
Distrib Parallel Databases (2009) 26: 3–27
DOI 10.1007/s10619-009-7041-z

Distributed top-k aggregation queries at large

Thomas Neumann · Matthias Bender ·
Sebastian Michel · Ralf Schenkel ·
Peter Triantafillou · Gerhard Weikum

Published online: 18 June 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Top-k query processing is a fundamental building block for efficient rank-
ing in a large number of applications. Efficiency is a central issue, especially for
distributed settings, when the data is spread across different nodes in a network. This
paper introduces novel optimization methods for top-k aggregation queries in such
distributed environments. The optimizations can be applied to all algorithms that fall
into the frameworks of the prior TPUT and KLEE methods. The optimizations ad-
dress three degrees of freedom: 1) hierarchically grouping input lists into top-k oper-
ator trees and optimizing the tree structure, 2) computing data-adaptive scan depths
for different input sources, and 3) data-adaptive sampling of a small subset of input
sources in scenarios with hundreds or thousands of query-relevant network nodes. All
optimizations are based on a statistical cost model that utilizes local synopses, e.g., in
the form of histograms, efficiently computed convolutions, and estimators based on

T. Neumann (�) · M. Bender · G. Weikum
Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: neumann@mpi-inf.mpg.de

M. Bender
e-mail: mbender@mpi-inf.mpg.de

G. Weikum
e-mail: weikum@mpi-inf.mpg.de

S. Michel
École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: sebastian.michel@epfl.ch

R. Schenkel
Saarland University and Max-Planck-Institut für Informatik, Saarbrücken, Germany
e-mail: schenkel@mpi-inf.mpg.de

P. Triantafillou
University of Patras, Patras, Greece
e-mail: peter@ceid.upatras.gr

mailto:neumann@mpi-inf.mpg.de
mailto:mbender@mpi-inf.mpg.de
mailto:weikum@mpi-inf.mpg.de
mailto:sebastian.michel@epfl.ch
mailto:schenkel@mpi-inf.mpg.de
mailto:peter@ceid.upatras.gr

4 Distrib Parallel Databases (2009) 26: 3–27

order statistics. The paper presents comprehensive experiments, with three different
real-life datasets and using the ns-2 network simulator for a packet-level simulation
of a large Internet-style network.

Keywords Top-k · Distributed queries · Query optimization · Cost models

1 Introduction

1.1 Motivation and problem statement

Top-k query processing is a fundamental cornerstone of multimedia similarity search,
ranked retrieval of documents from digital libraries and the Web, preference queries
over product catalogs, and many other modern applications. Conceptually, top-k
queries can be seen as operator trees that evaluate (SQL or XQuery) predicates over
one or more tables, perform outer joins to combine multi-table data for the same
entities or perform grouping by entities (e.g., by document ids), subsequently aggre-
gate a “goodness” measure such as frequencies or IR-style scores, and finally output
the top-k results with regard to this aggregation. Ideally, an efficient query processor
would not read the entire input (i.e., all tuples from the underlying tables) but should
rather find ways of early termination when the k best results can be safely determined,
using techniques like priority queues, bounds for partially computed aggregation val-
ues, pruning intermediate results, etc.

These issues have been intensively researched in recent years (e.g., [7, 10, 15, 20,
21, 28, 35, 40]), and are now fairly well understood for a centralized setting with all
data residing on the same server. The current state-of-the-art algorithms for distrib-
uted top-k querying [4, 9, 33, 44] address the peculiarities of a distributed setting (in
particular communication cost), but fall short of being a perfect solution for really
large-scale distributed settings (e.g., highly decentralized and dynamic peer-to-peer
systems), where even other performance issues become critical and require different
compromises. This paper develops novel techniques to address the peculiarities of
such large-scale systems and shows their practical viability.

Conceptually, the data we consider resides in a (virtual) table that is horizontally
partitioned across many nodes in a wide-area network; partitionings are typically
along the lines of value ranges, creation dates, or creators. The queries that we want
to evaluate on the (virtual) union of all partitions compute the top-k globally most fre-
quent, least frequent, or highest scoring items across the entire network. Further, we
assume a monotonic aggregation function, such as most of the popular aggregation
functions (maximum, minimum, (weighted) summation).

This framework has important real-world applications:

– Network monitoring over distributed logs [19]. Items are IP addresses, URLs, or
file names in P2P file sharing, and queries could aggregate occurrence frequencies
or transferred bytes.

– Sensor networks with sensors that have local storage and are periodically polled
[31]. Possible items are chemicals that contribute to water or air pollution, and the
values represent actual measurements of their concentration. Typical aggregations
are based on specific time periods (e.g., morning hour vs. evening hour).

Distrib Parallel Databases (2009) 26: 3–27 5

– Mining of social communities and their behavior [18]. Typical items are specific
user groups. Interesting aggregations consider frequencies of postings to different
blogs, or “social tags” and ratings assigned to user-created content, or statistical
information from query logs and click streams.

