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Abstract—A global multiscale method based on a dynamic
mode decomposition (DMD) algorithm to characterize the global
behavior of transient processes recorded using wide-area sensors
is proposed. The method interprets global dynamic behavior in
terms of both, spatial patterns or shapes and temporal patterns
associated with dynamic modes containing essentially single-fre-
quency components, from which the mode shapes, frequencies
and growth and decay rates of the modes can be extracted si-
multaneously. These modes are then used to detect the coherent
and dominant structures within the data. The technique is well
suited for fast wide-area monitoring and assessment of global
instability in the context of modern data fusion-based estimation
techniques. Results of the application of the proposed method to
large, high-dimensional data sets are encouraging.

Index Terms—Dynamic mode decomposition, inter-area oscilla-
tions, mode-shape.

I. INTRODUCTION

P OWER system dynamic monitoring for a near real-time
control has received increased importance in the past 5–10

years because of two primary reasons. Firstly the analysis of
the causes and mechanisms of several large blackouts identi-
fied the lack of fast and dynamic monitoring [1]. Secondly the
phasor measurement technology (PMUs) for deployment over
wide area power system is now available commercially. A suc-
cessful wide-area monitoring of low-frequency oscillation re-
quires adaptive global identification methods, which can ac-
curately identify and track the evolving dynamics of critical
system modes [2], [3].
The dynamic monitoring of systems should be robust, and re-

silient against uncharacteristic variation of signal information.
The tools must operate in real-time to quickly quantify the risks
to system shut down such as blackouts. In the past few large
power system collapse it has been observed that slowly growing
power oscillations of low frequency have triggered the final
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events. These are known as inter-area modes as they are man-
ifested across several large utilities. Naturally fasts monitoring
of these oscillations is way to commit control to avert such sit-
uations.
Identifying damping factors and the frequency of oscillations

has been very popular to quantify the stability margin in small
signal sense [4]. Both, model and data driven tools, are reported.
The recently concluded IEEE Task Force on modal identifica-
tion [3] summarizes recent work on this topic.
Inter area oscillations monitoring targeting temporal ampli-

tudes and phases of inter-area mode and energy of oscillations
are useful attributes to assess the proximity of the system to
instability [5]–[13]. Because of their global nature, modal fre-
quencies and modal speeds in particular, are directly associated
with global system behavior and may therefore be useful to de-
tect and visualize the stressed part of the system. In addition, the
level of energy associated with the oscillations as a measure of
stability margin is a useful indicator as it is robust against noise
in the measured signal.
Recently, several multi-scale dynamic feature extraction

methods have been used to objectively identify and extract
dominant patterns exhibited by power system transient pro-
cesses. Of these methods, proper orthogonal decomposition
(POD) and principal component analysis (PCA) have been
applied to identify dynamically coherent generators and mode
shapes using ensembles of model simulations and measured
data [5]–[7]. The simplicity of the model structure allows for
direct numerical analysis of large data sets collected using
strategically located sensors.
Over the last few years, data-driven methods for modal iden-

tification based on the use of the Koopman operator have been
developed [8]–[10]. These methods use Arnoldi-like techniques
and enable complex oscillatory processes to be represented by
several single-frequency nonlinear modes from which oscilla-
tions and interacting generators could be identified. The appli-
cation of this approach, however, is challenging due to both, the
high dimensionality of the parameter space and the computa-
tional complexity.
In this paper, a physically-motivated dynamic mode decom-

position (DMD) algorithm is introduced to monitor the spatial
and temporal dynamics of nonlinear transient phenomena. Dis-
tinct from previous power system identification methods, the
proposed framework allows the multi-scale spatial and temporal
dynamics in observed data to be identified directly from obser-
vational data [14]–[18].
Methods for interpreting the nonlinear mathematical struc-

ture of the spatio-temporal model in terms of temporal and struc-
tural components are discussed and a physical interpretation is
provided.
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Studies on both, transient stability and measured data suggest
that the method can accurately identify the dominant spatial and
temporal structures in a large data set.

