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A network representation is useful for describing the structure of a large variety of complex systems.

However, most real and engineered systems have multiple subsystems and layers of connectivity, and the

data produced by such systems are very rich. Achieving a deep understanding of such systems necessitates

generalizing ‘‘traditional’’ network theory, and the newfound deluge of data now makes it possible to test

increasingly general frameworks for the study of networks. In particular, although adjacency matrices are

useful to describe traditional single-layer networks, such a representation is insufficient for the analysis

and description of multiplex and time-dependent networks. One must therefore develop a more general

mathematical framework to cope with the challenges posed by multilayer complex systems. In this paper,

we introduce a tensorial framework to study multilayer networks, and we discuss the generalization of

several important network descriptors and dynamical processes—including degree centrality, clustering

coefficients, eigenvector centrality, modularity, von Neumann entropy, and diffusion—for this framework.

We examine the impact of different choices in constructing these generalizations, and we illustrate how to

obtain known results for the special cases of single-layer and multiplex networks. Our tensorial approach

will be helpful for tackling pressing problems in multilayer complex systems, such as inferring who is

influencing whom (and by which media) in multichannel social networks and developing routing

techniques for multimodal transportation systems.
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I. INTRODUCTION

The quantitative study of networks is fundamental for the
study of complex systems throughout the biological, social,
information, engineering, and physical sciences [1–3]. The
broad applicability of networks and their success in providing
insights into the structure and function of both natural and
designed systems have thus generated considerable excite-
ment across myriad scientific disciplines. For example, net-
works have been used to represent interactions between
proteins, friendships between people, hyperlinks between
Web pages, and much more. Importantly, several features
arise in a diverse variety of networks. For example, many
networks constructed from empirical data exhibit heavy-
tailed degree distributions, the small-world property, and/or
modular structures; such structural features can have impor-
tant implications for information diffusion, robustness against
component failure, and many other considerations [1–3].

Traditional studies of networks generally assume that

nodes are connected to each other by a single type of static

edge that encapsulates all connections between them. This

assumption is almost always a gross oversimplification,

and it can lead to misleading results and even the sheer

inability to address certain problems. For example, ignor-

ing time dependence throws away the ordering of pairwise

human contacts in transmission of diseases [4], and ignor-

ing the presence of multiple types of edges (which is

known as ‘‘multiplexity’’ [5]) makes it hard to take into

account the simultaneous presence and relevance of mul-

tiple modes of transportation or communication [6].
Multiplex networks explicitly incorporate multiple

channels of connectivity in a system, and they provide a
natural description for systems in which entities have a
different set of neighbors in each layer (which can repre-
sent, e.g., a task, an activity, or a category). A fundamental
aspect of describing multiplex networks is defining and
quantifying the interconnectivity between different catego-
ries of connections. Examining such interconnectivity is
necessary for examining switching between layers in a
multilayer system, and the associated interlayer connec-
tions in a network are responsible for the emergence of new
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phenomena in multiplex networks. Interlayer connections
can generate new structural and dynamical correlations
between components of a system, so it is important to
develop a framework that takes them into account. Note
that multiplex networks are not simply a special case of
interdependent networks [7]: In multiplex systems, many
or even all of the nodes have a counterpart in each layer,
so one can associate a vector of states with each node.
For example, a person might currently be logged into
Facebook (and hence able to receive information there)
but not logged into some other social-networking site. The
presence of nodes in multiple layers of a system also
entails the possibility of self-interactions. This feature
has no counterpart in interdependent networks, which
were conceived as interconnected communities within a
single, larger network [8,9].

The scientific community has been developing tools for
temporal networks for several years [4,10], although much
more work remains to be done, and now an increasingly
large number of scholars with diverse expertise have turned
their attention to studying multiplex networks (and related
constructs, such as the aforementioned interdependent net-
works and so-called ‘‘networks of networks’’) [7,8,11–33].
Moreover, despite this wealth of recent attention, we note
that multiplexity was already highlighted decades ago in
fields such as engineering [34,35] and sociology [5,36,37].

To study multiplex and/or temporal networks systemati-
cally, it is necessary to develop a precise mathematical
representation for them as well as appropriate tools to go
with such a representation. In this paper, we develop a
mathematical framework for multilayer networks using
tensor algebra. Our framework can be used to study all
types of multilayer networks (including multiplex net-
works, temporal networks, cognitive social structures
[38], multivariate networks [39], interdependent networks,
etc.). To simplify exposition, we will predominantly use
the language of multiplex networks in this paper, and we
will thus pay particular attention to this case.

There are numerous network diagnostics for which it is
desirable to develop multilayer generalizations. In particu-
lar, we consider degree centrality, eigenvector centrality,
clustering coefficients, modularity, von Neumann entropy,
and random walks. Some of these notions have been dis-
cussed previously in the context of multiplex networks
[13,21,22,24,27,28]. In this paper, we define these notions
for adjacency-tensor representations of multilayer net-
works. Our generalizations of these quantities are natural,
and they make it possible to compare these multilayer
quantities with their single-layer counterparts in a system-
atic manner. Such generalizations are particularly impor-
tant for the examination of new phenomena, such as
multiplexity-induced correlations [19] and new dynamical
feedbacks [26], which arise when generalizing the usual
single-layer networks. In Fig. 1, we show a schematic of
multilayer networks. In the left panel, we highlight the

different interactions (edges) between entities (nodes)
in different layers; in the right panel, we highlight the
connections between different layers.
The remainder of this paper is organized as follows. In

Sec. II, we represent single-layer (i.e., ‘‘monoplex’’) net-
works using a tensorial framework. We extend this frame-
work to multilayer networks in Sec. III, and we discuss
several descriptors and diagnostics for both single-layer
and multilayer networks in Sec. IV. We conclude in Sec. V.

II. SINGLE-LAYER (MONOPLEX) NETWORKS

Given a set of N objects ni (where i ¼ 1; 2; . . . ; N and
N 2 N), we associate with each object a state that is repre-
sented by a canonical vector in the vector space RN . More
specifically, let ei � ð0; . . . ; 0; 1; 0; . . . ; 0Þy, where y is the
transposition operator, be the column vector that corre-
sponds to the object ni (which we call a node). The ith
component of ei is 1, and all of its other components are 0.
One can relate the objects ni with each other, and our

goal is to find a simple way to indicate the presence and the
intensity of such relationships. The most natural choice of
vector space for describing the relationship is created using
the tensor product (i.e., the Kronecker product) RN �
RN ¼ RN�N [40]. Thus, second-order (i.e., rank-2) canoni-

cal tensors are defined by Eij ¼ ei � eyj (where i; j ¼
1; 2; . . . ; N). Consequently, if wij indicates the intensity

of the relationship from object ni to object nj, we can write

the relationship tensor as

W¼ XN
i;j¼1

wijEij¼
XN
i;j¼1

wijei�eyj ; W2RN�RN: (1)

Importantly, the relationships that we have just described
can be directed. That is, the intensity of the relationship

FIG. 1. Schematic of a multilayer network. When studying
ordinary networks, one represents the interaction of entities
(i.e., nodes) using an adjacency matrix, which encodes the
intensity of each pairwise interrelationship. However, as shown
in the left panel, entities can interact in different ways (e.g.,
depending on the environment in which they are embedded). In
this panel, each layer of a multilayer network corresponds to a
different type of interaction (e.g., social relationships, business
collaborations, etc.) and is represented by a different adjacency
matrix. As shown in the right panel, the layers can also be
interconnected. One thereby obtains a new type of relationship,
which complicates the description of networked systems.
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from object ni to object nj need not be the same as the

intensity of the relationship from object nj to object ni.