1.2 Computational model, assumptions

Following [9, 33, 44], we consider a distributed system with m peers Pj , j =
1, . . . ,m. It is assumed that every node can communicate with every other node –
possibly with different network costs, but without any limitation of functionality.
This can, if necessary, be assured by means of “proxy” nodes. Each peer Pj owns a
fragment of an abstract relation, containing items I and their corresponding (local)
values vj (I). Such pairs are accessible at each peer Pj in sorted order by descending
value, i.e., in a (physically or virtually) sorted list Lj . These lists can be implemented
by materializing local index lists, but other ways are conceivable, too. Notice that an
item can, and usually does, appear in the lists of more than one peer. Often, some
popular items (e.g., URLs or IP addresses in a network traffic log) appear in the lists
of nearly all peers.

A query q(k), initiated at a peer Pinit , aims at finding the k items with highest
aggregated values V (I) = AggrPj

vj (I) over all peers Pj . For the sake of concrete-
ness, we will use summation for value aggregation throughout the paper, but weighted
sums and other monotonic functions are supported analogously. Scanning the local
list Lj allows each peer Pj to retrieve and ship a certain number of its locally highest-
value items. The receiving peer (e.g., Pinit) can then employ a threshold algorithm
[20, 21, 35] for value aggregation and determining whether previously unseen result
candidates potentially qualify for the final top-k result, or if deeper scans or further
probings of unknown values are needed to safely eliminate result candidates.

All algorithms in this paper proceed in rounds [9, 33, 44]: in each round, requests
are sent to certain network nodes to either scan local lists to a certain depth or to
probe for an item’s local value. The requestor subsequently collects and aggregates
the results and updates its bookkeeping about top-k candidates. The most important
resource to optimize is communication bandwidth, or equivalently, the number of
item-value entries that are shipped over the network. In addition, but as secondary cri-
teria, we also observe message latencies and processing loads incurred at the nodes.

This work sets aside node failures during query execution. In case of temporary
node failures or nodes leaving the system, we can adopt the method of [1], which
proposes to send partial results directly to the query initiator, or we can apply a re-
organization step for the affected portion of the query execution plan.

1.3 Contribution and outline of the paper

A standard way of performing distributed top-k aggregation queries is illustrated in
Fig. 1 (a). The figure shows four input lists on four different peers and the message
flow to a fifth peer (p0) that has posed a top-k query. The four lists have different
sizes, and we assume that the query processing uses a uniform value threshold of 0.3
for its scan depth. We will later contrast this execution plan with better ones based

6 Distrib Parallel Databases (2009) 26: 3–27

Fig. 1 Execution plans illustrating the optimization techniques

on our methods. Figure 1 also shows response times measured in our testbed, as
anecdotic evidence of our performance gains.

To scale up top-k query processing to hundreds of nodes, this paper contributes
two novel techniques:

– The flexible formation of hierarchical groups of node subsets that are considered
together. This divide-and-conquer paradigm (cf. Fig. 1 (b)) avoids overly broad
top-k aggregation queries that involve too many nodes at the same time and could
lead to (incoming) bandwidth bottlenecks at the root of the aggregation. On the
other hand, it introduces the combinatorial problem of choosing appropriate groups
and forming a tree of cascaded top-k operators (possibly with different k at differ-
ent stages). We provide exact methods and heuristic approximations for solving
this optimization.

– While previous methods have usually propagated uniform scan depth thresholds
to other peers, we propose an adaptive method for choosing different scan depth
thresholds at different nodes, driven by the statistical information about the value
distributions in the local lists (cf. Fig. 1 (c)).

For additional scaling, with queries possibly running over thousands of nodes, we
contribute a third technique:

– Choosing a sufficiently small subset of nodes as samples, based on a statistical
error estimation (cf. Fig. 1 (d)). The sample contains nodes that are most likely to
contribute the highest values to the top-k aggregation. Depending on the estimated
error, the sample can optionally be increased in an additional round, or a small
number of top-k candidate items may be probed at all network nodes.

All three techniques are based on a statistical cost predictor, which is also a con-
tribution of this paper:

– Estimating the costs of the considered groupings, scan depths, or samples, based on
concisely approximating local value distributions by histograms, computing con-
volutions to combine multiple histograms, and using results from order statistics
to estimate rank-k values.

The paper presents an extensive evaluation, based on three different real-life
datasets and realistic workloads, to demonstrate the scalability of our approaches
and their superior performance compared to prior work. The underlying network is
simulated by the ns-2 network simulator, a highly detailed and validated model for
Internet traffic, widely used in the networking community.