II. SPATIO TEMPORAL ANALYSIS METHODS

In this section, an overview of two related spatio-temporal
analysis methods, Koopman mode analysis, and the proper or-
thogonal decomposition (POD) method is provided within the
context of modal estimations.

A. Proper Orthogonal Decomposition

Assume that
denotes an element of observation, where is the th grid or
measurement point, and is the time at which the observations
are made. To introduce the proposed method, define the data
matrix, , as

...
...

...

(1)

whose th column is the observation sequence .
Let now, be a set of functions ob-

tained from the data itself. The POD method allows the data to
be represented as a linear combination of functions from
of the form (a spatio-temporal decomposition) [6]:

(2)

where the index represents the th grid (measurement) point,
the index represents the th snapshot, represents the statis-
tical or proper orthogonal modes (POD modes), and and

represent the temporal amplitudes and spatial component
maps or patterns (modes), respectively.
Physically, each of these maps represents a standing oscilla-

tion, and the temporal coefficients, and , rep-
resent how the patterns oscillate through time, i.e., the temporal
coefficients give the relative importance of each mode at dif-
ferent moments in time.
Formally, the basis functions are obtained from the solution

of the eigenvalue problem

(3)

where is the spatial covariancematrix and
stands for transpose. The solution of (3) gives a complete set of
orthonormal functions with corresponding eigenvalues

. For large-scale applications , and
the method of snapshots is used to reduce the dimension of the
system [6], [7].
Using (2), the snapshot matrix, , can be represented in

terms of the POD basis as

(4)

where

...

in which
are row vectors containing the temporal coefficients in (2) eval-
uated at each of the snapshots or observations.
The Appendix discusses extensions to the above approach

based on singular value decomposition (SVD) analysis.

B. Koopman Modes

An alternative method to modal analysis of nonlinear com-
plex systems is based on the notion of the Koopman operator
[14], [15].
Following Mezic et al. [15], consider a discrete-time system

evolving on an -dimensional manifold

(5)

where is an integer index.
Let be any scalar-valued function (a mea-

surement of the state or observable). The Koopman operator, ,
is a a linear operator that maps into a new function:

(6)

The key idea behind Koopman analysis is to study the system
dynamics (5), from measured data using the eigenspectrum of
. Assume to this end, that and , denote the eigenfunctions

and eigenvalues (Koopman modes) of the Koopman operator,
respectively, given by

(7)

where for sufficiently long, the Koopman eigenfunctions
form an orthonormal expansion basis [15].
In practice, one is interested in functions

with . As-
suming that each of the components of lie within the span of
the eigenfunctions the time evolution of the functions the
time evolution of the functions can be expanded as

(8)

and

(9)

where use has been made of (7).
Physically, (9) indicates that the observable is de-

composed into vector coefficients, , called Koopman modes
whose temporal behavior is given by the associated eigenvalues
; the phase of the eigenvalues determines its frequency, while

its modulus determines the growth rate. The magnitude
is used as a measure of the relative participation of a

mode to the modal decomposition.
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Analytical approaches to compute Koopman modes based on
Arnoldi-like algorithms have been developed and tested on data
of the form (1). Following the same notation as Susuki and
Mezic [10], consider the finite-time data matrix:

(10)

where , and each data column, , has a similar
interpretation to that in (1).
The computation of the Koopman modes is straightforward

[14]:
1) Find constants such that

(11)

2) Determine the eigenvalues (Ritz values)
of the companion matrix

. . .
. . .

...

3) Define the Vandermode matrix

...
...

...
. . .

...

4) Compute Ritz vectors in (9) as the columns of
. The Ritz vectors

approximate the terms in (9).
In this procedure, the constants are determined solving the

least-squares problem

(12)

where , with , with
and , with

. The Koopman eigenfunctions are obtained from ma-
trix . Refer to [10] for specific details about this procedure.