In the context of networks, W corresponds to an N � N
weight matrix that represents the standard graph of a
system that consists of N nodes ni. This matrix is thus an
example of an adjacency tensor, which is the language that
we will use in the rest of this paper. To distinguish such
simple networks from the more complicated situations
(e.g., multiplex networks) that we discuss in this paper,
we will use the term monoplex networks to describe such
standard networks, which are time independent and pos-
sess only a single type of edge that connects their nodes.

Tensors provide a convenient mathematical representa-
tion for generalizing ordinary static networks, as they
provide a natural way to encapsulate complicated sets of
relationships that can also change in time [13,41]. Matrices
are rank-2 tensors, so they are inherently limited in the
complexity of the relationships that they can capture. One
can represent increasingly complicated types of relation-
ships between nodes by considering tensors of higher
order. An adjacency tensor can be written using a more
compact notation that will be useful for the generalization
to multilayer networks that we will discuss later. We will
use the covariant notation introduced by Ricci and Levi-
Civita in Ref. [42]. In this notation, a row vector a 2 RN is
given by a covariant vector a� (where � ¼ 1; 2; . . . ; N),
and the corresponding contravariant vector a� (i.e., its dual
vector) is a column vector in Euclidean space.

To avoid confusion, we will use latin letters i; j; . . . to
indicate, for example, the ith vector, the ðijÞth tensor, etc.,
and we will use greek letters �;�; . . . to indicate the
components of a vector or a tensor. With this terminology,
e�ðiÞ is the �th component of the ith contravariant canoni-
cal vector ei in RN , and e�ðjÞ is the �th component of the
jth covariant canonical vector in RN .

With these conventions, the adjacency tensor W can
be represented as a linear combination of tensors in the
canonical basis:

W�
� ¼ XN

i;j¼1

wije
�ðiÞe�ðjÞ ¼

XN
i;j¼1

wijE
�
�ðijÞ; (2)

where E�
�ðijÞ 2 RN�N indicates the tensor in the canonical

basis that corresponds to the tensor product of the canoni-
cal vectors assigned to nodes ni and nj (i.e., it is Eij).

The adjacency tensor W�
� is of mixed type: it is

1-covariant and 1-contravariant. This choice provides an
elegant formulation for the subsequent definitions.

III. MULTILAYER NETWORKS

In the previous section, we described a procedure to
build an adjacency tensor for a monoplex (i.e., single-
layer) network. In general, however, there might be several
types of relationships between pairs of nodes n1;
n2; . . . ; nN , and an adjacency tensor can be used to

represent this situation. In other words, one can think of
a more general system represented as a multilayer object in
which each type of relationship is encompassed in a single

layer ~k (where ~k ¼ 1; 2; . . . ; L) of a system.
We use the term intralayer adjacency tensor for the

second-order tensor W�
�ð~kÞ that indicates the relationships

between nodes within the same layer ~k. The tilde symbol
allows us to distinguish indices that correspond to nodes
from those that correspond to layers.
We take into account the possibility that a node ni from

layer ~h can be connected to any other node nj in any other

layer ~k. To encode information about relationships that
incorporate multiple layers, we introduce the second-order

interlayer adjacency tensor C�
�ð~h ~kÞ. Note that C�

�ð~k ~kÞ ¼
W�

�ð~kÞ, so the interlayer adjacency tensor that corresponds

to the case in which a pair of layers represents the same

layer ~k is equivalent to the intralayer adjacency tensor of
such a layer.
Following an approach similar to that in Sec. II, we

introduce the vectors e~�ð~kÞ (where ~� ¼ 1; 2; . . . ; L and
~k ¼ 1; 2; . . . ; L) of the canonical basis in the space RL,
where the greek index indicates the components of the
vector and the latin index indicates the kth canonical
vector. The tilde symbol on the greek indices allows us
to distinguish these indices from the greek indices that
correspond to nodes. It is straightforward to construct the

second-order tensors E~�
~�
ð~h ~kÞ ¼ e~�ð~hÞe~�ð~kÞ that represent

the canonical basis of the space RL�L. (We use analogous
notation for canonical bases throughout this paper.)
We can write the multilayer adjacency tensor discussed

early in this section using a tensor product between the

adjacency tensors C�
�ð~h ~kÞ and the canonical tensors

E~�
~�
ð~h ~kÞ. We obtain

M�~�

� ~�
¼ XL

~h;~k¼1

C�
�ð~h ~kÞE~�

~�
ð~h ~kÞ

¼ XL
~h;~k¼1

2
4 XN

i;j¼1

wijð~h ~kÞE�
�ðijÞ

3
5E~�

~�
ð~h ~kÞ

¼ XL
~h;~k¼1

XN
i;j¼1

wijð~h ~kÞE�~�

� ~�
ðij~h ~kÞ; (3)

where wijð~h ~kÞ are real numbers that indicate the intensity

of the relationship (which may not be symmetric) between

nodes ni in layer ~h and node nj in layer ~k, and E
�~�

� ~�
ðij~h ~kÞ �

e�ðiÞe�ðjÞe~�ð~hÞe~�ð~kÞ indicates the fourth-order (i.e., rank-
4) tensors of the canonical basis in the space RN�N�L�L.

The multilayer adjacency tensor M�~�

� ~�
is a very general

object that can be used to represent a wealth of complicated
relationships among nodes. In this paper, we focus on
multiplex networks. A multiplex network is a special
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type of multilayer network in which the only possible types
of interlayer connections are ones in which a given node is
connected to its counterpart nodes in the other layers. In
many studies of multiplex networks, it is assumed (at least
implicitly) that interlayer connections exist between coun-
terpart nodes in all pairs of layers. However, (i) this as-
sumption need not hold, and (ii) it departs from traditional
notions of multiplexity [5], which focus on the existence of
multiple types of connections and do not preclude entities
from possessing only a subset of the available categories of
connections. We thus advocate a somewhat more general
(and more traditional) definition of multiplex networks.

When describing a multiplex network, the associated
interlayer adjacency tensor is diagonal. Importantly, con-
nections between a node and its counterparts can have
different weights for different pairs of layers, and inter-
layer connections can also be different for different en-
tities in a network [43]. For instance, such considerations
are important for transportation networks, where one can
relate the weight of interlayer connections to the cost
of switching between a pair of transportation modes
(i.e., layers). For example, at a given station (i.e., node)
in a transportation network, it takes time to walk from a
train platform to a bus, and it is crucial for transporta-
tion companies to measure how long it takes to change
transportation modes [44]. See Fig. 2 for schematics of
multiplex networks.

As we discussed above, entities in many systems have
connections in some layers but not in others. For example,
a user of online social networks might have a Facebook
account but not use Twitter. Such an individual can thus
broadcast and receive information only on a subset of the
layers in the multiplex-network representation of the sys-
tem. In a transportation network, if a station does not exist
in a given layer of a multilayer network, then its associated
edges also do not exist. The algebra in this paper holds
for these situations without any formal modification
(one simply assigns the value 0 to associated edges),
but one must think carefully about the interpretation of
calculations of network diagnostics.

