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a b s t r a c t 

In this paper, Gaussian process regression (GPR) for fingerprinting based localization is presented. In con- 

trast to general regression techniques, the GPR not only infers the posterior received signal strength (RSS) 

mean but also the variance at each fingerprint location. The GPR does take into account the variance of 

input i.e., noisy RSS data. The hyper-parameters of GPR are estimated using trust-region-reflective algo- 

rithm. The Cramér-Rao bound is analysed to highlight the performance of the parameter estimator. The 

posterior mean and variance of RSS data is utilized in fingerprinting based localization. The principal 

component analysis is employed to choose the k strongest wi-fi access points (APs). The performance of 

the proposed algorithm is validated using using real field deployments. Accuracy improvements of 10% 

and 30% are observed in two sites compared to the Horus fingerprinting approach. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

The received signal strength (RSS) based mobile user localiza-

ion method has recently attracted significant attention. Perhaps

his happened because RSS measurements from the wi-fi access

oints in indoor scenarios provide a cost-effective positioning sys-

em. It does not require any additional hardware unlike time of

rrival (TOA), time-difference of arrival (TDOA) and angle of ar-

ival (AOA). The time based localization techniques are also lim-

ted by the fact that it requires highly precise synchronization.

n the other hand, RSS based localization techniques suffer from

he harsh wireless channel such as multipath fading, and non-

omogeneous environment. Hence, it is of sufficient interest to de-

elop the robust fingerprint method which is relatively stable dur-

ng different days with high localization accuracy. 

Several localization algorithms in literature are based on two

teps procedures. In the first step, inter-nodal range is estimated

ith learning of radio propagation model. Subsequently, these es-

imated ranges are further utilized in positioning the user. In doing

o, large range error propagates into positioning phase. In contrast,

ngerprinting based localization methods provide higher accuracy

t the expense of extensive training. It may be noted that train-

ng is required even for learning radio propagation model to some

xtent. In this paper, sparse RSS data are collected from the given

rea of interest. Subsequently, Gaussian process regression (GPR) is
∗ Corresponding author. 
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mployed to build the posterior mean and variance at each of the

ocations. These predicted variances are further utilized for local-

zation during test phase. The motivation for using Gaussian pro-

ess in this work stems from the fact that it not only predicts the

SS mean but also infers the variance at each location. The main

ontributions of the paper are enumerated herein. 

1. We present the textbook derivation of Cramér-Rao Lower Bound

(CRLB) on estimation error of kernel function hyper-parameters

in the context of GPR framework using basic CRLB theory. This

helps us in obtaining the minimum variance of the unbiased es-

timator for given hyper-parameter. We also obtain the required

number of snapshots for the good estimate of hyper-parameters

using CRLB expression. 

2. We show that the localization accuracy with fingerprint con-

structed using GPR is higher than the Horus fingerprinting ap-

proach. Further, localization accuracy is not significantly af-

fected by the reduction in number of samples at each finger-

print location. Accuracy improvements of 10% and 30% are ob-

served in two sites compared to the Horus fingerprinting ap-

proach. 

3. We further illustrate that localization accuracy is relatively in-

sensitive to the choice of different kernel functions such as

Gaussian, Laplacian and Exponential. The performance of Lapla-

cian and Exponential kernel functions is the same because the

only difference lies with the length scale parameter. 

4. There are plenty of insignificant APs like commuter phone wi-

fi, vehicle wi-fi besides fixed APs, in crowded wireless environ-

ment, e.g, supermarket. To find out the set of strongest APs in

http://dx.doi.org/10.1016/j.adhoc.2016.07.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2016.07.014&domain=pdf
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the given area of interest, a criterion based on dimensionality

reduction using principal component analysis is employed. 

The remainder of the paper is organized as follows:

Section 2 overviews existing techniques for localization.

Section 3 describes the Gaussian process regression for finger-

printing based localization. Performance evaluation is presented in

Section 4 . A brief conclusion is presented in Section 5 . Cramér-Rao

lower bound (CRLB) analysis for the kernel function parameters is

discussed in Appendix . 