III. DYNAMIC MODE DECOMPOSITION

A. Background

Dynamic mode decomposition (DMD) is a global multiscale
method that can approximate a few Koopman functions , [16]
using two sets of time ordered sequences of data snapshots.
More precisely, the method assumes that the data sequences or
snapshots, , in (1) are generated by a discrete-time linear dy-
namical system whose evolution is governed by the linear map-
ping [14]:

(13)

where is an unknown (time-independent) operator matrix of
dimension that captures the dynamics inherent in the data

matrix, and is some noise process. This is a local approxima-
tion to system dynamics with a linear system; the eigenvalues
and eigenvectors of determine the dynamic behavior of the
mapping.
Practical algorithms to estimate the linear operator and its

associated relevant eigenvalues and eigenvectors that do not re-
quire explicit knowledge of the mapping matrix are discussed
below.
In the noise-free case, use of (13) in (1) yields the Krylov

sequences:

(14a)

(14b)

(14c)

It can be proved that as more vectors
are appended, the rank of the Krylov sequences increases until
it reaches a maximal value [14]. For a sufficiently large number
of snapshots, it can be assumed that the th snapshot can be ex-
pressed as a linear combination of the previous measurements,
i.e.,

(15)

where the ’s are unknown expansion coefficients,
is a vector of residuals.
Equation (15) can be rewritten in a more useful form as

in which is a vector of unknown
coefficients.
Multiplying (14b) yields

(16)

It can be easy to shown that the data sequence can be
expressed as

(17)

where and use has been
made of (15).
Further, in matrix form, (16) in connection with (17) can be

written as

(18)

where

. . .
. . .

... (19)

is a companion (or Frobenius) matrix associated with the DMD
method.
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In light of this, the unknown matrix can be determined by
minimizing the residual

(20)

A solution to the optimization problem is given by
, where the notation denotes the Moore-Pen-

rose pseudo-inverse. Once matrix is determined, the DMD
modes and eigenvalues are obtained by solving the eigenvalue
problem . The quality of the es-
timation can then be computed from (15) and (18) as

With being the number of sensors, DMD can be used to
obtain low-dimensional spatial decomposition of a high-dimen-
sional transient processes. Let be the true rank of the data ma-
trix . In analogy with POD analysis in Section II (refer to
the Appendix), the singular value decomposition (SVD) of ma-
trix is given by

(21)

where and are as defined in the Appendix, and

...
. . .

...

A truncated basis can be found by substituting (21) into (18).
This yields a reduced model that approximates the original
model (19) constructed by projecting onto the vector field:

(22)

Multiplying (22) by from the left and by (from
the right), a representation of in the basis spanned by POD

modes of is obtained as [17], [18]

(23)

Equation (23) constitutes the reduced companion matrix.
Compared to (19), matrix is of dimension

and holds information of the modal spatial and
temporal structures as discussed below.

B. Modal Decomposition

An interesting interpretation of system dynamic behavior can
be obtained from the eigen-decomposition of the low-dimen-
sional system matrix, .
Suppose that matrix is diagonalizable with eigenvalue de-

composition

(24)

where is a diagonal
matrix consisting of empirical Ritz eigenvalues , and

is the matrix of right eigenvectors,
respectively.
As discussed above, (24) determines a low-dimensional rep-

resentation of the mapping on the subspace spanned by the
POD modes of . Substituting (24) into (23) yields

(25)

From (25), it is straightforward to show that can be ap-
proximated using a linear combination of the DMDmodes.Mul-
tiplying (25) from the left by and from the right by ,
yields

(26)

Equation (26) constitutes a reduced-order modal approxima-
tion of dimension . Based on this idea, two distinct no-
tions of this decomposition are established.
A first useful interpretation is obtained by inserting (24) in

(26):

where matrix is asymmetric with rank , of upper
triangular structure and contains a subset of the eigenvalues of
.
The following properties can easily be verified:
1) The vectors in matrix are mutually orthogonal.
2) The row vector of are orthogonal, i.e.,

.
3) In analogy with (2), the temporal vectors are ranked
in descending order of energy, i.e., ,
where .