If there is only a single layer, there is no distinction
between a monoplex network and a single-layer network,
so we can use these terms interchangeably. However, the
difference is crucial when studying multilayer networks.
Importantly—because it is convenient, for instance, for the
implementation of computational algorithms—one can

represent the multilayer adjacency tensorM�~�

� ~�
as a special

rank-2 tensor that one obtains by a process called matrici-
zation (which is also known as unfolding and flattening)

[45]. The elements of M�~�

� ~�
, which is defined in the space

RN�N�L�L, can be represented as an N2 � L2 or an
NL� NLmatrix. Flattening a multilayer adjacency tensor
can be very helpful. Recent studies on community
detection [13,46], diffusion [21], random walks [22],
social contagions [27,28], and clustering coefficients [47]
on multilayer networks have all used matrix representations
of multilayer networks for computational (and occasionally
analytical) purposes. For many years, the computational-
science community has stressed the importance of devel-
oping tools for both tensors and their associated unfoldings
(see the review article [45] and numerous references
therein) and of examining problems from these comple-
mentary perspectives. We hope that this paper will help
foster similar achievements in network science.
Another important special case of multilayer adjacency

tensors is time-dependent (i.e., ‘‘temporal’’) networks.
Multilayer representations of temporal networks have
thus far tended to include only connections between a
given node in one layer and its corresponding nodes in
its one or two neighboring layers. For example, the
numerical calculations in Refs. [13,41] only use these
‘‘ordinal’’ interlayer couplings, which causes the off-
diagonal blocks of a flattened adjacency tensor to have
nonzero entries only along their diagonals, even though the
theoretical formulation in those papers allows more gen-
eral couplings between layers. Indeed, this restriction does
not apply, in general, to temporal networks, as it is impor-
tant for some applications to consider more general types
of interlayer couplings (e.g., if one is considering causal

FIG. 2. Schematic of multilayer networks for three different topologies. We show three four-layer multiplex networks (and the
corresponding network of layers as an inset in the top-left corners) and recall that each interlayer edge connects a node with one of its
counterparts in another layer.
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relationships between different nodes or if one wants to
consider interlayer coupling over a longer time horizon).
In temporal networks that are constructed from coupled
time series, the individual layers in a multilayer adjacency
tensor tend to be almost completely connected (although
the intralayer edges, of course, have different weights).
In other cases, such as most of the temporal networks
discussed in Ref. [4], there might only be a small number
of nonzero connections (which represent, e.g., a small
number of phone calls in a particular time window) within
a single layer.

IV. NETWORK DESCRIPTORS AND
DYNAMICAL PROCESSES

In this section, we examine how to generalize some of
the most common network descriptors and dynamical pro-
cesses for multilayer networks. First, we use our tensorial
construction to show that the properties of a multilayer
network when it is made up of only a single layer reduce to
the corresponding ones for a monoplex network. We obtain
these properties using algebraic operations involving
the adjacency tensor, canonical vectors, and canonical
tensors. We then generalize these results for more general
multilayer adjacency tensors.

A. Monoplex networks

Degree centrality.—Consider an undirected and
unweighted network, which can be represented using
the (symmetric) adjacency tensor W�

� . Define the 1-vector

u� ¼ ð1; . . . ; 1Þy 2 RN whose components are all equal

to 1, and let U�
� ¼ u�u

� be the second-order tensor
whose elements are all equal to 1. (Throughout this paper,
we use analogous notation for all so-called ‘‘1-tensors,’’
whose entries are all equal to 1.) We adopt Einstein
summation notation (see Appendix A) and interpret
the adjacency tensor as an operator to be applied to the
1-vector.

We thereby calculate the degree centrality vector
(or degree vector) k� ¼ W�

�u� in the space RN . It is then

straightforward to calculate the degree centrality of node ni
by projecting the degree vector onto the ith canonical
vector: kðiÞ ¼ k�e

�ðiÞ. Analogously, for an undirected

and weighted network, we use the corresponding weighted
adjacency tensor W�

� to define the strength centrality vec-

tor (or strength vector) s�, which can be used to calculate

the strength (i.e., weighted degree) [48,49] of each node.
With our notation, the mean degree is hki ¼ ðU�

�Þ�1k�u
�,

the second moment of the degree is hk2i ¼ ðU�
�Þ�1k�k

�,

and the variance of the degree is varðkÞ ¼ ðU�
�Þ�1k�k

� �
ðU�

�Þ�2k�k�U
��.

Directed networks are also very important, and they
illustrate why it is advantageous to introduce contravariant
notation. Importantly, in-degree centrality and out-degree
centrality are represented using different tensor products.

The in-degree centrality vector is k� ¼ W�
�u�, whereas the

out-degree centrality vector is k� ¼ W�
�u

�. We then re-

cover the usual definitions for directed networks. For
example, the in-degree centrality of node ni is kinðiÞ ¼
W�

�u�e
�ðiÞ. In directed and weighted networks, the analo-

gous definition yields the in-strength centrality vector and
the out-strength centrality vector. These calculations with
directed networks are simple, but they illustrate that the
proposed tensor algebra makes it possible to develop a
deeper understanding of networks, as the tensor indices
are related directly to the directionality of relationships
between nodes in a network.
Clustering coefficients.—Clustering coefficients are

useful measures of transitivity in a network [50]. For
unweighted and undirected networks, the local clustering
coefficient of a node ni is defined as the number of existing
edges among the set of its neighboring nodes divided by
the total number of possible connections between them
[51]. Several different definitions for local clustering
coefficients have been developed for weighted and undir-
ected networks [49,52–54] and for directed networks [55].
Given a local clustering coefficient, one can calculate a
different global clustering coefficient by averaging over all
nodes. Alternatively, one can calculate a global clustering
coefficient as the total number of closed triples of nodes
(where all three edges are present) divided by the number
of connected triples [2].
One can obtain equivalent definitions of clustering

coefficients in terms of walks on a network. In standard
network theory, suppose that one has an adjacency matrix
A and a positive integer m. Then, each matrix element
ðAmÞij gives the number of distinct walks of length m that

start from node ni and end at node nj. Therefore, taking

j ¼ i andm ¼ 3 yields the number of walks of length three
that start and end at node ni. In an unweighted network
without self-loops, we thereby obtain the number of
distinct three-cycles tðiÞ that start from node ni. One then
calculates the local clustering coefficient of node ni by
dividing tðiÞ by the number of three-cycles that would exist
if the neighborhood of ni were completely connected. For
example, in an undirected network, one divides tðiÞ by kðiÞ
[kðiÞ � 1], which is the number of ways to select two of the
neighbors of ni. In our notation, the value of ðAmÞij is

tði; jÞ ¼ W�
�1
W�1

�2
W�2

�3
� � �W�m�2

�m�1
W�m�1

� e�ðiÞe�ðjÞ; (4)

which reduces to tðiÞ ¼ W�
�W

�
�W�

�e�ðiÞe�ðiÞ for j ¼ i and

m ¼ 3. One can then define the local clustering coefficient
by dividing the number of three-cycles by the number of
three-cycles in a network for which the neighborhood of
the node ni is completely connected. We thereby obtain the
formula

cðW�
�; iÞ ¼

W�
�W

�
�W�

�e�ðiÞe�ðiÞ
W�

�F
�
�W�

�e�ðiÞe�ðiÞ
; (5)
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where

F
�
� ¼ U

�
� � �

�
�

is the adjacency tensor corresponding to a network that
includes all edges except for self-loops.

To use the above formulation to calculate a global
clustering coefficient of a network, we need to calculate
both the total number of three-cycles and the total number
of three-cycles that one obtains when the second step of the
walk occurs in a complete network. A compact way to
express this global clustering coefficient is

cðW�
�Þ ¼

W�
�W

�
�W�

�

W�
�F

�
�W�

�

: (6)

One can define a clustering coefficient in a weighted net-
work without any changes to Eqs. (5) and (6) by assuming
that W�

� corresponds to the weighted adjacency tensor

normalized such that each element of the tensor lies in
the interval [0, 1]. If weights are not defined within this
range, then Eqs. (5) and (6) do need to be modified. One
might also wish to modify Eq. (5) to explore generaliza-
tions of the several existing weighted clustering coeffi-
cients for ordinary networks [52].