2. Background 

In this section, various kind of localization techniques are re-

viewed: 1) indoor positioning based on propagation model; 2)

multi-sensor data fusion based method; 3) fingerprinting based

methods, and 4) regression based methods. 

2.1. Indoor Positioning Based on Radio Propagation Model 

The localization methods based on propagation model [1–4] are

generally two step procedures. First the inter-nodal range is esti-

mated. Subsequently, these estimated ranges are utilized for posi-

tioning with the set of APs coordinates. The path-loss model [2] in-

creases exponentially with range. The break point path loss model

(also called dual slope model) [3] to account for different path loss

in two breakpoint regions. The wall and floor attenuation factors

are considered in COST231-MWM model [4] . Estimated range using

these propagation models is highly erroneous. The error is in the

range of 7 m - 8 m for our considered experimental scenario. This

is because the propagation model assumes wi-fi signal strength

due to a particular AP decreases with the distance isotropically.

However, it is not true because of non-homogeneous environment.

Finally, these errors further propagate into the positioning phase

and make the indoor positioning system highly inaccurate. 

2.2. Multi-Sensor Data Fusion Based Localization 

In order to enhance the accuracy of a localization system, we

may resort to fusion based approach. Wi-fi based SLAM [5–8] fuses

RSS and motion sensor data for simultaneous building a map and

locating a user. The RAVEL, radio and vision enhanced localization

system, which fuses wi-fi with visual data is explored in [9] . Fur-

ther, the organic landmark maps utilize the unique identifiable sig-

natures within the building [10,11] . These signatures then correct

the dead-reckoning error for enhanced accuracy in this unsuper-

vised localization method. 

2.3. Fingerprinting Based Localization 

Standard fingerprinting based localization methods available in

the literature are RADAR [12] , PlaceLab [13] , and Horus [14] . These

methods comprise primarily two phase: training and testing. Dur-

ing training phase, radio map is generated at each of the finger-

print location. Subsequently, a location is chosen corresponding to

the minimum error between test RSS data and fingerprint RSS.

[15,16] are presented to cope up with heterogeneous devices dur-

ing training and testing phase. [15] utilizes ratio of RSS, whereas,

[16] uses relative RSS data and performance deteriorates [17] . 

The channel state information (CSI) utilizes physical layer in-

formation to deal with the multipath fading effect and it per-

forms better than RSS based methods under certain conditions

[18] . Choosing the location dependent, temporally stable, and noise

resilient feature is a challenging task in both CSI and RSS frame-

work [18] . Fingerprinting database is built and updated in both CSI

and RSS framework which is labour-intensive and time-consuming
19] . CSI based method is also constrained by the underlying band-

idth. Additionally, CSI based methods, in particular, require ad-

itional hardware to estimate the angle of arrival of multipath

omponents [20] or time of flight information from physical layer

21] or wifi network interface cards (NIC) or 802.11a/g/n wireless

onnection [22,23] . On the contrary, RSS measurements are acces-

ible on mobile phones in wireless techniques ranging from Zig-

ee, UWB and WiFi to cellular networks [18] . It can be easily mea-

ured using hand-held devices, e.g., mobile phone, smart watch

nd tablet from fixed APs without any modification in the exist-

ng hardware [22,24] . 

Notably, fingerprinting based localization methods provide good

ocation accuracy at the expense of heavy training during radio

ap construction. In order to reduce the calibration effort s, crowd-

ourcing for localization is explored in [8,11,22,25–29] . However,

hese methods provide coarse location resolution. 

.4. Regression Based Localization 

General regression or interpolation based approaches such as

olynomial fitting [30] , exponential fitting, and log model are lim-

ted by the fact that it only predicts the RSS mean not the variance

f the estimate. However, for localization using probabilistic based

ethod, we are interested not only in the posterior RSS mean but

lso how certain that mean is. The polynomial models have poor

nterpolatory, and asymptotic properties and it is also difficult to

xtrapolate outside the range of observations. The exponential re-

ression is suitable for line-of-sight (LOS) scenario. It may be noted

hat variants of the log based regression are explained above in

ection 2.1 . 