Distrib Parallel Databases (2009) 26: 3–27 7

The paper is based on but significantly extends our earlier work in [37]. The main
novel contributions of this paper include (1) the sampling technique, (2) proofs of
the theorems, (3) some discussion of the effects of network dynamics, and (4) exper-
iments with a third data set.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 4 introduces our cost prediction model. The hierarchical grouping technique
and its optimization is presented in Sect. 5. Section 6 presents the technique for adap-
tive scan depths, before Sect. 7 discusses our sampling methods. Section 9 presents
a comprehensive experimental evaluation of our techniques. We briefly study the ef-
fects of network dynamics in Sect. 8.

2 Related work

Top-k query processing has received much attention in a variety of settings such as
similarity search on multimedia data [12, 20, 34, 35, 41], ranked retrieval on text
and semi-structured documents in digital libraries and on the Web [2, 26, 29, 30,
40], network and stream monitoring [3, 9, 16, 27], collaborative recommendation and
preference queries on e-commerce product catalogs [10, 22, 32], and ranking of SQL-
style query results on structured data sources in general [7, 11, 23, 39, 43]. Within
this rich body of work, the TA (threshold algorithm) family for monotonic score ag-
gregation [20, 21, 35] has proven to be an extremely efficient and highly versatile
method. It comes in variants with sequential scans of index lists only (NRA), or with
a flexible combination of sorted and random accesses (CA). Another interesting ap-
proach in this context is the RankSQL work [28] that incorporates query optimization
techniques into top-k processing in relational database systems. RankSQL includes
a technique for estimating the score of the kth result of a top-k query by sampling a
small subset of the items; we propose a technique in Sect. 7 that estimates this score
from statistics on the score distribution in the lists only, as RankSQL-style sampling
would require contacting each peer in advance. Techniques to estimate the number of
items read from different lists using statistical summaries, similar to those introduced
in Sect. 4.1, have also been used in [23, 38] in the context of optimizers for ranking
queries.

The first distributed TA-style algorithm for top-k queries over Internet data sources
has been proposed by Bruno et al. [8, 32]. This hybrid algorithm allows both sorted
and random access to input lists but tries to avoid random accesses depending on
the access costs and limitations of the data sources. Scheduling strategies for random
accesses to expensive data sources were also addressed in [10] for a setting with
centralized sorted accesses. Zhang and Suel [46] consider distributed variants of TA
with sorted accesses only, continuously sending parts of the lists between the network
nodes until the top-k answers have been found, where the number of communication
steps is limited only by the size of the shortest list. This approach emphasizes the
goal of minimizing the total work for scanning input lists on the underlying nodes,
but it disregards communication costs as the decisive cost factor.

In contrast, state-of-the-art algorithms for distributed top-k aggregation use a fixed
number of communication rounds to bound latency and aim to minimize the total

8 Distrib Parallel Databases (2009) 26: 3–27

network bandwidth consumption. The first algorithm in this family is TPUT (Three-
Phase Uniform Threshold) [9], where a query coordinator, typically the query ini-
tiator, executes a three-phase distributed threshold algorithm by retrieving some data
items from all nodes, computing a threshold (min-k/m) from the observed data, and
then using a range query for all data items above the threshold to get all results can-
didates. See Sect. 3 for a more detailed discussion. TPAT [44] is a modification of
TPUT where the min-k/m threshold is adapted to the specifics of the value distribu-
tions; however, the authors state that their solution may incur very high computational
cost.

KLEE [33] is a framework for distributed top-k processing that utilizes a combi-
nation of histograms and Bloom filters to reduce the communication costs of TPUT-
style algorithms. When a node is requested to return its locally best items, a KLEE
node piggybacks a histogram of the local value distribution and also Bloom filters
as compact synopses of the items for each of the top-c histogram cells or groups of
consecutive cells (where c is a tunable parameter). The receiver of these synopses,
usually the query originator, can combine the Bloom filters from different network
nodes for an approximate aggregation of values. The additional information obtained
from the per-cell synopses often allows the query processor to derive a higher min-k
threshold than TPUT would have; the subsequent round(s) of retrieving all list entries
with value above min-k/m is more restrictive and can save communication as well as
processing costs.

[1] introduces an elegant top-k algorithm for unstructured peer-to-peer systems
with epidemic messaging (aka. flooding). In contrast to our computational model, it
is assumed that each final recipient of the query message executes the full query – so
there is no aggregation on the return path.

Specific network topologies are considered in [4, 45], leading to optimizations for
hypercube or tree topologies. Unlike these approaches, TPUT and KLEE have been
designed for general networks without any assumptions on network topology. The
optimization techniques introduced in this paper are applicable to any algorithm of
the TPUT or KLEE families.

3 Query processing framework

Before discussing our optimization techniques, we briefly describe the basic query
processing primitives we rely on. We first discuss the assumed setting and the original
TPUT algorithm [9], and then expand this to KLEE and further primitives required
for our algorithm.