We now modify Eq. (6) to consider weighted clustering
coefficients more generally. Let N be a real number that
can be used to rescale the elements of the tensor. Define
~W�
� ¼ W�

�=N , where one can define the normalization

N in various ways. For example, it can come from the
maximum (so that N ¼ max�;�fW�

�g). It is straightfor-

ward to show that cð ~W�
�Þ ¼ cðW�

�Þ=N . Therefore, we

redefine the global clustering coefficient cðW�
�Þ from

Eq. (5) using this normalization:

cðW�
�Þ ¼ N �1

W�
�W

�
�W�

�

W�
�F

�
�W�

�

: (7)

The same argument applies in the case of the local
clustering coefficient for weighted networks. The choice
of the norm in the normalization factor N is an important
consideration. For example, the choiceN ¼ max�;�fW�

�g
ensures that Eq. (7) reduces to Eq. (6) for unweighted
networks.

Eigenvector and Katz centralities.—Numerous notions
of centrality exist to attempt to quantify the importance of
nodes (and other components) in a network [5]. For ex-
ample, a node ni has a high eigenvector centrality if its
neighbors also have high eigenvector centrality, and the
recursive nature of this notion yields a vector of centralities
that satisfies an eigenvalue problem.

Let A be the adjacency matrix for an undirected net-
work, v be a solution of the equation Av ¼ �1v, and �1

be the largest (‘‘leading’’) eigenvalue of A. Thus, v is
the leading eigenvector of A, and the components of v
give the eigenvector centralities of the nodes. That is, the
eigenvector centrality of node ni is given by vi [56,57].

In our tensorial formulation, the eigenvector centrality
vector is a solution of the tensorial equation

W�
�v� ¼ �1v�; (8)

and v�e
�ðiÞ gives the eigenvector centrality of node ni.

For directed networks, there are two leading eigenvec-
tors, and one needs to take into account the difference
between Eq. (8) and its contravariant counterpart.
Moreover, nodes with only outgoing edges have an eigen-
vector centrality of 0 if the above definition is adopted. One
way to address this situation is to assign a small amount b
of centrality to each node before calculating centrality. One
incorporates this modification of eigenvector centrality by
finding the leading-eigenvector solution of the eigenvalue
problem v ¼ aAvþ b1, where 1 is a vector in which each
entry is a 1. This type of centrality is known as Katz
centrality [58]. One often chooses b ¼ 1, and we note
that Katz centrality is well defined if ��1

1 > a. Using
tensorial notation, we obtain

v� ¼ ð��
� � aW�

�Þ�1u�: (9)

To calculate Katz centrality from Eq. (9), we need to
calculate the tensor inverse T�

� , which satisfies the equation

T�
�ð��

� � aW�
� Þ ¼ ��

�.

Modularity.—It is often useful to decompose networks
into disjoint sets (‘‘communities’’) of nodes such that
(relative to some null model) nodes within each commun-
ity are densely connected to each other but connections
between communities are sparse. Modularity is a network
descriptor that can be calculated for any partition of a
network into disjoint sets of nodes. Additionally, one can
attempt to algorithmically determine a partition that max-
imizes modularity to identify dense communities in a
monoplex network. There are many ways to maximize
modularity as well as many other ways to algorithmically
detect communities (see the review articles [59,60]). We
will consider Newman-Girvan modularity [61], which is
the most popular version of modularity and can be written
conveniently in matrix notation [62,63]. Let S�a be a tensor
in RN�M, where � indexes nodes and a indexes the com-
munities1 in an undirected network, which can be either
weighted or unweighted. The value of a component of S�a is
defined to be 1 when a node belongs to a particular com-
munity and 0 when it does not. We introduce the tensor

B�
� ¼ W�

� � k�k�=K, whereK ¼ W�
�U

�
� . It follows that

the modularity of a network partition is given by the scalar2

Q ¼ 1

K
Sa�B

�
�S

�
a : (10)

1The reader should be careful to not confuse the latter latin
index with the indices that we have used thus far.

2Recall that swapping subscripts and superscripts (and hence
covariance and contravariance) in a tensor is an implicit use of a
transposition operator [40].
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To consider a general null model, we write B�
� ¼

W�
� � P�

�, where P�
� is a tensor that encodes the random

connections against which one compares a network’s ac-
tual connections. With this general null-model tensor,
modularity is also appropriate for directed networks
(although, of course, it is still necessary to choose an
appropriate null model).

von Neumann entropy.—The study of entropy in mono-
plex networks has been used to help characterize complex-
ity in networked systems [64–68]. As an example, let us
consider the von Neumann entropy of a monoplex network
[69]. Recall that the von Neumann entropy extends the
Shannon (information) entropy to quantum systems. In
quantum mechanics, the density matrix � is a positive
semidefinite operator that describes the mixed state of a
quantum system, and the von Neumann entropy of � is
defined by H ð�Þ ¼ �trð�log2�Þ. The eigenvalues
of � must sum to 1 to have a well-defined measure of
entropy.

We also need to recall the (unnormalized) combinatorial
Laplacian tensor, which is a well-known object in graph
theory (see, e.g., Refs. [70,71] and references therein)
and is defined by L�

� ¼ ��
� �W�

� , where ��
� ¼

W	
�u	e

�ð�Þ��
� is the strength tensor (i.e., a diagonal tensor

whose elements represent the strength of the nodes). The
combinatorial Laplacian is positive semidefinite, and the
trace of the strength tensor is � ¼ ��

�. The eigenvalues of
the density tensor ��

� ¼ ��1L�
� sum to 1, as required, and

they can be used to define the von Neumann entropy of a
monoplex network using the formula

H ðW�
�Þ ¼ ���

�log2½��
��: (11)

Using the eigendecomposition of the density tensor, one
can show that the von Neumann entropy reduces to

H ðW�
�Þ ¼ ���

�log2½��
��; (12)

where ��
� is the diagonal tensor whose elements are the

eigenvalues of ��
� (see Appendix C).

Diffusion and random walks.—A random walk is the
simplest dynamical process that can occur on a monoplex
network, and random walks can be used to approximate
other types of diffusion [2,72]. Diffusion is also relevant
for many other types of dynamical processes (e.g., for
some types of synchronization [73]).

Let x�ðtÞ denote a state vector of nodes at time t. The
diffusion equation is

dx�ðtÞ
dt

¼ D½W�
�x�ðtÞ �W�

�u�e
�ð�Þx�ðtÞ�; (13)

where D is a diffusion constant. Recall that s� ¼ W�
�u� is

the strength vector and that s�e
�ð�Þx�ðtÞ ¼ s�e

�ð�Þ�
��
�x�ðtÞ. We obtain the following covariant diffusion law

on monoplex networks:

dx�ðtÞ
dt

¼ �DL�
�x�ðtÞ; (14)

where L�
� ¼ W	

�u	e
�ð�Þ��

� �W�
� is the combinatorial

Laplacian tensor. The solution of Eq. (14) is x�ðtÞ ¼
x�ð0Þe�DL�

�
t.

Random walks on monoplex networks [2,72,74] have
attracted considerable interest because they are both im-
portant and easy to interpret. They have yielded important
insights on a huge variety of applications and can be
studied analytically. For example, random walks have
been used to rank Web pages [75] and sports teams [76],
optimize searches [77], investigate the efficiency of net-
work navigation [78,79], characterize cyclic structures in
networks [80], and coarse grain networks to illuminate
mesoscale features such as community structure [81–83].
In this paper, we consider a discrete-time random walk.