The Gaussian process regression for sensor networks under lo-

alization uncertainty is proposed in [31] . The Monte Carlo sam-

ling and Laplace approximation are used to compute analytically

ntractable posterior distribution. Notably, this method does not

onsider the location estimation problem using Gaussian process.

he Gaussian process inference approximation using multi-sensor

ata such as inertial, magnetic, signal strength and time-of-flight

easurements for indoor pedestrian localization is discussed in

32] . [33] considers the near-optimal sensors placement problem

sing mutual information in this context. The wi-fi SLAM using

aussian process latent variable models is presented in [5] . Gaus-

ian process assisted fingerprinting localization is discussed in [34] .

n this work, user’s location is obtained through exhaustive search

f likelihood function. Moreover, this is a discrete location estima-

or. Learning-based indoor localization using Gaussian processes is

escribed in [35] . The method used to train hyper-parameters is

ot clearly mentioned [34,35] . 

In summary, all the localization algorithms either use radio

ropagation model, multi-sensor data fusion, training based finger-

rinting or regression based localization. The multi-sensor data fu-

ion based localization utilizes rich sensors for good accuracy. It

ay lead to high cost at implementation stage. Localization based

n radio propagation model is inaccurate, whereas, fingerprinting

ocalization yields good accuracy at the expense of extensive train-

ng. In this paper, the proposed method is semi-supervised due

o the fact that RSS measurements are collected sparsely across

he indoor area and subsequently entire fingerprinting database is

onstructed for localization. This extends the applicability of the

roposed method for practical situations. It may be noted that in-

oor multipath reflections and shadowing problem can be miti-

ated upto a large extent by employing a large number of existing

Ps. Although, Gaussian process has been widely used in the sen-

or networks. However, none of the methods consider the problem

o obtain the CRLB of the kernel function hyper-parameters and

his was an open problem, to the author’s best knowledge. This is
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specially relevant to know the sensitivity of the hyper-parameters

stimation on the localization error. 

. GPR for Fingerprinting based Localization 

In this section, first the introduction to Gaussian process regres-

ion is presented, as in [36,37] . Kernel parameters estimation using

radient based method is then detailed. Subsequently, Cramér-Rao

ower bound analysis and fingerprinting based localization are fol-

owed. 

.1. Gaussian Process Regression 

A Gaussian process is a stochastic process, and any finite num-

er of collections follow a joint Gaussian distribution [36] . Con-

ider the following observation model. 

 = f (x ) + η (1)

here η represents the i.i.d. (independent, identically distributed)

aussian noise with zero mean and variance, σ 2 
n , i.e., η ∼

 (0 , σ 2 
n ) . In this work, letters in bold (upper or lower) denote ma-

rix. It may be noted that y denotes the observations which is wi-

signal strength at particular location. x is the input features, i.e.,

ocation coordinates. 

The mean function, m ( x ), and covariance function, k ( x i , x j ), for

atent function, f , can be stated as 

 (x ) = E [ f (x )] (2)

 (x i , x j ) = E [( f (x i ) − m (x i ))( f (x j ) − m (x j ))] (3)

here E (. ) denotes the expectation operator. Without loss of gen-

rality, mean can be considered as zero. The kernel function con-

idered in this work is expressed as 

 (x i , x j ) = σ 2 
f exp 

(
− || x i − x j || 

2 l 2 

)
(4)

here σ 2 
f 

and l are called the hyper-parameters. σ 2 
f 

denotes the

ignal variance, while l the length scale parameter, which charac-

erizes the smoothness of a function. L 2 norm is represented by

|.||, which denotes the Euclidean distance between two vectors.

he Gramian matrix, ˜ K , is defined using Equation 4 as 

˜ 
 = 

⎡ 

⎢ ⎢ ⎣ 

k (x 1 , x 1 ) k (x 1 , x 2 ) . . . k (x 1 , x N ) 
k (x 2 , x 1 ) k (x 2 , x 2 ) . . . k (x 2 , x N ) 

. . . 
. . . 

. . . 
. . . 

k (x N , x 1 ) k (x N , x 2 ) . . . k (x N , x N ) 

⎤ 

⎥ ⎥ ⎦ 

(5) 

here the total number of fingerprint locations is denoted by N .

hus, f ( x ) can be stated as Gaussian process. 

f (x ) ∼ GP(m (x ) , k (x i , x j )) (6)

here latent function, f is characterized using Gaussian process

ith mean function, m ( x ), and covariance function, k ( x i , x j ). 