As scenario we assume where that the data distributed over multiple nodes in an
Internet-style network with full connectivity. A user now what to execute an aggre-
gation query originating in a certain node, i.e., the query result must be delivered to
the querying node. As a first step, the querying node must decide which nodes are
relevant for the current query. For some kinds of queries (e.g., network monitoring)
this can be all nodes, but in general only some of the nodes (perhaps 10–100) will
qualify for a given query. Note that determining the set of relevant nodes is a non-
trivial problem in itself, but is beyond the scope of this work. See for example [5] for

Distrib Parallel Databases (2009) 26: 3–27 9

a discussion. In the following we only consider the relevant nodes. After this selec-
tion step, the query originator executed the top-k aggregation query on all relevant
nodes.

Algorithmic details vary, but the basic approach in distributed top-k processing is
usually similar to the TPUT algorithm, which operators in three phases:

– Phase 1: Retrieve the top-k list entries from each of m network nodes and compute
the k-th largest aggregated value of these items (min-k), assuming a value of 0 for
all unknown values (i.e., values in lists where the item has not yet been seen).

– Phase 2: Revisit all m nodes and ask for all list items with value ≥ min-k/m, then
recompute min-k, and eliminate candidates which cannot qualify anymore for the
global top-k items.

– Phase 3: Retrieve all missing values for the remaining top-k candidate items by
random accesses to the input lists where the items have not yet been seen.

The TPUT algorithm is exact, i.e., it always computes the correct top-k result:
After the first phase it has seen at least k distinct items, thus min-k is the lower bound
for the score of the k-th item in the final result. In the second phase it retrieves all
items with a value ≥ min-k

m
, which means that an item not seen in this phase must have

all local scores < min-k
m

, and consequently their total score must be min-k (assuming
summation). Therefore the algorithm has seen all possible top-k results in the first two
phases, phase three is just needed to retrieve missing partial scores and to finalize the
result order.

The KLEE algorithm [33] is structurally similar to TPUT. It uses probabilistic
pruning, and passes additional information (histograms and bloom filters) during
query processing to eliminate data items, but the basic data flow is similar. KLEE
is not exact, though, and it does no perform score lookups in the last phase to con-
struct the final sort order but relies on the information already available.

Our optimization techniques adapt these algorithms in different ways to improve
query processing times (see the following sections). We do no change the underlying
principles, though. For example we modify the TPUT thresholds to improve query
performance, but we preserve the exactness of TPUT. Similarly, we adapt the data
flow to a hierarchical strategy to improve query performance, but the underlying item
processing uses the same upper-bound/lower-bound pruning as the original TPUT
algorithm.

Note that in the following sections we make some assumptions about score dis-
tributions within peers, availability of (small) histograms for these scores etc. These
assumptions only affect the query processing times, not the correctness of the algo-
rithm. If we do not have any information the algorithm implicitly falls back to uniform
thresholds, i.e., the original TPUT strategy. Similar for assumptions about statistical
independence etc. While these assumptions do not perfectly hold in practice due to
correlations and data skew, they allow us to make optimization decisions that improve
query processing without changing the result. (This is not strictly true for the approx-
imate algorithms, as here a misestimation can have more severe consequences. We
evaluate the result quality in Sect. 9).

10 Distrib Parallel Databases (2009) 26: 3–27

4 Cost prediction

All cost-based optimizations rely on cost predictions to decide which execution strat-
egy is preferable. We now discuss two prediction primitives required for our top-k
optimization. First, we must predict the number of items with a score above a thresh-
old, as this affects the behaviour of the top-k algorithms. Second, we must predict the
cost of the resulting network transfers, as they affect the observable runtime. We will
discuss more advanced estimation methods in Sect. 7.

4.1 Estimating the number of transfered items

An important building block for our algorithms is the estimation of the number of
items transfered in the second phase of the distributed execution. For the original
TPUT and KLEE algorithms, this corresponds to estimating the number of items at
each peer with a score at least min-k/m. In our advanced algorithms, we additionally
need to estimate the number of items whose aggregated score from a subset of all
lists is above a threshold.

To perform these estimations, each peer computes summaries of the lists that
it stores and distributes them to all other peers. This distribution can be done at
a very small overhead in the first phase of the algorithms, when each peer needs
to be contacted anyway to get its top-k items. The summaries can be, for exam-
ple, compact histograms [25] or linear splines [36]. For some applications, we may
use even more compact summaries, for example by modelling the (discretized)
value distribution of each list as a mixture of two Poisson distributions: f (x) =
α(e−β βx

x!) + (1 − α)(e−γ γ x

x!). It has been shown [13] that such mixtures are a fairly
good approximation of realistic value distributions, especially in text applications.

The first estimation task, i.e., estimating the number of items with a certain min-
imum score, can be easily performed by lookups in the corresponding list summary.
For estimating the number of items with a combined score from a certain subset of
lists above a threshold, we first need to compute the convolution of the corresponding
summaries to get a summary of the aggregated distribution. This is a cheap compu-
tation for histograms and splines; for Poisson mixes, it is even simpler as the convo-
lution of Poisson mixes is again a Poisson mix. We can now estimate the number of
items from the convoluted summary.