4) When matrix is an th-order identity matrix, the DMD
method reduces to the conventional POD-SVD method in
the Appendix.

5) The coefficients of matrix can be interpreted as weights
that calibrate the importance of the temporal structures in
determining the system response.

This information is used in this research to determine various
measures mode-state participations.
A second interpretation is now obtained in terms of the SVD

of the data matrix. Define

...
. . .

...

...
...

From the previous discussion, it follows that the estimated
data sequence, , can be expressed as

(28)
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Fig. 1. Machine speed deviations and their associated spectra. (a) Speed. (b) FFT of the signals.

The data matrix can be now expanded in a linear combi-
nation of modal components as

(29)

where the ’s are the temporal amplitudes, the ’s are the
dynamic or spatial modes (DMD modes), and the ’s are the
associated frequencies, with

(30)

It then follows that the importance of mode at time is
given by , while the phase (mode shape) is given by its
phase, .
Several remarks are in order:
Remark 1: Compared to POD, the modal expansion in (29)

decomposes the measured data into a combination of spatio-
temporal functions weighted by the corresponding Ritz eigen-
values. Further, the dynamic modes contain additional informa-
tion concerning the dynamic behavior of the process which is
not available from the stationary patterns of the covariance ma-
trix [6], [7].
Compared to the Koopman modal expansions, the DMD

modal expansions are of dimension .
Remark 2: As seen above, the dynamical modes, ,

corresponding to , provide the spatial coherent structure (spa-
tial mode shape) of the corresponding oscillatory mode.

IV. STUDIES ON A SMALL SYSTEM

A. Test Case and Transient Analysis

As a first illustrative example, the proposed algorithm is ap-
plied to the NETS-NYPS test system given in [5]. Datasets of
speed deviations and voltage measurements from step-by-step
simulations (SBSS) of the nonlinear system model were used to
assess the ability of DMD to characterize system behavior.
To allow comparisons with previous studies [12], a ten per-

cent increment of mechanical input torque for 80 ms to each

generator was applied. Measurements were recorded over 19
seconds at a rate of 100 samples per second for a total number
of 1900 observations.
For the present example, generator speed and bus voltage

measurements are used to construct the snapshot matrix (1):

(31)

Fig. 1 shows the speed deviations of the system generators along
with the FFT of the signals. Generators # 1–9, #15, and #16 are
seen to have the largest contribution to a dominant mode around
0.39 Hz involving primarily the interaction between machines
in areas , and areas , and [12].

B. Modal Characterization

The NETS-NYPS test system exhibits two electromechanical
modes around 0.34 Hz and 0.54 Hz [12] associated with domi-
nant low frequency inter-area modes of oscillation. Studies were
conducted to characterize the modal properties of these modes
using the DMD method.
Application of the proposed algorithm in Section II-B results

in 32 dynamic modes. Fig. 2 shows the normalized or relative
energy of each DMDmode, , for the
above contingency scenario.
As shown, 6 singular values are seen to capture over 76%

of the energy contained in the ensemble of snapshots. In what
follows, the relative contribution of these modes to system os-
cillatory behavior is discussed.
To evaluate the participation of each dynamic mode on the

time evolution of measured data, we observe from (28) that

...
...

(32)

As shown, each dynamic mode is weighted by the product
of each Ritz mode value and its corresponding energy extracted
from each time-varying mode .
Using this, we define the state-mode relationship:
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Fig. 2. Relative contribution sum of singular values.

Fig. 3. Participation factor.

...
. . .