The training y and test y ∗ wi-fi data can follow multivariate

aussian distribution jointly as 

y 
y ∗

]
∼ N 

(
0 , 

[
˜ K (X , X ) N×N 

˜ K (X , X ∗) N×N ∗
˜ K (X ∗, X ) N ∗×N 

˜ K (X ∗, X ∗) N ∗×N ∗

])
(7) 

here suffix of the block covariance matrix denotes the size of that

articular matrix, for N training wi-fi data and N ∗ test data. The

osterior distribution, p ( y ∗| y ), which signifies how likely is a pre-

iction y ∗, given the data y is 

y ∗| y ∼ N 

(
˜ K (X ∗, X ) ̃  K (X , X ) −1 y , 

˜ K (X ∗, X ∗) − ˜ K (X ∗, X ) ̃  K (X , X ) −1 ˜ K (X , X ∗) 
) (8) 
hus, posterior RSS mean and variance at each fingerprint location

an be computed. In order to estimate these, we require the ker-

el function hyper-parameters which is described in the ensuing

ubsection. 

.2. GPR Parameters Estimation 

Generally, we have noisy wi-fi signal observations at each of

he fingerprint locations. The Gaussian process allow us to include

ariance of the noise, σ 2 
n , present in the wi-fi data. First, Gaus-

ian process learns the hyper-parameters using optimization tech-

ique from noisy wi-fi data. The optimization technique utilized

n this work is subspace trust-region method which is based on

nterior-reflective Newton method [37–39] . It minimizes a non lin-

ar function subject to simple bounds. Since the hyper-parameters

eed to be positive, we set a large positive number as an up-

er bound, whereas zero as a lower bound. Ten initial guess of

yper-parameters are chosen uniformly within this lower and up-

er bound, and then optimization is carried out. The parame-

ers which maximize the marginal log-likelihood function is finally

pted as a solution of this problem. Additionally, gradient of the

ptimization problem is easy to compute because of the continuity

nd differentiability properties. It may be noted that we have also

ncreased the number of initial guess, typically 10 to 10 0 0 and up-

er bound, typically 1 to 10 0 0, and found that parameters which

aximize the marginal log-likelihood function is insensitive to it. 

Subsequently, we compute posterior RSS mean and variance

t each locations in the building using these estimated hyper-

arameters. We have explained herein an optimization approach

o estimate the hyper-parameters. In order to know that how well

he estimated parameters is, we need minimum variance of the

stimated parameters. For this, Cramér-Rao bound analysis is pre-

ented in ensuing subsection and appendix. 

.3. Cramér-Rao Lower Bound Analysis 

Cramér-Rao bound [40,41] provides the lower bound on the

ariance of any unbiased estimator. It is the standard benchmark

ith respect to which, variance of any estimator is compared.

ence, it is of sufficient interest to develop an expression for

ramér-Rao bound for the kernel function parameters. 

The variance of any unbiased estimator ˆ θ of θ is lower bounded

y the inverse-fisher information, I −1 (θ ) . The FIM is the amount of

nformation that an wi-fi observation y contains about unknown

arameters, θ = 

[
l σ f 

]T 
, where (.) T represents the transpose of

 matrix. It measures on an average how peaked the likelihood

unction will be for an observation y , given parameter θ. It can

e also interpreted as how much curvature the likelihood function

ill have at maximum. If it is peaked around maximum, it will

ave lower variance and consequently more information. 

In order to develop the CRLB for unknown parameter θ, we first

eed to derive log-likelihood function of a θ, given an wi-fi obser-

ation y . Subsequently, FIM is computed, having verified the reg-

larity condition. Finally, the square root of trace of a inverse-FIM

s evaluated for CRLB. For the sake of simplicity and shortness, the

ramér-Rao bound analysis is presented in Appendix . 

