. Note that ¢t; = t; while ty =#; + 1.

‘When node ¢ updates its state, it reverse the links to both [ and k.

Remarks 3.2. 1. For any node, the size of the state (i.é., the number of
bits required to represent the state) grows with the number=of state up-
dates. However, Proposition 3.1(e) implies that,”for any node, the number
of updates is upper bounded by N, and henceythe t=—state size is upper
bounded by log(N). Notice that heights_ are functions of t-states (Proposi-

tion 3.1(a)), and hence need not be_stored separately.

2. Proposition 3.1(c) implies that{the forwarding set of node i can be alter-
natively defined as
Fi(a)< {j € Ci| a; < ai},

where a = (a1, .. .4ay) are the nodes’ states.

Proposition 3:2. In Algorithm 3, a stuck node reverses the directions of all

the incomingslinks.

Proof’2., Consider a stuck node i. For any node j € C;, h;(t;) > hi(t;). So,
by“wirtue, of /Propositions 3.1(c)-(d), we have either t; =t; ort; =t; +1. See
FEigure 1 for an illustration.

(1), Consider t; = t;. This is the case of node | in Figure 1. In this case, when
node i makes an update, it moves to t-state t; + 1. Hence the link is from i to
j after the update.

(i1) Consider t; =t; + 1. This is the case of node k in Figure 1. In this case,
observe that when node j updated its t-state from t; tot; = t;+1, node i’s t-state

must have been t;. Further, it must have been the case that either hj(t;) < hi(ts),
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or h;(t;) = hi(t;) and j < i. Thus we have either h;(t;) < h;(t;) + hmax, O
hj(t;) = hi(ti) + hmax and j < i. Hence when node i makes an update, since
hi(t; +1) = hi(t;) + hmax, the link is now from i to j. This concludes the proof.
Proposition 3.3. Algorithm 3 can be embedded within the GB algorithms frameé-

work. Thus it inherits the properties in Proposition 2.1.

Proof 3. For all i € [N], let A; be the set of feasible states of nodei. Notice
that a; = (t;, hi(t;),1) in our case. Define v = (a1,aa,...,an). “Let V=be-the
set of all such N-tuples. For each v € V, let S(v) C [N] denote the set of stuck
nodes.
S(v) = {i € [N]| a; > a; for all j €C;}.
We consider iterative algorithms of the form

v T € M),
where M(-) is a point-to-set mapping; M (VWGV for allv € V. In the following
we show that the proposed neighbor oblivious link reversal algorithms satisfy the
assumptions of GB algorithms.
(A.1). Defineg;:V — Ai=1,../ N as

(41, hi(t:) + haax,8) i i € S(v),

9i(v)= . o
(B hi(ti),9) ifi ¢ S(v).
The set M (v){is then giwen by
{v} if S(v) =0,
M) {v=(a,...,an)| D # v and either a; = a;

ora; = g;(v) for alli € [N]} if S(v) # 0.
(A.2). From (A.1), it is clear that for each v = (a1,...,an) andi=1,...,N,
the functions g;(-) satisfy

gi(v) > a; if i € S(v),
and g;(v) = a; if i ¢ S(v).
Furthermore, for eachi=1,...,N, g;(v) depends only on a; and {a;| j € C;};

the latter states determine if i € S(v) or otherwise.
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(A.3). Consider a node i and a sequence {vk} C V for which i € S(v*) for
an infinite number of indices k. If r is one of these indices, g;(v") — al >

(1, Amax, 0), otherwise g;(v") — al = 0. Hence the sequence

k
{a? + lgi(v7) — aﬂ}

r=0
is unbounded in A;.
Gafni and Bertsekas [1] show that if the communication graphdis connected
and an algorithm satisfies Assumptions (A.1)-(A.3), then Proposition 21 holds

for the algorithm. This concludes the proof of the proposition.

3.2. Two Bits Full Link Reversal

In practice, states are stored using finite bit“width, representations. While
the size of the states can depend on the number 6fnodes in the network, it should
not grow with the number of iterations ofithe algorithm. The t-states which are
the counts of the number of reversals{ though bounded (see Proposition 3.1(e)),
grow as the algorithm runs. There could be1000s of nodes in the network, and in
resource limited nodes in wireless sensor networks, memory is also at a premium.
Therefore, GB and NOLR algorithms need to be modified for implementation
in practical systems.