...
(33)

where the term provide a measure of the par-
ticipation of the th mode on the system states. Conversely, the
columns of (33) provide information about the spatial distribu-
tion of modal behavior.
From (33), a spatial (temporal) contribution factor measuring

the contribution of each sensor to each state can be defined.
The strength of spatial contributions from each sensor to the
observed data can be characterized and visualized.
Fig. 3 depicts a 2-D representation of the participation mea-

sures in (33) as a function of the sensors’ locations.
Examination of Fig. 3 shows that modes # 21 and # 23 are

strongly observables at sensors # 18–29, while mode # 31 is
observable at most sensors in the system.
Insight into the nature of system behavior can be found by ex-

amining the empirical Ritz values, and their associated mag-
nitudes [8]. Fig. 4(a) shows a plot of the empirical Ritz values,
and their associated magnitudes [8]. Fig. 4(a) shows a plot of

the empirical Ritz values and their associated energy obtained
from the norm of the time-dependent coefficients, , in
(29).
For comparison, the Ritz values obtained from Koopman

analysis are also included. Fig. 4(b) and (c) show the energy
associated with each time-dependent amplitude coefficient.

Fig. 4. Empirical Ritz values and their associated norms. (a) Empirical Ritz
values estimated by Koopman and DMD, (b) and (c) Norm of dynamic modes
and energy amplitudes associated with Koopman and DMD modes.

Fig. 5. Phase plane trajectories for the three dominant dynamic modes.

As shown, DMD extracts the most energetic modes (modes
associated with intersystem oscillations) whereas Koopman
analysis identifies a more general system behavior.
As seen in Fig. 4(a) all the empirical Ritz values are on the

unit circle , indicating that the states of the dy-
namic system evolve on an attractor. Analysis of the relative
energies in Fig. 4(b) and (c), on the other hand, shows that
the modes with the largest contributions to the total energy are
the 0.35-Hz and 0.54-Hz modes which are associated with the
slowest inter-area modes. The third mode at about 0.04-Hz rep-
resents the stationary mode of the system.

C. Time-Dependent Amplitude Coefficients

To gain insight into the oscillatory phenomenon, the trajecto-
ries associated to the dominant time-varying coefficients iden-
tified in Fig. 4(c) were selected for analysis.
Fig. 5 depicts a 2-D visualization of the temporal evolution

of the dynamic modes (DMD modes). Examination of these re-
sults shows that all selected dynamic modes are evolving in time
around an equilibrium condition converging to a stable attractor
as expected from the analysis of Ritz values.
The DMD modes associated with the 0.35-Hz and 0.54-Hz

modes exhibit the largest amplitudes in agreement with FFT
analyses in Fig. 1. In the next section only these dominant modes
are analyzed.

D. Identification of Coherent Generator Groups

In order to assess the potential of DMD method, results were
compared with the POD method, Koopman analysis and small-
signal stability analysis (SSSA) results. Two specific aspects are
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Fig. 6. Comparison of coherency identification method: (a) POD, (b)
Koopman, (c) DMD. The areas are defined as and areas

and .

of interest to this research: coherency identification and spatial
mode shape estimation.
1) Coherency Identification: Clusters of coherent generators

can be identified from the spatial signatures of PODs, Koopman
and DMs, contained in the modal vectors, and , re-
spectively. Fig. 6 shows scores plots for the two dominant
modes obtained using DMD and the POD and Koopman tech-
nique described in [7] and [10], respectively. Both techniques
identify five groups of coherent generators which correspond
to well-defined geographical regions. POD analysis results in
less defined groups because of the inability of the method to
separate modal components as discussed later in the paper.
Further, because phase information is added, the DMD and
Koopman analysis naturally allows the analysis of intercluster
groupings involving local dynamics.
The coherent groups identified by DMD and Koopman

method are in good agreement with results obtained in [12].
2) Mode-Shape Characterization: A key feature of DMD

is its ability to incorporate magnitude and phase information.
In this section, studies are conducted to evaluate the ability of
DMD to extract spatial patterns. Discussion is limited to the two
slowest electromechanical modes at about 0.35 Hz and 0.54 Hz.
Based on the complex dynamical modes in (29) associated

with each dominant mode, the ability of the dynamic decompo-
sition to estimate the mode shapes was computed as in the [8].
The speed spatial mode shape estimates for the 0.35-Hz and