.4. Fingerprinting based Localization 

Each of the fingerprint location in the given area of interest is

ssigned a probability. This is computed as probability of a fin-

erprint location, z n , given the wi-fi signal observation vector, S .

ccording to Bayes theorem, p ( z n | S ) can be expressed in terms of

 ( S | z n ). The unknown location estimate can be expressed as the
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Fig. 1. Figure illustrating the posterior RSS mean (in black curve) and confidence interval (in shaded green). Real wi-fi data are shown in Blue. 

Fig. 2. Figure illustrating the insensitivity of kernels over localization accuracy. 
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weighted sum of probabilities. 

ˆ z = 

N ∑ 

i = n 
z n p(S | z n ) 

N ∑ 

n =1 

p(S | z n ) 
(9)

where z n = [ x n y n ] 
T represents the n th fingerprinting location, n ∈

{ 1 , 2 , . . . , N} . S denotes the wi-fi signal observation vector at each

of the fingerprinting location. The total number of APs is repre-

sented by A and A < < N . The p ( S | z n ) can be computed, assuming

the independence between all APs as 

p(S | z n ) = 

A ∏ 

a =1 

1 √ 

2 π�n (a, a ) 
exp 

(
− (s a − μa ) 

2 

2�n (a, a ) 

)
(10)
t may be noted that localization is carried out in two-dimensional

oordinate system herein, however, extension to three dimensions

s straightforward. 

. Performance Evaluation 

In this section, first the experimental conditions for localization

n two different scenarios are presented. Subsequently, experimen-

al results for fingerprinting based localization are detailed. 

.1. Experimental Conditions 

The extensive experiments are conducted in two different en-

ironmental conditions such as academic area of a university and

upermarket. 
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.1.1. Academic Area 

Figure 7 (a) shows the floor plan of third floor of Wolfson build-

ng, University of Oxford. The four APs (TP-Link, TL-WA901ND) are

anually deployed as shown in figure. The wi-fi data are collected

or five different days at each of the fingerprint locations using

oto-E android mobile phone. The wi-fi signal for fifth day is cho-

en to build the fingerprint database, whereas wi-fi data of other

ays are for online test data. Measurements are recorded at total

wenty eight locations on a closed path for duration of approxi-

ately ten seconds at each. Approximately ten wi-fi samples are

aptured in this given durations at each location, however, sam-

ling rate depends upon the hardware of mobile phone being used.

e present the localization results for two days only. Notably, sim-

lar results are obtained for other days in this scenario. The similar

esults are seen for fourth floor of this building too. 

.1.2. Supermarket 

The experiments are conducted in another environmental con-

itions like supermarket as shown in Figure 7 (b). The slab between

ngerprint locations is basically the shelf for grocery items. Peo-

le movements in supermarket are far more than the academic

rea which impact the localization performance. Similar to our aca-

emic area experimental set-up, wi-fi data are collected at 56 lo-

ations using android mobile phone for duration of 10 seconds at

ach location. The total 23 APs are noticed in the basement of this

arket. There are numerous insignificant APs such as commuter

hone wi-fi, and vehicle wi-fi. Some of the wi-fis are static and

any of them are mobile. There is not any reasonable improve-

ent in localization accuracy with utilization of the weakest APs.

his also makes sense because we need same set of static APs over

raining and testing phase for different days. To find out the set of

trongest APs in the given area of interest, a criterion based on di-

ensionality reduction using principal component analysis is em-

loyed as following. 

Let S be the signal observation matrix of dimension N × A . The

igen values of the signal covariance matrix [ S T S ] is denoted by

a , ∀ a = { 1 , 2 , . . . , A } . The objective is find minimum Ā such that

ollowing criteria is met. 

 = 

Ā ∑ 

a =1 

λa 

A ∑ 

a =1 

λa 

≥ 99 . 9 (11)

n this work, 99.9% variance criterion is retained to choose the

 strongest APs out of total 23 APs. Note that, different variance

hreshold may be opted depending upon the applications specific

equirements. It may be noted here that we were not intended to

now the APs location, neither we had any privilege to the place-

ent of these APs. 

.2. Experimental Results 

In this section, first impact of hyper-parameters and insensitiv-

ty to different closely related kernels on the localization error per-

ormance are followed next. Subsequently, average localization er-

or and trajectory analysis in two different scenarios are presented.