We now give a.modification of Algorithm 3 that uses only two bits for the
t-state and dees mot update heights. To do this we exploit the fact that, for
any two néighbors i-and j, the link direction is entirely governed by ¢;,t;, h;(0)
and h4(0). Mere precisely, the link is directed from 4 to j if and only if either
ti>t;, or ty/=t; and (h;(0),4) > (h;(0), ). Thus t-states along with the initial
heights suffice to determine link orientations. Moreover, since at any stage t;
and t; are either the same or adjacent integers (Proposition 3.1(d)), we need

only two bits to describe their order. Specifically, if we define, for all 4,
T — ti mod 4,

and a cyclic ordering

00 <01 <10 <11 <00
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on candidate values of 7;, we obtain
ty >t <= 1, > 715.

For node i, 7; is referred to as its 7-state. Following the above discussion, we

can redefine the forwarding set of node i as
Fi(r)={jeCi| <7 or
(rj = 7 and (h;(0),7) < (hi(0),))};

where 7 = (71, ..., 7n). In the two bit full link reversal algorithm node)i updates

its state as follows.

Algorithm 4 Two bit full link reversal
1: if F;(7) = () then

2: Ti < (Ti + 1) mod 4

3: end if

In Figure 2, we show the progressiomof Algorithm 4 in a sample network.

Following are the key properties of'this algorithm.

Proposition 3.4. (a) Ini Algorithm 4, a stuck node reverses the directions of

all the incoming Ainks.
(b) Algorithm 4lexhibits she properties in Proposition 2.1.

Proof 4.4(a) Consider a stuck node i. Following Proposition 3.1(d) and the
definition,of T=states, for any node j € C;, we have either 7; = 7; or 7; = (17;+1)
mod-4.

(i) Consider T; = 1;. In this case, when node i makes an update, it moves to
T-state (1; +1) mod 4 which is greater than 7;. Hence the link is from i to j
after the update.

(it) Consider T; = (1; +1) mod 4. In this case it must be that (h;(0),7) <
(hi(0),7); were it not the case, node j at T-state 7; would not have done an
update. Thus when node i updates its T-state to (7, +1) mod 4 = 7, the link

is now from i to j. This concludes the proof of part (a).
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Figure 2: A sample execution ofsthe two-bit full link reversal algorithm. We show the tuples
(7i, hi(0),1) for each node i“at _each stage; the node D with height O is the destination. At
each stage, the solid cireles,depict, the stuck nodes. The cut link in (i) results in an initial

destination disoriented network with node 4 starting out from a stuck state.

(b) Let alltheynodes”in the network run Algorithm 4. Also consider another
copy ofthe network (with the same initial link orientations) where all the nodes
executexAlgorithm 3 as follows. The same node as in the original network does
the first update. Then we are left with the same set of stuck modes as in the
origimal network because updates lead to full link reversals in both. The next
update is also by the same node as in the original network, thus again yielding
the same set of stuck nodes. Likewise, subsequent updates also follow the same
timing and order as in the original network. Since the nodes’ updates in the
latter network satisfy the properties in Proposition 2.1, so do the updates in the

original network.
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3.8. One Bit Full Link Reversal

Recall that in full reversal, a stuck node reverses the directions of all its
incoming links. Algorithm 4 executes this using initial heights and a two bit
state. We now describe a simpler way to achieve this using initial heights and
a single flag bit at each node. More precisely, with each node i, we associate a
binary state ¢; that is initialized to zero. For any two neighbors i and fywith
(hi(0),4) > (h;(0),7), the corresponding link is directed from ¢ tog if 6; = 0;,
and from j to 7 if §; # J;. In other words, at any stage, the fetwarding set of

node 1 is
F;(0) ={j € Ci] ((h;(0),4) < (hi(0),1) artd\d; = 6;) or
((R;(0),7) > (hi(0)4) and 6; 7 6;)},

where 6 = (d1,...,0n).
We propose the following one bit full link Teversal algorithm. Node ¢ updates

its states as follows.

Algorithm 5 One bit full link reversal
1: if F;(§) = () then

2: 0; < (51 + 1) mod. 2

3: end if

Remarks3.3. For stuck node i, the updated §-state is same as the §-states
of neighbors with higher heights but complements the d-states of neighbors with

lower heights. Thus, all its links become outgoing.