0.54-Hz modes obtained using DMD and SSSA are presented in
Fig. 7. At a glance, DMD and Koopman results in Fig. 7 are in
qualitative good agreement with SSSA results for the 0.35-Hz
mode, although some discrepancies are noted with the results
for the 0.54-Hz mode.
Table I compares the modal estimates from DMD with con-

ventional eigenvalue results. Modal damping and frequencies
from DMD analysis are found to be in good agreement with
SSSA estimates [4].

V. APPLICATION TO A LARGE INTERCONNECTED SYSTEM

A7-area, 377-generator transient stability model of the Mex-
ican Interconnected System (MIS) is used to further illustrate
the ability of the method to characterize modal behavior. The
system model embodies primarily 377 machines represented by
detailed two-axis models, 3759 buses, 10 large SVCs, and 2936
branches [7].
Fig. 8 shows a simplified geographical representation of this

system illustrating the major transmission and generation facil-
ities and the contingencies selected for study.

Fig. 7. Mode shape of modes 1 and 2 in Table I showingmajor coherent groups:
(a) SSSA, (b) DMD, (c) Koopman analysis.

TABLE I
COMPARISON OF MODAL ESTIMATES

Fig. 8. Schematic of the MIS showing main regional systems and transmission
facilities selected for study.

A. System Disturbance Scenarios

The dynamic performance of the 7-area MIS model is gov-
erned by four inter-area modes around 0.32 Hz, 0.52 Hz, 0.62
Hz, and 0.78 Hz. Time-domain simulations of selected critical
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Fig. 9. System dynamic response for scenarios DS01 and DS02.

Fig. 10. FFT of the speed deviation of selected generators in Fig. 9. (a) Scenario
DS01 and (b) Scenario DS02.

TABLE II
SLOWEST ELECTROMECHANICAL MODES IN THE SYSTEM

disturbances were conducted to test the ability of DMD to char-
acterize the time evolution of these modes.
Following previous studies, two major disturbance events

were selected for analysis [7]:
DS01: Double line-outage case. This operating event as-
sumes the simultaneous outage of the 400-kV line from
MMT to JUI and the 400-kV line from TMD to PBD on
the 400-kV Southeastern-Central interface.
DS02: Generator outage. This scenario assumes the
outage, without fault, of Laguna Verde (LGV) power
station unit # 1 (650 MW) in the Southeastern system.

These contingencies excite the three slowest swing modes
in the system. The transient stability solutions for these cases
shown in Fig. 9 were obtained using a time step of 0.0128 s: A
30 second simulation is considered.
In each case, 42 major machines were selected for

display and analysis, but the technique can be applied to grids
of sensors involving hundreds of simultaneous measurements.
Fig. 10 provides the corresponding spectra while Table II pro-

vides a summary description of the four slowest modes in the
system identified in the oscillations.
Contingency operating condition DS01 results in unstable os-

cillations involving the 0.32-Hz mode (interarea mode 1) in

which machines in the southeastern (CRL, PEO) and Peninsular
systems (NCM,MDA) lose stability as shown in Fig. 9(a). Oper-
ating condition DS02, Fig. 9(b), on the other hand, 3 stimulates
inter-area modes 1, 2, and 4 in Table II and results in poorly
damped oscillations involving most machines in the system.