Let T�
� denote the tensor of transition probabilities between

pairs of nodes, and let p�ðtÞ denote the vector of proba-
bilities to find a walker at each node. Hence, the covariant
master equation that governs the discrete-time evolution of
the probability from time t to time tþ 1 is p�ðtþ 1Þ ¼
T�
�p�ðtÞ. One can rewrite this master equation in terms of

evolving probability rates as _p�ðtÞ ¼ � �L�
�p�ðtÞ, where

�L�
� ¼ ��

� � T�
� is the normalized Laplacian tensor. The

normalized Laplacian governs the evolution of the
probability-rate vector for random walks.

B. Multilayer networks

Because of its structure, a multilayer network can incor-
porate a lot of information. Before generalizing the de-
scriptors that we discussed for monoplex networks, we
discuss some algebraic operations that can be employed
to extract useful information from an adjacency tensor.
Contraction.—Tensor contractions yield interesting

quantities that are invariants when the indices are repeated
(see Appendix A). For instance, one can obtain the number
of nodes in a network (which is an invariant quantity)
by contracting the Kronecker tensor N ¼ ��

�, where we
have again used Einstein summation convention. For
unweighted networks, one obtains the number of edges
(which is another invariant) by calculating the scalar
product between the adjacency tensor W�

� with the dual

1-tensor U�
� (whose components are all equal to 1).

Single-layer extraction.—In some applications, it can be
useful to extract a specific layer (e.g., the ~rth one) from a
multilayer network. Using tensorial algebra, this operation

is equivalent to projecting the tensor M�~�

� ~�
to the canonical

tensor E
~�
~�ð~r ~rÞ that corresponds to this particular layer.

The second-order canonical tensors in RL�L form an or-

thonormal basis, so the product E~�
~�
ð~h ~kÞE~�

~�ð~r ~rÞ equals 1 for
~h ¼ ~k ¼ ~r and it equals 0 otherwise. Therefore, we use
Eq. (3) to write
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M�~�

� ~�
E

~�
~�ð~r ~rÞ ¼ C�

�ð~r ~rÞ ¼ W�
�ð~rÞ; (15)

which is the desired adjacency tensor that corresponds to
layer ~r. Clearly, it is possible to use an analogous procedure
to extract any other tensor (e.g., ones that give interlayer
relationships). In practical applications, for example, it
might be useful to extract the tensors that describe interlayer
connections between pairs of layers in the multilayer net-
work to compare the strengths of the couplings between
them. Another important application, which we discuss
later, is the calculation of multilayer clustering coefficients.

Projected and overlay monoplex networks.—In some
cases, one constructs a monoplex network by aggregating
multiple networks. Such aggregation is useful in many
situations. For example, the first step in studying a tempo-
ral network is often to aggregate over time. When studying
social networks, one often aggregates over different types
of relationships, different communication platforms, and/
or different social circles. To project a multilayer network
onto a weighted single-layer network, we multiply the

corresponding tensor by the 1-tensor U
~�
~�. The projected

monoplex network P�
� ¼ M�~�

� ~�
U

~�
~� that we obtain is

P�
� ¼ XL

~h;~k¼1

C�
�ð~h ~kÞ: (16)

Importantly, a projected monoplex network is different
from the weighted monoplex network (which one might
call an overlay monoplex network) that one obtains from a
multilayer network by summing the edges over all layers
for each node. In particular, the overlay network ignores
the non-negligible contribution of interlayer connections,
which are also important for quantifying the properties of a
multilayer network. One obtains the overlay network from
a multilayer adjacency tensor by contracting the indices
corresponding to the layer components:

O�
� ¼ M�~�

�~�: (17)

In Fig. 3, we show schematics to illustrate the difference
between projected and overlay monoplex networks.

Network of layers.—It can be useful to construct a global
observable to help understand relations between layers at a
macroscopic level. For instance, suppose that two layers
have more interconnected nodes than other pairs of layers.
Perhaps there are no connections across a given pair of
layers. One can build a network of layers to help understand
the structure of such interconnections. Such a network is
weighted, although the weighting procedure is application
dependent. As an example, let us consider the most intuitive

weighting procedure: For each pair of layers ð~h ~kÞ, we sum
all of the weights in the connections between their nodes to

obtain edge weights of q~h ~k ¼ C�
�ð~h ~kÞU�

� . For the special

case of multiplex networks with unit weights between pairs

of nodes in different layers, we obtain q~h ~k ¼ N if layers ~h

and ~k are connected. The resulting weighted adjacency
tensor of layers in the space RL�L is

�~�
~�
¼ XL

~h;~k¼1

q~h ~kE
~�
~�
ð~h ~kÞ: (18)

Hence, one can calculate�~�
~�
from the multilayer adjacency

tensor with the formula

�~�
~�
¼ M�~�

�~�
U�

�: (19)

One can then normalize the resulting tensor in a way that is
appropriate for the application of interest. For multiplex
networks, for example, the most sensible normalization
constant is typically the number of layers L. In the insets
(in the top-left corners) of the panels of Fig. 2, we show
representations for networks of layers that correspond to
three different topologies of connections between layers.
Degree centrality.—We now show how to compute

degree centrality for multilayer networks by performing
the same projections from the case of monoplex networks
using 1-tensors of an appropriate order. (Recall that a
1-tensor is a tensor that contains a 1 in every component.)

We thereby obtain a multidegree centrality vector K� ¼
M�~�

� ~�
U

~�
~�u

�. After some algebra, we obtain

K� ¼ XL
h;k¼1

k�ð~h ~kÞ; (20)

where k�ð~h ~kÞ is the degree centrality vector that corre-

sponds to connections between layers ~h and ~k. Even in the
special case of multiplex networks, it is already evident
that K� differs from the degree centrality vector that one

FIG. 3. Schematics of (left) projected and (right) overlay
monoplex networks obtained from a multilayer network. Both
types of single-layer networks are weighted, but their edges have
different weights. One obtains an overlay network using the
contraction operator and thus neglects the influence of interlayer
connections.
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would obtain by simply projecting all layers of a multilayer
network onto a single weighted network.

The definitions of mean degree, second moment, and
variance are analogous to the corresponding monoplex-
network counterparts, except that one usesK� instead of k�.

Clustering coefficients.—For multilayer networks, it is
nontrivial to define a clustering coefficient using triangles
as a measure of transitivity. As shown in Fig. 4, a closed set
of three nodes might not exist on any single layer, but
transitivity can still arise as a consequence of multiplexity.
In the left panel, for example, suppose that nodes A and B
are friends with node C but not with each other, but that
nodes A and B still have a social tie because they work at
the same company (but node C does not). In this situation,
it is necessary for connections to exist on multiple layers
for it to be possible to transfer information from any one
node to any other node.

As with monoplex networks, we start by defining the
integer power of an adjacency tensor and use a contraction

operation. For instance, one can calculate the square ofM�~�

� ~�

by constructing the eighth-order (i.e., rank-8) tensor

M�~�

� ~�
M�~


�~	 and then contracting � with � and ~� with ~
.