Algorithm 5 has similar properties as Algorithm 4.

Proposition 3.5. (a) In Algorithm 5, a stuck node reverses the directions of

all the incoming links.

(b) Algorithm 5 exhibits the properties in Proposition 2.1.
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Proof 5. (a) Consider a stuck node i and an arbitrary node j € C;. Then,
either (h;(0),%) < (h;(0),7) and §; = d;, or (h;(0),7) > (h;(0),4) and 6; # 6;.
In either case, when node i flips 0;, the link between i and j is reversed.

(b) The proof is identical to that of Proposition 3.4(b).

4. Partial Link Reversal

Recall that the link reversals are intended to yield a destination /oriented
DAG. However, link reversals are accompanied by state updates and informa-
tion exchanges, and can potentially lead to more nodes being stuck. Thus, a
stuck node could execute a partial link reversal (i.e.sneed not reverse all its
incoming links) so that the link graph converges.quickly to a destination ori-
ented graph. We focus on the partial link reversal, scheme proposed by Gafni

and Bertsekas [1] (see Algorithm 2).

4.1. Neighbor Oblivious Partial Link Reversal

As in neighbor oblivious fulldink reyversal, the algorithm is such that a node,
at any stage, knows the entire range.of all neighbors’ heights but not the exact
values. Then, the node raises its height to an appropriate value to effect only a
partial link reversal.,” Againjas in Section 3, the updating node does not need
to know the exaet states of its neighbors, so valuable communication time and

energy are saved.
Notation. The new notation is collected below.
o a; =(t;, hi(t;), (—1)%4) is the state of node 7; ¢; is referred to as its {-state.

o F;(h) = {j € Ci| (hj(t)),(—1)j) < (hi(t:;),(—=1)%i)} is the forwarding
set of node 4 for heights h = (h1(t1),...,hn(tn)).

e {2(0),2(1),...} is a sequence satisfying

0 if t =0,

2(t) =
27 (2hpax + 1) ift > 1.
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In the neighbor oblivious partial link reversal algorithm node i updates its

state as follows.

Algorithm 6 Neighbor oblivious partial link reversal
1: if F;(h) = 0 then

2: t;<—t;+1
3: hl(tz) — Z(tl) — hz(tl — 1)

4: end if

Remarks 4.1. Assume that node i is stuck. The height update (Liné 3) along
with the definition of sequence {z(0),z(1),...} ensure that.i’s updated height
surpasses the heights of those neighbors that have not updated states since i’s
last update, but still falls short of the heights .af other neighbors. A similar
behavior is ensured by the third componentssofsthe-states (e.g., (—1)%i in a;)

when two neighbors have identical initialsheights.

As discussed before, node i broadcaststa hello packet to determine if it is
stuck. However, it does not needsto know the states of its neighbors to perform
updates (see Lines 2, 3 in Algorithm 6). Also, whenever it updates its state, it
broadcasts its new statedto facilitate its neighbors updating the corresponding
link directions. Othér nodes _also independently and asynchronously execute
similar algorithms: In particular, multiple nodes can update at the same time.

The following‘properties of this algorithm are similar to those of Algorithm 3.

Proposition/4.1. (a) The height of a node i is explicitly given by

ti/2
Z z(21 — 1) + h;(0) if t; is even,
hati) = T s
A1)+ Y 2(20) = hi(0) if t; is odd.
=1

(b) For any node i, and t; € Z4 ., we have z(t; — 1) < h;(t;) < z(t;).

(¢) For any two neighbors i and j, and t;,t; € Z4 we have the following impli-
cation

t; > tj = hl(tl) > h](tj)
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(d) For any two neighbors i and j, at any stage of the algorithm, we have

0<|t;—t; |<1.

wo (e) For any node i, t; < N at any stage of the algorithm.

Proof 6. (a) We first obtain a recursion on h;(t;) using the height upa

rule (Line 3 in Algorithm 6). For any t; > 2, \(

2(t;) —

hi(ti) =

hi(t; — 1)

QZ(tl — ].) — (Z(tz — 1) — hl(tz -2

Successive applications of this recursion leads to expression, for the case when t;

is even. If we also use that h;(1) = z(1) — h;(0), ‘we e expression for the

as  case when t; is odd.