B. Dynamic Mode Decomposition Analysis

Dynamic mode decomposition was performed on transient
stability data in Fig. 9 giving a set of modes which fully char-
acterize system behavior. As discussed above, data was taken
at 42 locations; at each location the data was sampled at a rate
of 78 samples per second giving a total of 2573 samples. For
this analysis, the data matrix is derived from the machine speed
deviations arranged as column vectors:

(34)

The subsequent analysis examines the ability of DMD to as-
sess modal behavior. Comparisons of the performance of the
method with Prony analysis, Koopman analysis and POD anal-
ysis.
1) Scenario DS01: Fig. 11 shows the speed estimation of

the mode shapes associated with the 0.32-Hz mode in Table II
extracted using POD, DMD and Koopman analysis. For com-
pleteness the time evolution of the time-varying coefficient and
its associated spectra are also shown.
Mode shape estimates are in qualitative agreement although

some differences are noted. Compared to POD analysis,
DMD and Koopman characterization in these plots provides a
smoother, more symmetric representation of the 0.32-Hz mode.
This, in turn, results in a better characterization and assessment
of modal damping and frequency characteristics.
To further verify the suitability of mode decomposition to

characterize global behavior, the single-machine (SIME) tran-
sient stability method [19] was used to identify the system crit-
ical machines relative to the unstable scenario. The method re-
places a multimachine system by a one-machine infinite bus
(OMIB) system. Fig. 12 displays the OMIB swing curves. To
facilitate the analysis, five regional OMIBs are defined corre-
sponding to regional systems II-VII in Fig. 8. Visual inspection
of Fig. 12 shows a good agreement with the mode shape results
in Fig. 11.
2) Scenario DS02: Scenario DS02 is used to further investi-

gate the applicability of dynamic mode decomposition to char-
acterize multimodal behavior. Based on the preceding results,
the analysis focuses on the interarea modes 1, 2 and 4 at 0.32
Hz, 0.52 Hz, and 0.78 Hz, respectively. The time-dependent am-
plitudes for these modes are shown in Fig. 13 along with their
associated spectra. Similar results are obtained using Koopman
analysis and are not included here.
These results illustrate several additional advantages (and

limitations) of DMD. First, as shown in these plots, DMD
effectively decouples transient behavior into essentially
single-frequency oscillations, from which modal characteris-
tics can be accurately estimated. In addition, trends and other
artifacts are eliminated which has the potential to substantially
increase the accuracy and precision of modal estimates. In
contrast with this, POD modes are seen to exhibit mode mixing
and less regular behavior which makes physical interpretation
difficult. The ability of DMD to identify the coherent genera-
tors is further illustrated in Fig. 14 which shows the group of
coherent generators.
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Fig. 11. Mode shapes for the 0.32 Hz mode and its associated temporal co-
efficient and spectral decomposition computed using (a) POD, (b), DMD, (c)
Koopman analysis. Scenario DS01. (a) POD analysis. (b) DMD analysis. (c)
Koopman analysis.

Fig. 12. Time trajectories of the OMIB of the relevant disturbed machine
groupings.

Tables III and IV compare DMD estimates with Prony and
Koopman mode analyses for scenarios DS01 and DS02 above.
Koopman and DMD results are found to be in good agreement
while some discrepancies with Prony analysis are noted.

C. Computational Effort

Detailed simulations were conducted to assess the computa-
tional needs of DMD analysis for the study of realistic data sets.
Table V shows the CPU time needed to characterize system be-
havior for scenarios DS01 and DS02 above.

Fig. 13. Time evolution of temporal coefficient and spectral decomposition
computed using POD and DMD. Scenario DS02. (a) POD modes. (b) DMD
modes.

Fig. 14. Comparison of coherency identification methods. (a) POD, (b) DMD.
Scenario DS02.

TABLE III
COMPARISON OF MODAL ESTIMATES FOR SCENARIO

DS01. TIME WINDOW 0–30 S

TABLE IV
COMPARISON OF MODAL ESTIMATES FOR SCENARIO

DS02. TIME WINDOW 0–30 S
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TABLE V
CPU TIME SIMULATED DATA

Fig. 15. Time traces of recorded frequency measurements and their associated
spectra.

Fig. 16. Spatio-temporal behavior of dominant modes: (a) 0.98 Hz DMDmode
1, (b) DMDmode 3 (collective system behavior), and (c) Mode shape for DMD
mode 1.