One computes higher powers analogously. We define
a global clustering coefficient on a multilayer adjacency
tensor by generalizing Eq. (6) for fourth-order tensors:

cðM�~�

� ~�
Þ ¼ N �1

M�~�

� ~�
M� ~�


~	M

~	
�~�

M�~�

� ~�
F� ~�

~	M


~	
�~�

; (21)

where we again define F� ~�

~	 ¼ U� ~�


~	 � �� ~�

~	 as the adjacency

tensor of a complete multilayer network (without self-
edges). The choice of the normalization factor N is again

arbitrary, but the choiceN ¼ max�;�;~�; ~�fM�~�

� ~�
g ensures that

Eq. (21) is well defined for both weighted and unweighted
multilayer networks.
The tensor contractions in Eq. (21) count all of the three-

cycles, including ones in which a walk goes through any
combination of interlayer and intralayer connections. Thus,
for multiplex networks with categorical layers, Eq. (21)
counts not only fully intralayer three-cycles but also the
interlayer three-cycles that are induced by the connection of
nodes to their counterparts in all of the other layers.
A more traditional, and also simpler, approach to

calculating a global clustering coefficient of a multilayer
network is to project it onto a single weighted network
[i.e., the overlay networkO�

� defined by Eq. (17)] and then

calculate a clustering coefficient for the resulting network.
In this case, we obtain

cðO�
�Þ ¼ M�1

M�~�
�~�M

� ~�


 ~�
M
~	

�~	

M�~�
�~�F

� ~�


 ~�
M


~	
�~	

; (22)

where M ¼ max�;�fM�~�
�~�g=L. In the chosen normaliza-

tion, note that we need to include a factor for the number
of layers L because the construction of the overlay network
discards the information about the number of layers. For
example, adding an empty layer to a multilayer network
does not affect the resulting overlay network, but it in-
creases the number of possible walks that one must con-
sider in Eq. (22). In general, the clustering coefficient
in Eq. (22) is different from the one in Eq. (21) because
Eq. (22) discards all interlayer connections. However, there
are some special cases when Eq. (22) and Eq. (21) take the
same value. In particular, these equations yield the same
value when there is only a single layer or, more generally,
when there are no interlayer edges and all of the intralayer
networks are exactly the same.
The global clustering coefficient defined in Eq. (22)

sums the contributions of three-cycles for which each
step of a walk is on the same layer and those for which a
walk traverses two or three layers. We decompose this
clustering coefficient to separately count the contributions
of three-cycles that take place on one, two, and three layers
[47]. Using our tensorial framework, we modify Eq. (22) as
follows:

FIG. 4. Schematic of closing triangles in multiplex networks.
Triangles can be closed using intralayer connections from differ-
ent layers. In the figure, we show two different situations that can
arise. For example, the left panel might represent a multilayer
social network in which nodes A and B are friends of node C but
are not friends with each other (first layer), but nodes A and B
still have a social tie because they work in the same company
even though node C does not work there (third layer). In the right
panel, one might imagine that each layer corresponds to a
different online social network: Perhaps node B tweets about
an item; node C sees node B’s post on Twitter (first layer) and
then posts the same item on Facebook (second layer); node A
then sees this post and blogs about it (third layer), and node B
reads this blog entry.
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cðM�~�

� ~�
; w�Þ ¼

M�~�

�~�
M�~�

�~�M
�~	
�~


P
L
~h;~k;~l¼1

E
~�
~�ð~h ~hÞE~�

~� ð~k ~kÞE~

~	ð~l ~lÞ��ð~h; ~k; ~lÞw�

M�~�

� ~�
F�~�
�~�M

�~	
�~


P
L
~h;~k;~l¼1

E
~�
~�ð~h ~hÞE ~�

~� ð~k ~kÞE~

~	ð~l ~lÞ��ð~h; ~k; ~lÞw�

; (23)

where we have employed layer extraction operations
(see our earlier discussion), w� is a vector that weights
the contribution of three-cycles that span� layers, and ��

(where � ¼ 1; 2; 3) is a function that selects the cycles
with � layers:

�1ð~h; ~k; ~lÞ ¼ �~h ~l�~h ~k�~k ~l;

�2ð~h; ~k; ~lÞ ¼ ð1� �~h ~lÞ�~h ~k þ ð1� �~k ~lÞ�~h ~k þ ð1� �~h ~kÞ�~k ~l;

�3ð~h; ~k; ~lÞ ¼ ð1� �~h ~lÞð1� �~k ~lÞð1� �~h ~kÞ:
We recover Eq. (22) with the choicew� ¼ ð1=3; 1=3; 1=3Þ.
[We note that cðM�~�

� ~�
; w�Þ ¼ cðM�~�

� ~�
; c0w

�Þ for any
nonzero constant c0, although we still normalize w� by
convention.] By contrast, with the choice ofw� ¼ ð1; 0; 0Þ,
we only consider three-cycles in which every step of a walk
is on the same layer.

Importantly, we can define the weight vector w� in the
clustering coefficient in Eq. (23) so that it takes into account
that there might be some cost for crossing different layers.
As discussed in Ref. [47], one determines this ‘‘cost’’ based
on the dynamics and the application of interest. For ex-
ample, if one is studying a dynamical process whose time
scale is very fast compared to the time scale (i.e., the cost)
associated with changing layers, then it is desirable to
consider the contribution from only one layer (i.e., the one
in which the dynamical process occurs). For other dynami-
cal processes, it is compulsory to also include contributions
from two or three layers. To give a brief example, consider
transportation at the King’s Cross/St. Pancras station in
London. This station includes a node in a layer that de-
scribes travel via London’s metropolitan transportation sys-
tem, a node in a layer for train travel within England, and a
node for international train travel. A relevant cost is then
related to how long it takes to travel between different parts
of the station [44]. One needs to consider such intrastation
travel time in comparison to the schedule times of several
transportation mechanisms. By contrast, there is typically
very little cost associated with a person seeing information
on Facebook and then posting it on Twitter.

In the above definition, the entries of F� ~�

~	 are all equal to

1 except for self-edges. Sometimes, we need to instead use

a tensor �F� ~�

~	 that we construct by setting some of the off-

diagonal entries of F� ~�

~	 to 0. If the original multilayer net-

work cannot have a particular edge, then the tensor �F� ~�

~	

needs to have a 0 in its corresponding entry. For example,
we need to use such 0 entries for multilayer networks whose
structural constraints forbid the existence of some nodes in
certain layers or forbid certain inter- and intralayer edges.
It is also necessary for multiplex networks, for which

interlayer edges can only exist between nodes and their
counterparts in other layers. Note, however, that using the

tensor �F�~�

~	 instead of F� ~�


~	 influences the normalization of

clustering coefficients, as it affects the set of potential three-
cycles that can exist in a multilayer network.
Eigenvector centrality.—Generalizing eigenvector cen-

trality for a multilayer network is not trivial, and there are
several possible ways to do it [24].
References [21,22,27,28] recently introduced the

concepts of supra-adjacency (i.e., ‘‘superadjacency’’) and
supra-Laplacian (i.e., super-Laplacian) matrices to formu-
late and solve eigenvalue problems in multiplex networks.
Such supramatrices correspond to unique unfoldings of
corresponding fourth-order tensors to obtain square matri-
ces. It is worth noting that the tensorial space in which the
multilayer adjacency tensor exists is RN�N�L�L, and there
exists a unique unfolding—up to the L! permutations of
diagonal blocks of size N � N in the resulting space—that
provides a square supra-adjacency tensor defined in
RNL�NL. We now exploit the same idea by arguing that a
supraeigenvector corresponds to a rank-1 unfolding of a
second-order ‘‘eigentensor’’ V�~�. According to this unique

mapping, if �1 is the largest eigenvalue and V�~� is the

corresponding eigentensor, then it follows that

M�~�

� ~�
V�~� ¼ �1V� ~�: (24)