(b) We prove the inequalities by inductio ort; =1,

Now, assume that 0 < h;(t;

rule (Line 3 in Algorit

w0 tties hold for allt; € Zy 4.

= z(ti+1)— hi(ts)

= 22(t;) — hi(t:)

> 2(ti),

%équality holds because h;(t;) < z(t;). Also, 0 < h;(t;) implies that

)< 2(t; +1). This completes the induction, and shows that the inequal-

) The implication holds because h;(t;) < z(t;), hi(t;) > z(t; — 1) and z(t) is

imcereasing in t.

(d) The proof is identical to that of Proposition 3.1(d).
(e) The proof is identical to that of Proposition 3.1(e).
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1 - : U —
. hk(tz) | hlj(tl + 1) :
' ) hi(ti+1)

Figure 3: An illustration of Algorithm 6 at a stuck node ¢. Note that ¢; = ¢; while ¢t = ¢; + 1.
Node k has reversed its link to ¢ after i’s last update but node [ has not. Whennode« updates

its state, it reverse the link to [ but not the one to k.

Remarks 4.2. 1. As in the case of Algorithm 3, for any node, the number
of state updates is upper bounded by N, and hence the state size is upper
bounded by log(N).

2. Propositions 4.1(c) implies that theyforwarding set of node i can be alter-

natively defined as
Fl(a) = {_] (S CZl a; < ai},

where a = (a1, ...,an) _are thespodes’ states.

Proposition 4.2. In Algorithm 6, a stuck node i reverses the directions of only
those of its links{that havemot been reversed since i’s last update. If every link to
node i has been reversed after i’s last update, it performs two successive updates

to reverse the/directions of all its links.

Proof 7. Since node i is stuck, for any node j € C;,

(hj(ts), (=1)"5) > (hi(t:), (=1)""1).

By virtue of Propositions 4.1(c)-(d), we also have either t; =t; ort; =t; + 1.
See Figure 8 for an illustration.

(i) Consider t; = t;. This is the case of node l in Figure 3. We claim that
node j has not reversed its link to i since i’s last update. If t; = 0, this claim

is trivially valid. If t; > 1, we will show that the progression of updates when
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both nodes’ t-states were t; — 1 was: node j updated, then node i updated. As a
consequence, again, our claim will be valid. To see the progression of updates,
observe that if hj(t;) = hi(t;), then (=1)%j > (=1)%i. Thus, by sign flipping,
at t-states t; — 1 = t; — 1, (=)t < (=1)47Yi. Also, by the form of the
updates at t; — 1, hj(t; — 1) = hi(t; — 1). So the link was from node i to node j
and it must be j that updated first. On the other hand, if h;(t;) > hi(ts)then

hi(t; —1) = z(t;) — hy(t))

Again we conclude that the link was from i to j, and it“must.be j that updated
first. This establishes the claimed progression of&tates.

Continuing with the case, when node i mowsmakes an update, it moves to
t-state t; + 1. Hence the link is from i toj after\the update.
(it) Consider t; = t; + 1. This is thetase of node k in Figure 3. We claim that
node j has reversed its link to i after i’s'last update. Were it not the case, node
i’s t-state tmmediately prior to its\last\update would have been t; — 1 = t; — 2
which contradicts Proposition 4.1(d).

Moreover, when node jis t-state was t; — 1 = t;, it must have been the case
that

(hj(ty = 1), (=1)" 7)) < (hs(ts), (~1)"3).

If hj(t; =01) = hi(t;), then (=1)4~15 < (=1)%i. Thus, by sign flipping, at
t-states ty+ 1= t;, (—1)45 > (=1)%*i. Also, hj(t;) = hi(t; +1). So, even
after node i/makes an updates and mowves to t-state t; + 1, the link continues to

be from)j toi. If hj(t; — 1) < hi(t;), then

hj(t;) = =z(tj) —h;(t; — 1)

hi(t; +1).

Again, even after node i makes an updates and mowves to t-state t; + 1, the link

continues to be from j to i. This proves the first part of the proposition.
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Finally, suppose that every neighbor of node i has reversed its link to i after
i’s last update. Then, as shown above, t; = t;+1 for all j € C;. Again as argued
above, if node i updates its state, it does not reverse any of its links. Thus it
performs one more update. After this update its t-state is t; + 2 which exceeds

t; for all j € C;. So all its links are reversed.