4.2 Estimating the network costs

After predicting the basic behavior of the algorithms, the optimizer estimates the
resulting network costs. The cost is computed using three parameters that can be
estimated or determined empirically for a given network:

1. the latency Latency[i, j] between two nodes,
2. the maximum bandwidth Bandwidth[i, j] between two nodes,
3. the effective bandwidth EffBandwidth[n] in a 1:n communication (one node send-

ing messages to its children or all children replying to their parent, in a bursty
manner).

Distrib Parallel Databases (2009) 26: 3–27 11

networkCosts(O ,T = {T1, . . . , Tn})
Input: a peer O; bytes Ti transferred between O and i

Output: the estimated network cost
1 l = 0; b = 0
2 for each Ti ∈ T

3 l = max(l,2 ∗ Latency[O, i])
4 b = b + Ti

min(Bandwidth[O,i],EffBandwidth[|T |])
5 return l + b

Fig. 2 Cost computation for 1:n transfers

The last parameter models the TCP protocol overhead, as the theoretical bandwidth
is usually not achievable. We determined it empirically by running repeated transfer
experiments with the ns-2 network simulator; it could be measured the same way in
a real system.

Using these parameters, we can estimate the costs of a 1:n transfer, which is the
basic network primitive used by the algorithms: one peer requests data from n other
peers, first sending the request and then collecting the data. The costs are determined
by the highest latency and the total transfer time according to the effectively available
bandwidth (see Fig. 2). For entire query trees, the total costs are computed by sum-
ming over the slowest path in the tree. In our experiments, the predicted costs were
usually within 10% of the real costs.

5 Hierarchical grouping and its optimization

The state-of-the-art algorithms TPUT and KLEE discussed in Sect. 2 employ a flat
execution strategy similar to Fig. 1 (a): all queried peers send their data items directly
to the query initiator. This execution model is wasteful for a number of reasons. First,
it incurs unnecessary communication. Consider, for example, a query with one very
large and several small input lists residing on different peers. It would be better to
perform the top-k query at the peer with the large list, have the small nodes ship
their items to that peer, and only send the final result to the query initiator. Second,
the peers compete for network bandwidth, as all of them send their data items to the
query initiator forming the top-k aggregation. If instead several peers aggregated data
from other peers and only sent their aggregated results to the querying peer, the total
bandwidth consumption could be reduced.

We apply a hierarchical grouping of peers in the second phase of these algorithms
to reduce transfer costs. Figure 1 (b) illustrates an example execution plan for a query
with m = 4 input lists L1 through L4 on four different peers p1 through p4. Instead of
querying all four peers for their local items with value above the (uninform) threshold
min-k/4, the query initiator contacts only peer p1, which itself contacts p2 and p4
with a threshold of min-k/3 (the last third of the threshold remains at p1). Peer p4
subsequently forwards the request to its children in the execution plan, again dividing
the threshold by the respective number of children. For peer p4, the new threshold
is min-k/(3 ∗ 2), as p4 has two children, including the (local) list L4. Note that the

12 Distrib Parallel Databases (2009) 26: 3–27

threshold for the relatively large peer p2 is higher than the threshold in a flat exe-
cution, min-k/4, reducing the number of items sent. When p4 has received all items
from its children, it aggregates them with the items of its own list and sends the result
to its parent in the execution plan, p1. As some items may occur in multiple lists, the
number of items sent to p1 is typically less than in a flat execution.

Using such a hierarchical grouping can improve the query execution, but, depend-
ing on the sizes and value distributions of the input lists, may also adversely affect
performance by adding latency and transfer cost (as data must pass through more
than one peer). Therefore, the hierarchical grouping must be constructed by a query
optimizer that computes the cost of the candidate trees and chooses the best alterna-
tive. The cost of a candidate tree refers to its total execution time, which in our model
is dominated by the bandwidth-delimited data transfer times and additional network
latencies.

In the following, we first discuss a dynamic programming method for finding the
best hierarchical structure and then discuss a fast heuristics to handle larger problems.

5.1 Dynamic programming approach

One way to find the optimal hierarchical structure is to employ dynamic program-
ming (DP) [14]. Note that we only optimize the second phase of the algorithms; so
the min-k threshold is already known in advance and we only have to organize the
aggregation of data items. The cost (i.e., execution time) of each aggregation step is
determined by the costs of its slowest input (max) and the bandwidth limitations for
getting the input data to aggregating peer (basically a weighted sum). This allows for
the following theorem:

Theorem The optimal solution of a hierarchical grouping problem can be con-
structed from optimal solutions for its subproblems (i.e., execution trees for sub-
queries).

Proof by contradiction. We assume that it is necessary to consider non-optimal so-
lutions of subproblems to find the optimal solution. Then, there exists a problem
instance with input lists L such that

1. S is an optimal solution for L and
2. S has a subplan T (i.e., node in the execution tree) that operates on lists LT ⊂ L

with T being non-optimal for this subproblem and
3. given the cost function c, c(S) < c(X) ∀ solutions X : X consists only of optimal

solutions for its subproblems

Note that the third condition is implied by the fact that we have to consider non-
optimal solutions of subproblems.