.2.1. Cramér-Rao Lower Bound Analysis 

In order to assess minimum variance of the parameter esti-

ate, CRLB analysis is described in Figure 3 . It can be seen that

he RMSE of the hyper-parameters attains the derived CRLB and

chieves an asymptotically efficient performance. Forty snap-shots

re sufficient for good estimate of hyper-parameters as in Figure 3 .
.2.2. Significance of Hyper-parameters Estimation 

Figure 1 depicts the impact of hyper-parameter estimation on

he posterior RSS mean and variance. It eventually impacts the

ocalization performance. Posterior RSS mean and variance using

ptimal hyper-parameters is shown in Figure 1 (b) and 1 (e). Note

hat Figure 1 (b) and Figure 1 (e) are same and it is just for the

ymmetric placement of figures. Figure 1 (a) and Figure 1 (c) de-

ote the localization performance using lower (l = 1) and larger

(l = 40) length scale values respectively, keeping σ f fixed. In fact,

ength scale characterizes how smooth our predicted mean is. If l

s lower, we can distinguish neighbouring location i.e., high resolu-

ion. On the other hand, larger l signifies slower variation in pre-

icted RSS mean at neighbouring locations and hence lower reso-

ution. Although, lower l has higher resolution, but it can have poor

nterpolatory and extrapolatory capability. It may provide low RSS

raining error but may have significant test error. 

Additionally, σ 2 
f 

denotes the wi-fi signal variance. This mea-

ures the variation of RSS prediction from the mean. Smaller the
2 
f 
, slower the variation of the function, and high similarity at

eighbouring location and vice-versa. Therefore, optimal hyper-

arameters are required for the given scenario. 

.2.3. Illustration of Insensitivity of Different Kernels 

Figure 2 depicts the impact of different closely related kernels

n the performance of average localization error deviation. Gaus-

ian, Exponential and Laplacian kernels are utilized for the same

nd compared it with standard fingerprinting based Horus local-

zation method. The localization error with the use of Exponential

nd Laplacian kernels are same because the only difference lies

ith the length scale parameter. Localization performance using

xponential kernel performs slightly better than Gaussian kernel.

otably, our proposed fingerprinting based GPR with these kernels

erforms better than Horus method. 

.2.4. Impact of Number of APs on Localization Error 

The localization error with confidence intervals is shown in

igure 4 for two scenarios. The fifth day is chosen for training the

PR, while day 1 and day 2 are utilized for test sites. The local-

zation performance in academic area is better than supermarket

s expected and reason mentioned above. The result using GPR

s relatively better in supermarket than academic area. Since, Ho-

us uses time averaged RSS for training and test database. There-

ore, time average RSS tends to deteriorate relatively higher than

redicted (or smoothed) RSS, in crowded place. It may be noted

hat similar localization results are found if we change the order

f training and test days. 

.2.5. Impact of Fingerprint Locations on Localization Error 

Figure 5 depicts the impact of varying fraction of total fin-

erprinting location on the average localization error. This much

raction of fingerprint locations are utilized in weighted sum of
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Fig. 4. Figure illustrating the average localization error (m) and confidence interval for two sites. 

Fig. 5. Figure illustrating the average localization error (m) and confidence interval with varying fraction of total fingerprint locations in weighted average. 
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Fig. 6. Figure illustrating the comparison of localization error for different methods in two sites. 

Fig. 7. Illustrative examples showing the effectiveness of the proposed algorithm with respect to Horus in two sites. 
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robabilities for location estimation. As the fraction of fingerprint-

ng locations increases, average localization error goes down. Con-

idering a large number of fingerprinting locations improves the

ocalization accuracy on an average sense. Average localization er-

or reduces approximately from 5 m and 12 m to 3 m in academic

rea and supermarket respectively. 