Remarks 4.3. For a stuck node, if all its neighbors have reversed_the cor-
responding links after its last update, it takes two iteration to réversesall-the

incomang links. This is unlike Algorithm 2 which needs only one iteration.

Proposition 4.3. Algorithm 6 can be embedded within the,GBalgorithms frame-

work. Thus it inherits the properties in Proposition:2.1.

Proof 8. We use the same proof technique as usedsfor Proposition 3.3. Notice

that a; = (t;, hi(t;), (=1)%4) in this case. We défine g; : V — A; as

(ti =+ 1, Z(tl —+ ].) — hl(tl), (*1)t1+1i)
gi(v) = if i € S(v),
(ti, hi(t;), (= W1) if i ¢ S(v).

Again, it is easy to checkthat Assumptions (A.1)-(A.3) as in the proof of Propo-
sition 3.3 hold. Thus, following the same argument as in the proof of Proposi-

tion 3.8, this proposition dlso holds.

4.2. Two4Bit Partial Link Reversal

InfAlgerithm 6, nodes’ t-states grow as they update. We now give a modi-
fication of Algorithm 6 that uses only two bits for ¢-state and does not update
heights/ To do this we exploit the fact that for any two neighbors ¢ and j,
the link direction is entirely governed by t;,%;, k;(0) and h;(0). More precisely,
the link is directed from ¢ to j if and only if either ¢; > t;, or t; = t; and
(=1)"(h;(0),7) > (—=1)%(h;(0), 7). Thus t-states along with the initial heights
suffice to determine link orientations. Moreover, since at any stage t; and t;

are either same or adjacent integers (Proposition 4.1(d)), we need only two bits
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to describe their order. Specifically, if we define 7-states for all the nodes as in
Section 3.2, we obtain

ti>tj<:>7-i>7-j-

As before, for node i, 7; is referred to as its 7-state. Following the abové

discussion, we can redefine the forwarding set of node i as

Fl(T) = {] ECi|Tj < T; Or (Tj =T;

and (—=1)7 (hs(0),7) > (=1)7 (h;(0), 1))}

where 7 = (71,...,7n). We are thus led to the following two bitawverSion of the

partial link reversal algorithm. Node ¢ updates its states as follows.

Algorithm 7 Two bit partial link reversal
1: if F;(7) = () then

2: 7i < (1; +1) mod 4

3: end if

In Figure 4, we illustrate the progression of Algorithm 7 in the same sample
network as in Figure 2.

Following are the key propetties of this algorithm.

Proposition 4.4." (@) In Algorithm 7, a stuck node i reverses the directions of
only those  ofvits links that have not been reversed since i’s last update. If
everydink to node i has been reversed after i’s last update, it performs two

successiverupdates to reverse the directions of all its links.

(b) Algorithm 7 exhibits the properties in Proposition 2.1.

Proof 9. (a) Following Proposition 4.1(d) and the definition of T-states, for
any node j € C;, we have either 7; = 7; or 7; = (1, +1) mod 4.

(i) Consider 7; = 7;. We claim that node j has not reversed its link to i since
i’s last update. If neither i nor j has ever made an update, this claim is trivially
valid. If both of them have made updates, by Proposition 4.1(d), it cannot be that

one of them made two updates without the other updating. So both must have

27



ACCEPTED MANUSCRIPT

(00.2,1) (00,3,2) 004.3)  (00,2,1) (00,3,2) (00,4,3)
- O-=—0

T 7 T T

O
%O —= =

] O O
(00,1,4)~ o (00,2,5) (00,5,6) 01,1,4) (00,2,/5)/(00,5,6)
(=,0,D) (=,0,D)

() (ii)

01,2,1) (00,3,2) (00,4,3) 01,2,1) (01,3,2) (00,4,3)
O—@—0 O——0O0—@

o*>07© O—=O—— OC
(01,1,4) 01,2,5) (00,5,6) (01,1,4) (01,2,/5)/( 15,6)
O @)

,0,D,

i

(-0.D) -
(iif) (
(01,2,1) (01,3,2) (01,4,3)
O——0——=0

L

—_— = )——=

O O
(01,1,4) (01,2;5)/(00,5,6)
@) ;
(=,0,D)