Let T ′ be the equivalent optimal solution for LT and S′ the solution derived from
S by replacing T with T ′. Obviously c(T ′) < c(T), as T was non-optimal. W.l.o.g.
we assume that S consists of exactly one non-optimal partial solution ⇒ S′ consists
only of optimal partial solutions.

Case 1: T is the root of S. Then c(T ′) < c(T) ⇒ c(S′) < c(S). Contradiction to
Condition 3.

Distrib Parallel Databases (2009) 26: 3–27 13

Case 2: T is a direct child of the root of S, i.e., T is at level 1. Let R be the root
node of S. c(R) is determined by the maximum of the costs of its children and a
weighted sum for its input sizes. As c(T ′) < c(T) replacing T with T ′ will increase
neither the maximum nor the weighted sum. c(R) = c(S) ⇒ c(S′) ≤ c(S). Contra-
diction to Condition 3.

Case 3: T is at a level > 1. Follows by induction from Case 2.
The generalization to more than one non-optimal partial solution can be shown by

induction. �

Figure 3 shows the optimization algorithm in pseudo-code; the algorithm applies
dynamic programming in a top-down formulation with memorization. The dynamic
programming table maps (lists,min-k) → (peer → plan), i.e., for each combination
of input lists and min-k threshold, we compute and keep the optimal plan for each
possible target peer where the subquery result could reside. In our distributed setting,
the placement of data also has to be taken into account. This leads to the following
optimization process: the algorithm always considers all possible peers as location for
the result, i.e., it operates on sets of plans—one plan for each possible peer where the
final result could reside. A (sub-)problem can always be solved by using a flat execu-
tion, i.e., aggregating the input peers at the target (lines 4–5). If the problem consists
of more than one input peer, the aggregation can instead be performed hierarchically:
the problem is split into smaller problems whose results are then combined (lines 6–

buildHierarchy(L,min-k)
Input: set L of all data-item lists; value threshold min-k
Output: set of optimal execution plans, one for each peer

1 if (I,min-k) has already been solved
2 return known solution
3 b = empty plan set
4 for each p ∈ peers
5 b[p] = flat aggregation of L at p, threshold min-k
6 if |L| > 1
7 for each P = {Li ⊂ L},P partitioning of L

8 L′ = {buildHierarchy(Li,min-k/|P |)|Li ∈ P }
9 for each p ∈ peers
10 Lp = {i[p]|i ∈ L′}
11 a =aggregation of Lp at p

12 if a.costs< b[p].costs
13 b[p] = a

14 for each p1,p2 ∈ peers
15 if transfer(b[p1],p2).costs< b[p2].costs
16 b[p2] =transfer(b[p1],p2)
17 store b as solution for (L,min-k) in DP table
18 return b

Fig. 3 DP algorithm for optimal grouping

14 Distrib Parallel Databases (2009) 26: 3–27

13). As it might be better to perform the entire aggregation at one peer and merely
ship the results, the algorithm considers the cost of this case (lines 14–16).

To assess the quality of an execution tree, the algorithm estimates its transfer cost.
For the transfer cost, the number of items transferred from a group of peers to their
parent is estimated using the statistical prediction model of Sect. 4.1. For large m, we
can use a faster heuristics instead of the exact DP (see below) and/or use sampling
(see Sect. 7). It is difficult to determine tight bounds for the algorithm complexity,
as search space pruning depends on the concrete problem instance. Note that the
pseudo-code is simplified, it shows the search space organization but hides several
implementation details. The DP algorithm can be implemented with an upper bound
of O(m4m). Unfortunately Ω(2m) is a lower bound which makes using DP infeasible
for large m.

5.2 Fast heuristics

Dynamic Programming finds the optimal hierarchical structure, but its run-time may
be prohibitively high, as trying out all partitionings (line 7) becomes infeasible when
the number of lists to aggregate is too large. To avoid the exhaustive search, we use
the following fast heuristics to find a good partitioning. The hierarchical structure
is basically a divide-and-conquer strategy for the aggregation; therefore, we want
to partition the lists such that the resulting partitions exhibit approximately equal
costs. In our cost model, lists with similar cardinality will cause similar effort; so we
heuristically partition the list L of all data-item lists as follows:

– SL: L sorted by cardinality of items above min-k/|L|, i.e., number of “relevant”
items in each list

– OL: every “odd” list of SL (L1,L3, . . .) (sorted by desc. cardinality)
– EL: every “even” list of SL (L2,L4, . . .) (sorted by asc. cardinality).