.2.6. Comparison of Average Localization Errors 

We illustrate the effectiveness of the proposed GPR method

n comparison with RADAR [12] , HORUS [14] , EZ [42] , and UIL

43] in Figure 6 . The average localization errors in site 1 for HO-

US, RADAR, EZ, UIL and GPR methods are 2.8 m, 4.81 m, 3.78 m,

.6 m, 2.3 m respectively. Similarly, the average localization errors

n site 2 for those methods are 4.41 m, 6.81 m, 5.32 m, 4.54 m,

.41 m respectively. The proposed method outperforms the exist-

ng methods in terms of localization error and its standard devia-

ion for both sites. 

.2.7. Trajectory Analysis 

In order to know the individual estimated location accuracy,

rajectory analysis is shown in Figure 7 for two scenarios. Blue

olor represents the ground truth, while red and green the es-

imated location with Horus and GPR method respectively. In

igure 7 (a), GPR performs marginally better than Horus because

f less people movements. The localization error for GPR is 2.3 m,

hereas 2.8 m for Horus. Horus tends to deteriorates in supermar-

et as shown in Figure 7 (b), as expected. The average localization

or all locations is 4.03 m and 2.41 m for Horus and GPR method
espectively is supermarket. Thus, it can be concluded that GPR

ased localization method is more effective in harsh environment. 

. Conclusion and Future Work 

In this paper, localization accuracy with respect to the standard

orus technique is achieved at the expense of O ( N 

3 ) computational

omplexity. This complexity arises from wi-fi signal prediction at

ach location using Gaussian process regression (GPR). To further

educe it, network segmentation having complexity O ( N 

′ 3 ), N 

′ ≤
 , can be employed. Future work includes developing a real-time

ositioning system that localize as we go, i.e, calibration-free local-

zation. 

We collect approximately ten wi-fi signal snap-shots at each

ocation to minimize the effect of small-scale fading. The perfor-

ance of this localization system will be affected if we collect a

ery few number of snap-shots. This is because wi-fi signal is not

ery reliable. In this case, at some locations, corresponding wi-fi

ignal may be treated as outliers. If the number of such outliers

s less than the 50% of the total wi-fi observations at all locations,

aussian process with Student-t likelihood can be utilized, in this

ontext to deal with outliers. Although, conditional posterior is in-

ractable for this non-Gaussian likelihood, and approximation is re-

uired with Markov chain Monte Carlo, Laplace approximation, or

xpectation propagation algorithm. 

The fingerprint location can slightly differ with untrained

abours, and it of course affects the localization performance.

herefore, we need to take fingerprint location uncertainty into
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account. It can be scattered inside a circle with certain radii, and

follow Gaussian or uniform distribution. 
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Appendix A 

A1. Cramér-Rao Lower Bound (CRLB) Analysis for the Kernel Function 

Parameters 

Let unknown hyper-parameters, θ = 

[
l σ f 

]T 
, where (.) T rep-

resents the transpose of a matrix. The variance of any unbiased es-

timator ˆ θ of θ is lower bounded by the inverse-fisher information,

I ( θ). 

v r ( ̂  θ j ) ≥ [ I −1 ( θ) ] j j (12)

where v r (. ) denotes the variance operator. The Fisher Information

Matrix (FIM) is expressed as 

I ( θ) = −

⎡ 

⎢ ⎢ ⎣ 

E 

[
∂ 2 lnp(. ) 

∂ l 2 

]
E 

[
∂ 2 lnp(. ) 

∂ l∂ σ f 

]

E 

[
∂ 2 lnp(. ) 

∂ l∂ σ f 

]
E 

[
∂ 2 lnp(. ) 

∂σ 2 
f 

]
⎤ 

⎥ ⎥ ⎦ 

(13)

The marginal likelihood in terms of latent function, f , can be

written as [36] 

p(y | X ) = 

∫ 
p(y | f , X ) ︸ ︷︷ ︸ 
likelihood 

p(f | X ) ︸ ︷︷ ︸ 
prior 

df (14)

The prior is generally assumed to be Gaussian in Gaussian process

i.e., 

f | X ∼ N (0 , ̃  K ) (15)

Therefore, 

log p(f | X ) = −1 

2 

f T ˜ K 

−1 f − 1 

2 

log | ̃  K | − N 

2 

log 2 π (16)

where N is the size of a observation vector. The likelihood can be

thought as a Gaussian, i.e., 

y | f ∼ N (f , σ 2 
n I ) (17)

where I denotes the identity matrix of appropriate dimensions.