)

-
-

Figure 4: A sample execution e
tuples (7, hi(0), ) for each % ach stage; the node D with height 0 is the destination.
At each stage, the solid es depict the stuck nodes. The cut link in (i) results in an initial

destination disorien ork

e two-bit partial link reversal algorithm. We show the

ith node 4 starting out from a stuck state.

been at (1; mo at some point of time. We will show that the progression

of upd,

S
the e i updated. As a consequence, again, our claim is valid. To see the
@ess' of updates, observe that

(=17 (;(0),5) > (=1)7 (hi(0), ).

n both nodes’ T-states were 7, — 1 mod 4 was: node j updated,

Thus, by sign flipping, at the nodes’ immediately prior T-states, the inequality
sis  was in reverse direction. So the link was from node i to node j and it must be
j that updated first.

Continuing with the case, when node i makes an update, it moves to T-state
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(15 +1) mod 4. Hence the link is from i to j after the update.
(it) Consider 7; = (7, + 1) mod 4. We claim that node j has reversed its link
to i after i’s last update. Were it not the case, node i’s T-state immediately
prior to its last update would have been (7, —1) mod 4 = (1; —2) mod 4 which
contradicts the fact that at any stage 7; and T; assume either same or adjacent
values.

Moreover, when node j’s T-state was (t; —1) mod 4 = 7;, it must have been
the case that

(=) (h5(0), ) < (~1)7 (hi(0), ).

Thus, by sign flipping, at T-states (1; +1) mod 4 = 7,

(=17 (h;(0),5) > (=1)7 (h{0), ©).

So, even after node i makes an update and moves to's-state (7;+1) mod 4, the
link continues to be from j to 1.

Finally, suppose that every neighbor of\noderi has reversed its link to i after
i’s last update. Then, by the arguments above, 7; = (1; + 1) mod 4 for all
j € C;. Also, if node i updates its'state once, it does not reverse any of its links,
i.e., it is still stuck. Thus it performs one more update. After this update its
T-state is (1; + 2) mod Lwhich exceeds T; for all j € C;. So all its links are

reversed.

(b) The proof isidentical to that of Proposition 3.4(b).

5. Complexity of the Proposed Algorithms

As indicated earlier, the evolutions of the routing graph under our full
and partial reversal algorithms are identical to the evolutions under GB al-
gorithms [1] (or those under the schemes of Charron-Bost et al. [18]). Thus
the complexity results of [17, 18, 19, 20] apply to our algorithms as well. In
this section, we review a few of these results. These results also enable us to
estimate the savings in computations, communication, and storage overheads
due to neighbor obliviousness and finite-state properties of our algorithms. We

start by defining the notions of work and time complexities.
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Work Complezity. Recall that a link reversal is the action of a stuck node revers-
ing some or all of its adjacent links. Given a routing graph, the work complexity
of an algorithm is defined to be the total number of reversals performed by all
the nodes until a destination oriented DAG is obtained [17]. This is referred
to as the global work complexity in [18]) This is a measure of the communica-
tion and computation resources consumed by the algorithm before reaching an

equilibrium.

Time Complezity. Let us consider a slotted network in which link reversals
take place only at slot boundaries, and all the nodes that are-stuck pérform link
reversals at the next boundary. Given a routing graph Ahe time complexity of an
algorithm is defined to be the number of slots neededwntil adestination oriented
DAG is obtained [17, 19]. This is a measure of the'speed of the algorithm.

For instance, in the sample execution ‘of two bits full link reversal
algorithm in Figure 2, seven link reversals are needed until a desti-
nation oriented DAG is obtained.) If we assume that time is slotted
and link reversals take place.only at the slot boundaries, one would
require five slots until the equilibrium is reached.

Busch and Tirthaptra [17])and Charron-Bost et al. [18, 19, 20] proved
that work and timé complexities of full and partial link reversal algorithms
are O(N?), andddemonstrated networks in which both these algorithms exhibit
O(N?) work-and time complexities.”