Therefore, similarly to monoplex networks, one can cal-
culate the leading eigentensor V�~� iteratively. Start with a

tensor X�~�ðt ¼ 0Þ, which we can take to be X�~�ðt ¼ 0Þ ¼
U�~�. By writing X�~�ð0Þ as a linear combination of the

second-order eigentensors and by observing that X�~�ðtÞ ¼
ðM�~�

� ~�
ÞtX�~�ð0Þ, one can show that X�~�ðtÞ is proportional to

V�~� in the t ! 1 limit. The convergence of this approach

is ensured by the existence of the unfolding ofM, since the
iterative procedure is equivalent to the one applied to the
corresponding supramatrices.
We thereby obtain a multilayer generalization of

Bonacich’s eigenvector centrality [56,57]:

V� ~� ¼ ��1
1 M�~�

� ~�
V�~�: (25)

The monoplex notion of eigencentrality grants impor-
tance to a node based on its connection to other nodes. One
needs to be careful about both intralayer and interlayer
connections when interpreting the results of calculating a
multilayer generalization of it. For example, the intralayer
connections in one layer might be more important than
those in others. For interlayer connections, one might pon-
der how much of a ‘‘bonus’’ an entity earns based on its
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presence in multiple layers. (Contrast this situation with the
cost that we discussed previously in the context of trans-
portation networks.) For instance, many Web services at-
tempt to measure the influence of people on social media by
combining information from multiple online social net-
works, and one can choose which communication modes
(i.e., layers) to include. Moreover, by considering an over-
lay monoplex network or a projection monoplex network, it
is possible to derive separate centrality scores for different
layers. In the above example, an individual who possesses
different centrality scores in different network layers would
reflect the different levels of importance that that person has
on different social media.

Modularity.—A multilayer generalization of modularity
was derived in Ref. [13] by considering random walks on

networks. Let S
�~�
a be a tensor in RN�L�M, where ð�; ~�Þ

indexes nodes and a indexes the communities in an undir-
ected multilayer network, which can be either weighted or

unweighted. The value of a component of S
�~�
a is defined

to be 1 when a node belongs to a particular community

and 0 when it does not. We introduce the tensor B�~�
�~� ¼

W
�~�
�~� � P

�~�
� ~�, where K ¼ W

�~�
�~�U

� ~�
�~� , and P

�~�
� ~� is a null-

model tensor that encodes the random connections against
which one compares a multilayer network’s actual con-
nections. It follows that the modularity of a partition of a
multilayer network is given by the scalar

Q ¼ 1

K
Sa�~�B

�~�
�~�S

�~�
a : (26)

There are numerous choices for the null-model tensor P
�~�
�~�.

The null models discussed in Refs. [13,41,84] give special
cases of the multilayer modularity in Eq. (26).

von Neumann entropy.—To generalize the definition of
von Neumann entropy to multilayer networks, we need to
generalize the definition of the Laplacian tensor. Such an
extension is not trivial because one needs to consider
eigenvalues of a fourth-order tensor.

As we showed previously when generalizing eigenvec-
tor centrality, the existence of a unique unfolding into
supramatrices allows one to define and solve the eigen-
value problem

L�~�

�~�
V�~� ¼ �V� ~�; (27)

where L�~�

�~�
¼ ��~�

�~�
�M�~�

� ~�
is the multilayer Laplacian ten-

sor, ��~�

� ~�
¼ M	~


�~�U	~
E
�~�ð�~�Þ��~�

�~�
is the multistrength ten-

sor (i.e., the rank-4 counterpart of the strength tensor ��
�

that we defined previously for monoplex networks), � is an
eigenvalue, and V�~� is its corresponding eigentensor (i.e.,

the unfolded rank-1 supraeigenvector). We note that there
are at most NL different eigenvalues and corresponding
eigentensors. (Additionally, note that the 1-tensor that
appears in the definition of the multistrength tensor has
two subscripts and that the canonical-basis tensor has two
superscripts.)

Let � ¼ ��~�
�~� be the trace of the multistrength

tensor. The eigenvalues of the multilayer density tensor

��~�

� ~�
¼ ��1L�~�

�~�
sum to 1, so we can use them to define the

von Neumann entropy of a multilayer network as

H ðMÞ ¼ ���~�

�~�
log2½�� ~�

�~��; (28)

where ��~�

� ~�
is the diagonal tensor whose elements are the

eigenvalues of ��~�

�~�
.

Diffusion and random walks.—Diffusion in multiplex
networks was investigated recently in Ref. [21]. A diffusion
equation for multilayer networks needs to include terms
that account for interlayer diffusion. Let X�~�ðtÞ denote the
state tensor of nodes in each layer at time t. The simplest
diffusion equation for a multilayer network is then

dX�~�ðtÞ
dt

¼ M�~�

� ~�
X�~�ðtÞ �M�~�

�~�U�~�E
�~�ð� ~�ÞX�~�ðtÞ: (29)

As in the case of monoplex networks, we introduce the
multilayer combinatorial Laplacian

L�~�

� ~�
¼ M

	~

�~�U	~
E

�~�ð�~�Þ��~�

�~�
�M�~�

� ~�
(30)

to obtain the following covariant diffusion equation for
multilayer networks:

dX� ~�ðtÞ
dt

¼ �L�~�

� ~�
X�~�ðtÞ: (31)

The solution of Eq. (31) isX� ~�ðtÞ ¼ X�~�ð0Þe�L�~�

�~�
t
, which is

a natural generalization of the result formonoplex networks.
The study of random walks is important for many ap-

plications in multilayer networks. For instance, they were
used to derive multilayer modularity [13] and to develop
optimized exploration strategies [22]. As we illustrate in
Fig. 5, a random walk on a multilayer network induces
nontrivial effects because the presence of interlayer con-
nections affects its navigation of a networked system.
As with monoplex networks, we consider discrete-time

FIG. 5. Schematic of a random walk (dotted trajectories) in a
multiplex network. Awalker can jump between nodes within the
same layer, or it might switch to another layer. This illustration
evinces how multiplexity allows a random walker to move
between nodes that belong to different (disconnected) compo-
nents on a given layer.
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random walks. Let T�~�

� ~�
denote the tensor of transition

probabilities for jumping between pairs of nodes and
switching between pairs of layers, and let p�~�ðtÞ be the

time-dependent tensor that gives the probability to find a
walker at a particular node in a particular layer. Hence, the
covariant master equation that governs the discrete-time
evolution of the probability from time t to time tþ 1 is

p�~�ðtþ 1Þ ¼ T�~�

�~�
p�~�ðtÞ. We rewrite this master equation

in terms of evolving probability rates to obtain _p� ~�ðtÞ ¼
� �L�~�

� ~�
p�~�ðtÞ, where �L�~�

� ~�
¼ ��~�

� ~�
� T�~�

� ~�
is the normalized

Laplacian tensor.

V. CONCLUSIONS AND DISCUSSION

In this paper, we developed a tensorial framework
to study general multilayer networks. We discussed the
generalization of several important network descriptors—
including degree centrality, clustering coefficients, eigen-
vector centrality, and modularity—for our multilayer
framework. We examined different choices that one can
make in developing such generalizations, and we also
demonstrated how our formalism yields results for mono-
plex and multiplex networks as special cases.

As we have discussed in detail, our multilayer formalism
provides natural generalizations of network descriptors.
Consequently, it allows systematic comparisons of multi-
layer diagnostics with their single-layer counterparts. As
we have also illustrated (e.g., for global clustering coef-
ficients), our formalism also allows systematic compari-
sons between different ways of generalizing familiar
network concepts. Such comparisons are particularly im-
portant for the examination of new phenomena, such as
multiplexity-induced correlations [19], that arise when
generalizing beyond the usual single-layer networks. One
can obtain new insights even for simple descriptors like
(directed) degree centrality, for which the tensor indices in
our formulation are related directly to the directionality of
relationships between nodes in a multilayer network.