Results are compared with the Koopman algorithm re-
ported in [10] and a multisignal Prony method [20], based on
the Kumaresan-Tuft approach [21] and the OMIB model in
Fig. 12.
As shown in Table V, DMD produces accurate enough re-

sults with shorter CPU times for both contingency scenarios.
The same trend is observed for other operating scenarios.

VI. APPLICATION ON WAMS DATA

Phasor measurement data collected from a real event in the
Mexican power system [22] were used to further test the per-
formance of DMD under noisy and nonstationary conditions.
Measurements were obtained over a period of 250 seconds at
a rate of 20 samples per second. Data were obtained at 18
system locations encompassing 3 major geographical regions
[22].
Fig. 15(a) shows selected bus frequency measurements

recorded using the CFE wide-area monitoring system (WAMS).
Analysis of system behavior in Fig. 16(b) indicates a mode near
0.98 Hz that is strongly observable at PMUs 3, 4, 6, 12, 13, and
18. A second mode near 0.47 Hz is also observable associated
with measurements at PMUs 11 and 15.

TABLE VI
MODAL ESTIMATES FOR VARIOUS TECHNIQUES

TABLE VII
CPU TIME MEASURED DATA

Application of dynamic mode decomposition analysis results
in 18 modes. In the numerical analysis below, the data used is
raw data; no preprocessing (detrending, denoising) was applied.
Fig. 16 shows the two dominant DMD modes extracted using
the procedure in Section II along with the Ritz values. Insight
into the nature of these modes can be gleaned in Fig. 16(a) and
(b) that show the time evolution of the temporal coefficients

.
DMD modes 1 and 2 are seen to capture the dominant oscil-

lation at about 0.98 Hz, while mode 3 is a mode associated with
the collective motion of all measurements and is equivalent to
time-average.
Mode shape analysis results formode 1 in Fig. 16(c) are found

to be in good agreement with the FFT results in Fig. 15(b) and
the results in [22] obtained using various techniques.
Table VI compares the modes extracted using DMD with

those obtained using Prony analysis and Koopman for two time
intervals: 0–160 s (combined ambient and ringdown data) and
120–160 s (ringdown response).
No physically-meaningful results are obtained for the 0–160

s interval using Prony analysis. Table VII shows the CPU
times. The accuracy of the compact DMD is demonstrated by
its ability produce approximations with residuals smaller than
9.9932e-03.

VII. DISCUSSION AND CONCLUSIONS

This paper has introduced an efficient dynamic mode de-
composition technique for modal analysis of large data sets.
The method combines the abilities of modal identification tech-
niques such as Prony to extract modal parameters with those
of multivariate statistical techniques to isolate and quantify the
dominant physical mechanisms.
Experience with simulated data shows that DMD analysis

can be efficiently used to analyze large datasets from multiple
sources. Several aspects of the theory deserve further investiga-
tion including the physical interpretation of dynamic structures,
mode-state relationships and the analysis of structural proper-
ties of the model. The effect of noise contamination, trends and
other artifacts of the dataset and the application tomeasured data
is to be investigated in future research.
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APPENDIX
SVD- BASED PROPER ORTHOGONAL DECOMPOSITION

Alternative approaches to POD analysis based on singular
value decomposition of the response matrix (1) have been de-
veloped [23]. Singular value decomposition of the data matrix

in (1) yields

(35)

where is an orthonormal matrix containing the left
singular vectors, is an matrix containing the singular
values, , and is an matrix containing the right
singular vectors.
It can be readily shown, that the proper orthogonal vectors

(POMs) defined as the eigenvectors of the covariance matrix
in (3) are equal to the left singular values of ; the proper or-
thogonal vectors (POVs), defined as the eigenvalues of the
covariance matrix, are the squares of the singular values divided
by . The columns of are the eigenmodes (pseudo mode
shapes). Further, the columns of matrix are the time mod-
ulation, of the modes [23].
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