Since the evolutions of the routing graph under our full and par-

tial‘reversal algorithms are identical to the evolutions under the GB

"To be precise, Busch and Tirthapura [17] established that the work and time complexities
of GB partial link reversal algorithm are O(PN + N2) where P is the difference between
the maximum and minimum p-states of the nodes in the initial routing graph. They also
demonstrated networks in which GB partial link reversal algorithm exhibits ©(PN + N?)
work and time complexities. They further illustrated that P can be arbitrarily larger than
N in mobile ad hoc networks where the underlying connection topology keeps changing (in
particular, Proposition 4.1(d) no longer holds; see also the discussion in Section 6). However,

neither Charron-Bost et al. [18] nor we have considered mobile networks.
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algorithms, the time complexities of our algorithms are identical to
those of the GB algorithms. In fact, the O(N?) bound can be directly
inferred from our Propositions 3.1(e) and 4.1(e) which assert that all
N nodes need at most N link reversals.

For work complexities, we recall the two potential implementations of/the
GB protocols (see Section 1.1). In the first scheme, nodes hold their neighbors’
full state information which are of size O(log N) bits. Thus, in the/worst case;
each node requires O(N log N) bits of storage. In the second scheme;nodes do
not maintain the states of their neighbors. But when a hello packet/is broad-
cast by a node, all its neighbors respond with their full states. This scheme
requires at least Q(N?) transmissions (of full states) untilsan equilibrium is
reached (at least one “state information” transmi§siomper Jink reversal). In our
neighbor oblivious and finite state algorithms; sineéra stuck node’s update is
not a function of the full states of its neighbors, we economize on these storage
or communication overheads.

Also, in GB algorithms, each stuckinode uses its neighbors’ state information
to come up with its new state. The simpler update rules in our finite-state
algorithms ensure that wé canifurther save Q(N?) computations. The overall
complexity may still We Q(N2),/but with a smaller constant.

The link-centric sciemes of Charron-Bost et al. [18] are also lightweight in
the sense thatdhelink reversal rules are simple. But in those schemes, the nodes
must holddthe Jabels’of all incident links, and after each reversal, must commu-
nicate/the new link labels and link directions to the corresponding adjacent
nodes (neighbors). This requires O(N) bits of storage and significant communi-
cation overhead at each node in the worst case. On the other hand, we require
each node to store only log N bits for the node index and an additional two
bits to execute our proposed finite-state link reversals. See Algorithms 4 and 7.
Observe that links’ directions should be set to ensure acyclicity of the routing
graph in the beginning and after every execution of link reversal. Associating
nodes with distinct and ordered indices (of log N size) provides a convenient

method to accomplish this. Charron-Bost et al. [18], on the other hand, bypass
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this issue by explicitly assuming that the initial routing graph is acyclic (see [18,
Corollary 3.8]). Moreover, the authors in [18] rely on an oracle for initial link

direction identification and actual link reversal.

6. Conclusion

We proposed neighbor oblivious link reversal (NOLR) schemes to get a'des-
tination oriented network out of the local minimum condition ifiigeographic
routing. Our algorithms fall within the general class of GB algorithms [1]. We
then argued that both the algorithms, GB and NOLR, may-suffer_the problem
of state storage overflow. This led us to modify the NOLR algorithms to obtain
one bit full link reversal and two bit partial link reversal algorithms. The finite
state algorithms inherit all the properties of NOLR algorithms which in turn
inherit the properties of GB algorithms, and are pragmatic link reversal solu-
tions to convert a destination-disoriented DAGyte a destination-oriented DAG.
The communication is lightweight since.only, broadcasts (hello packets and new
state advertisements) contain statesinformation (acknowledgements need not),
and further, acknowledgements are sent only by the neighbors that have lower
states than the querying mode. \We have given order estimates of the resulting
savings in computationsy.communication and storage overheads.

The property. |t; — t5,.< 1 at every stage for all pairs of neighboring nodes is
crucial for getting the finite state version of our NOLR algorithms. If addition
of new nodes/or links to the existing graph is allowed, this property could be
violated./ If full ¢-states (instead of only 7-states) are maintained, then since
Algorithms” 3 and 6 belong to the class of GB algorithms, they continue to
exhibit/the properties in Proposition 2.1. However, Algorithm 3 does not execute
a full link reversal, and similarly, Algorithm 6 does not execute a partial link
reversal. Furthermore, the finite state algorithms are not robust to addition of
new nodes or links because the newly added nodes may not be able to take up
a state consistent with the above property, or the DAG may be burdened by

cycles.
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