We expect that OL and EL are similar, e.g. OL and EL would already be a good
partitioning. However the cardinalities can vary widely. Therefore, we consider mov-
ing some of the shorter lists (tail of OL, head of EL) from one partition to another.
We concatenate OL and EL (which are sorted reversely), and cut the resulting list at
any position to get partitioning candidates. The resulting search space is no longer
exponential, allowing for an implementation in O(m2) using search space pruning.
This heuristics works very well in practice and allows very fast construction of com-
petitive execution trees even for large numbers of input lists.

6 Adaptive thresholds

After determining an initial min-k threshold, both TPUT and KLEE in their second
phase request all data items that may possibly qualify for the top-k results. TPUT
takes a conservative approach by distributing the necessary value mass uniformly
over all input lists and requests all items with a local value above min-k/m (cf. Fig. 1
(a)). However, as value distributions vary widely across lists, data-adaptive thresholds
that are specifically tuned to the individual lists (cf. Fig. 1 (c)) are promising and were

Distrib Parallel Databases (2009) 26: 3–27 15

already considered in [44], but deemed computationally intractable and not pursued
much further. Our approach chooses adaptive thresholds by first choosing scan depths
(number of items to be transferred) and then deriving appropriate value thresholds
min-k/m.

We can formally define this optimization problem as follows. Assume that we
scan the m input lists to depths d1, d2, . . . , dm, and the values at these list po-
sitions are v(d1), v(d2), . . . , v(dm), respectively. We need to ensure that we scan
deep enough so as not to miss any potential top-k candidate; this mandates the con-
straint

∑m
i=1 v(di) ≤ min-k, with uniform thresholding being a special case. We aim

to minimize the total cost of shipping list entries, which is equivalent to minimizing∑m
i=1 di , subject to the introduced constraint. For given scan depths di we can esti-

mate the resulting v(di) by using our probabilistic predictors developed in Sect. 4.1.
This problem is NP-hard, as we can reduce the Knapsack problem to our problem:

The KNAPSACK decision problem can be formulated as follows. Given m items
Xi (i = 1, . . . ,m), each with weight wi and utility ui , and a weight capacity C, decide
for a given constant U if there is a subset S ⊆ [1, . . . ,m] such that the total utility is
at least U ,

∑
j∈S uj ≥ U , and the capacity constraint

∑
j∈S wj ≤ C is satisfied.

Given an instance of KNAPSACK, we construct the following instance of the
threshold-adaption problem as follows. We consider m lists where the ith list li con-
sists of a single entry with score ui . The cost to read an entry from list i is wi . This
trivial transformation can obviously be done in polynomial time. Choosing an item
Xi in the traditional KNAPSACK terminology corresponds to reading an entry of list
li .

We claim that (A) a packing for this instance of KNAPSACK has capacity ≤ C

and utility ≥ U if and only if (B) the instance of the threshold-adaption problem has
a total cost ≤ C and a score ≥ U .

Proof of (A) ⇒ (B): Given a packing of the KNAPSACK instance with capacity
≤ C and utility ≥ U , i.e. we have Xi1, . . . ,Xik , i.e. li1, . . . , lik , with wi1 +wi2 +· · ·+
wik ≤ C and ui1 +ui2 +· · ·+uik ≥ U . Reading the entries from lists li1, . . . , lik gives
us items with scores ui1, . . . , uik . Thus, this is a solution to the threshold-adaption
problem since we meet the cost bound C and the utility U . �

Proof of (B) ⇒ (A): Given a solution to the threshold-adaption problem. Let
i1, . . . , ik be the lists from which we retrieve an entry. We know that w1 + w2 +
· · · + wk ≤ C and u1 + u2 + · · · + uk ≥ U . Reading from list lij is obviously equiv-
alent to choosing item Xij due to our problem construction. Hence, {Xi1, . . . ,Xik } is
a solution to the KNAPSACK problem. �

As we address applications with large m, an exact solution is out of the ques-
tion. However, we can devise practically good approximations based on the following
heuristics.

The key idea is to optimize the maximum scan depth over the m lists (instead
of the sum of the scan depths). In a lightly loaded network with all m scans pro-
ceeding in parallel on different peers, this objective function would be appropriate
for minimizing the latency of this phase. For our actual objective function, minimiz-
ing the total network costs (Sect. 4.2), it is merely a heuristics, but turns out to be a

Shokoufeh
Highlight

16 Distrib Parallel Databases (2009) 26: 3–27

fairly good approximation in practical settings. If we minimize the deepest scan, i.e.,
maxm

i=1 di , we can set all di to the same maximum, so that we effectively deal with
only one free variable as d1 = d2 = · · · = dm. We still need to ensure that this choice
of di satisfies the constraint. But now we can easily perform a binary search over the
possible choices, to find the lowest di without violating the constraint. Note that this
approach of uniform scan depths usually results in non-uniform local thresholds at
which the scans on the individual lists stop. Further note that each step of the binary
search requires evaluating our single-list cost prediction model for each peer. Here
we use the model based on linear splines (rather than Poisson mixes) as it is crucial
to capture the specific distributions of individual lists and to do so with high accuracy.
In our implementation, the overhead of these computations is negligible.