Thus, log marginal likelihood in Equation 14 can be recast as 

log p(y | X ) = −1 

2 

y T ( ̃  K + σ 2 
n I ) 

−1 y − 1 

2 

log | ̃  K + σ 2 
n I | − N 

2 

log 2 π

(18)

In order to compute the FIM, we require double derivative of the

log likelihood function with respect to each unknown parameter. 

∂ log p(y | X ) 

∂θ j 

= 

1 

2 

y T K 

−1 ∂K 

∂θ j 

K 

−1 y − 1 

2 

tr 

(
K 

−1 ∂K 

∂θ j 

)
, 

∀ j = 1 , 2 (19)

where tr(.) represents the trace of a matrix, which is the sum of

diagonal elements. For notational brevity, [ ̃  K + σ 2 
n I ] is represented

by K . Notably, likelihood function does satisfy the regularity condi-

tion, which is desirable according to CRLB theorem. 

E y 

[ 
∂ log p(y | X ) 

∂θ j 

] 
= 0 (20)
he following identities may be noted which will be used in this

ork. 

• Derivative of a matrix inverse: 

∂K 

−1 

∂ θ
= −K 

−1 ∂K 

∂ θ
K 

−1 (21)

where ∂K 
∂ θ

is matrix of element wise derivative. 

• Derivative of log determinant of a positive definite symmetric

matrix: 

∂ log | K | 
∂ θ

= tr 

(
K 

−1 ∂K 

∂ θ

)
(22)

The double derivative of log likelihood function in

quation 19 with respect to parameter, θ j , can be succinctly

ritten as 

∂ 2 log p(y | X ) 

∂θ2 
j 

= −y T 
(

K 

−1 ∂K 

∂θ j 

)2 

K 

−1 y + 

1 

2 

y T K 

−1 ∂ 
2 K 

∂θ2 
j 

K 

−1 y + 

1 

2 

tr 

[ (
K 

−1 ∂K 

∂θ j 

)2 

− K 

−1 ∂ 
2 K 

∂θ2 
j 

] 
(23)

ssuming the statistics of y and then taking the expectation with

espect to y both sides, we get 

 E y 

[ 
∂ 2 log p(y | X ) 

∂θ2 
j 

] 
= −1 

2 

tr 

[ (
K 

−1 ∂K 

∂θ j 

)2 ] 
(24)

n the similar lines, the cross diagonal element of FIM using

quation 19 can be given as 

∂ 2 log p(y | X ) 

∂ θ j ∂ θk 

= −1 

2 

[ 
y T K 

−1 
(

∂K 

∂θk 

K 

−1 ∂K 

∂θ j 

+ 

∂K 

∂θ j 

K 

−1 ∂K 

∂θk 

)

K 

−1 y − y T K 

−1 ∂ 2 K 

∂ θ j ∂ θk 

K 

−1 y 

− tr 

(
K 

−1 ∂K 

∂θk 

K 

−1 ∂K 

∂θ j 

− K 

−1 ∂ 2 K 

∂ θ j ∂ θk 

)] 
(25)

 E y 

[ 
∂ 2 log p(y | X ) 

∂ θ j ∂ θk 

] 
= −1 

2 

tr 

[ 
K 

−1 ∂K 

∂θ j 

K 

−1 ∂K 

∂θk 

] 
(26)

n computation of Equation 24 and Equation 26 , we require the fol-

owing derivatives of k with respect to each hyper-parameter using

quation 4 . 

∂k 

∂σ f 

= 2 σ f exp 

(
− || x i − x j || 

2 l 2 

)
(27)

∂k 

∂ l 
= 

σ 2 
f 
|| x i − x j || 

l 3 
exp 

(
− || x i − x j || 

2 l 2 

)
(28)

ow, substitute Equation 24 and Equation 26 into Equation 13 to

et the FIM. To recapitulate, CRLB can be finally given as 

RLB ( θ) � 

√ 

[ I −1 ( θ) ] 1 , 1 + [ I −1 ( θ) ] 2 , 2 = 

√ 

tr( I −1 ( θ) ) (29)
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