The mathematical formalism that we have introduced
can be generalized further by considering higher-order
(i.e., higher-rank) tensors. This generalization will provide
a systematic means to investigate networks that are, for
example, both time dependent and multiplex.

Our tensorial framework is an important step toward the
development of a unified theoretical framework for study-
ing networks with arbitrary complexities (including multi-
plexity, time dependence, and more). When faced with
generalizing the usual adjacency matrices to incorporate
a feature such as multiplexity, different scholars have
employed different notation and terminology, and it is
thus desirable to construct a unified framework to unify
the language for studying networks. Moreover, in addition
to defining mathematical notation that simplifies the han-
dling and generalization of previously known diagnostics

on networks, a tensorial framework also offers the oppor-
tunity to unravel new properties that remain hidden when
using the classical approach of adjacency matrices. We
hope to construct a proper geometrical interpretation for
tensorial representations of networks and to ultimately
obtain an operational theory of dynamics both on and of
networks. This perspective has led to significant advances
in other areas of physics, and we believe that it will also be
important for the study of networks.
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APPENDIX A: EINSTEIN
SUMMATION CONVENTION

Einstein notation is a summation convention, which we
adopt to reduce the notational complexity in our tensorial
equations, that is applied to repeated indices in operations
that involve tensors. For example, we use this convention
in the left-hand sides of the following equations:

A�
� ¼ XN

�¼1

A�
�; A�B� ¼ XN

�¼1

A�B�;

A�
�B

�
� ¼ XN

�¼1

A�
�B

�
�; A�

�B
�
� ¼ XN

�¼1

XN
�¼1

A�
�B

�
�;

whose right-hand sides include the summation signs ex-
plicitly. It is straightforward to use this convention for the
product of any number of tensors of any order. Repeated
indices, such that one index is a subscript and the other is a
superscript, are equivalent to perform a tensorial operation
known as a contraction. Contracting indices reduces the
order of a tensor by 2. For instance, the contraction of the
second-order tensor A�

� is the scalar A�
�, and the second-

order tensors A�
�B

�
� and A�

�B
�
� are obtained by contracting

the fourth-order tensor A�
�B

�
�.

It is important to adopt Einstein summation on repeated

indices in a way that is unambiguous. For example, A�
� ¼

A�
�, but A

�
�B

�
�C

�
� is not equivalent to A�

�B
�
�C

�
� because of

the ambiguity about the index � in the second term of

A�
�B

�
�C

�
�. Specifically, it is not clear if the contraction B�

�
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should be calculated before the product with the other
tensors, or vice versa. Another situation that deserves
particular attention is equations that involve a ratio be-
tween tensorial products, where one should separately
apply the Einstein convention to the numerator and the
denominator. Thus, one should not perform products be-
tween tensors B�

� and C�
� with repeated indices � and � in

cases like

A�
�B

�
�

C�
�A

�
�

: (A1)

For example, see Eq. (5) in the main text.

APPENDIX B: DEFINITION OF THE TENSOR
EXPONENTIAL AND LOGARITHM

The exponential of a tensor B�
� is a tensor A�

� such that

eB
�
� ¼ A�

�. The tensor exponential is defined by the power

series [85]

eB
�
� ¼ X1

m¼0

1

m!
ðB�

�Þm; (B1)

where

ðB�
�Þm ¼ B�

�1
B�1
�2
B�2
�3
� � �B�m�1

� : (B2)

A complete discussion of the properties of the tensor
exponential is beyond the scope of the present paper.
However, we show an example of how to calculate it for
diagonalizable tensors.

Let B�
� be a diagonalizable tensor. In other words, there

exists a diagonal tensor D�
�, whose elements are the eigen-

values of B�
�, and a tensor J��, whose columns are the

eigenvectors of B�
�, such that B

�
�¼J��D

�
� ðJ��Þ�1. It follows

that

ðB�
�Þm¼J��D

�
� ðJ��1

Þ�1J�1
�1
D�1

�1 ðJ�1�2
Þ�1 ���J�m�1

�m�1
D�m�1

�m�1
ðJ�m�1

� Þ�1
¼J��ðD�

� ÞmðJ��Þ�1 (B3)

and

eB
�
� ¼ J��

�X1
m¼0

1

m!
ðD�

� Þm
�
ðJ��Þ�1 ¼ J��e

D�
� ðJ��Þ�1: (B4)

The exponential of a diagonal tensor is the tensor obtained
by exponentiating each of the diagonal elementsD�

�, and it

is straightforward to calculate eD
�
� .

The logarithm of a tensor A�
� is defined as the tensor B�

�

that satisfies the relation eB
�
� ¼ A�

�. It is straightforward to

show for a diagonal tensor A�
� that

log½A�
�� ¼ J��½logD�

� �ðJ��Þ�1; (B5)

where D�
� is the diagonal tensor whose elements are the

eigenvalues of A�
�, and J�� is a tensor whose columns are

the eigenvectors of A�
�.

APPENDIX C: DERIVATION OF
VON NEUMANN ENTROPY

The von Neumann entropy of a monoplex network
is defined by Eq. (11). Let �� be the ith eigenvector
(i ¼ 1; 2; . . . ; N) of the density tensor ��

�, and let ��
� be

the tensor of eigenvectors. The density tensor is defined by
rescaling the combinatorial Laplacian, so it has positive
diagonal entries and nonpositive off-diagonal entries. It is
positive semidefinite and has non-negative eigenvalues.
We diagonalize the density tensor to obtain ��

� ¼
��

��
�
� ð��

�Þ�1, where ��
� is a diagonal tensor whose ele-

ments are the eigenvalues of ��
�. These eigenvalues are

equal to the eigenvalues of the combinatorial Laplacian
tensor rescaled by the scalar ��1, where � ¼ ��

� and ��
�

is the strength tensor. It follows that

��
� log2½��

��¼ ð��
��

�
� ð��

�Þ�1Þð��
�½log2��

� �ð��
�Þ�1Þ

¼��
��

�
� ½log2��


�ð�

�Þ�1¼�


�½log2��

�; (C1)

where we have exploited the relation ��
�ð�


�Þ�1 ¼ �

�.

We obtain Eq. (12) by multiplying both sides of Eq. (C1)
by �1.
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[18] O. Yağan and V. Gligor, Analysis of Complex Contagions
in Random Multiplex Networks, Phys. Rev. E 86, 036103
(2012).

[19] K.-M. Lee, J. Y. Kim, W.-K. Cho, K.-I. Goh, and I.-M.
Kim, Correlated Multiplexity and Connectivity of
Multiplex Random Networks, New J. Phys. 14, 033027
(2012).

[20] C. D. Brummitt, K.-M. Lee, and K.-I. Goh, Multiplexity-
Facilitated Cascades in Networks, Phys. Rev. E 85,
045102(R) (2012).
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[24] L. Solá, M. Romance, R. Criado, J. Flores, A. Garcia del
Amo, and S. Boccaletti, Eigenvector Centrality of Nodes
in Multiplex Networks, Chaos 23, 033131 (2013).

[25] A. Halu, R. J. Mondragon, P. Panzarasa, and G. Bianconi,
Multiplex PageRank, arXiv:1306.3576.

[26] E. Cozzo, A. Arenas, and Y. Moreno, Stability of Boolean
Multilevel Networks, Phys. Rev. E 86, 036115 (2012).
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