7 Site sampling

For distributed queries that involve hundreds of peers, interactive response times can
hardly be achieved even with all the optimizations described earlier. For such cases,
we additionally consider an approach based on sampling that operates only on a small
fraction of randomly chosen input lists.

We introduce the following two sampling dimensions:

1. Instead of considering all n items per list, consider only the top n′ items of each
list.

2. Instead of considering all m lists, consider only a sample of m′ lists.

For the second option, the sample may be chosen in either a uniform or in a data-
adaptive manner. Here we focus on the adaptive selection of m′ lists of those peers
pi with the highest value masses wi := ∑n

j=1 vi(Ij) over all their local items Ij . We
assume that we know the fraction of the total value sum that these m′ lists accumulate
(e.g., by means of per-peer histograms or other synopses):

ϕ :=
m′
∑

i=1

wi

/
(

m∑

i=1

wi

)

(without loss of generality, assume that the m′ lists are numbered 1, . . . ,m′).
We denote by min-k(m,n) the final min-k value of any exact non-sampling al-

gorithm, and by min-k(m′, n′) the final min-k value with our sampling-based algo-
rithm that considers the top n’ entries from m’ lists. The linear error |min-k(m,n) −
min-k(m′, n′)| is a measure of the accuracy of the sampling-based top-k algorithm,
and we can use this error measure for calibrating the choices of m′ and n′. However,
during query execution we do not know min-k(m,n), so we first need to estimate this
value using per-peer summaries as defined in Sect. 4.1.

7.1 Estimating min-k(m,n)

We consider a top-k query over input lists Li , i = 1, . . . ,m, spread across m peers,
and want to predict the value of min-k, i.e., the aggregated value of the rank-k item

Distrib Parallel Databases (2009) 26: 3–27 17

in the global ranking. For the sake of tractability, we assume that all index lists have
the same length n, and that all items occur in every list (but possibly with a score of
zero), i.e., there are n distinct items. We additionally assume stochastic independence
between the different lists. Although the latter assumption rarely holds in practice,
models based on independence have been very successful for many prediction tasks
and applications that require such statistical reasoning.

Now let the top-k algorithm read all entries of all lists for simplicity (any pruning
performed by the algorithm will not affect the top-k items anyway). Under our as-
sumptions, all items will be seen in all lists. For each item we want to characterize its
total value that results from the aggregation over the m lists. We denote these aggre-
gated values by the random variable S. The distribution of S, fS(x), is obtained by
the convolution of fSi(x), the distribution in each list.

Each of the n items that we see has an aggregated value according to the proba-
bility density function fS(x). Denote these random variables by T1, . . . , Tn and order
them in ascending order. Without loss of generality, we can renumber them such that
T1 ≤ T2 ≤ · · · ≤ Tn. We are interested in the value of the rank-k item, namely Tn−k+1.
This estimation problem is a standard problem in order statistics [17]. Tn−k+1, the
rank-k order statistics, is itself a random variable, which is difficult to characterize in
its full distribution. But we are only interested in its expectation E[Tn−k+1]. A first-
order approximation to this is the ((n − k + 1)/n)-quantile of FS(x); more accurate
approximations based on a Taylor-series expansion can be derived [17] but are dif-
ficult to compute (including evaluating derivatives of the quantile function). We will
therefore use the simpler first-order approximation

E[Tn−k+1] ≈ F−1
S ((n − k + 1)/n)

where F−1
S denotes the quantile function.

If we represent S with a histogram, the quantile can be efficiently calculated done
by binary search on the histogram cells.

7.2 Estimating min-k(m′, n′)

Analogously to the prediction model in the previous subsection, we can estimate the
sampling-based min-k value when considering only m′ lists, but all items in each list.
We only have to replace the convolution of all m lists by the convolution of the m′
lists used during execution.

The estimation is more difficult (and at the same time less accurate) when sam-
pling only n′ items from each list, considering a subset of m′ lists (the items are
typically non-disjoint across lists). As we will typically not see every item in every
list, we need to estimate the expected number of lists, m′′, in which we see an item,
and the expected number of distinct items, n′′, seen in all lists. We make the conser-
vative error of assuming that the n′ items are uniformly drawn among the items in a
list (whereas in reality we draw the top-n′ items).

With uniformly chosen m′ lists:

18 Distrib Parallel Databases (2009) 26: 3–27

P [item seen in q out of m′ lists]

= pseen(q) =
(

m′

q

)(
n′

n

)q(
n − n′

n

)m′−q

with expectation Eseen = m′n′/n := m′′. The probability that we see item d in at least

one list is 1 − Pseen(0) = 1 − n−n′
n

m′
= 1 − (1 − n′

n
)m

′
, and the expected number of

distinct items seen in all lists together is Edist = (1 − (1 − n′
n
)m

′
)n. Now we make

the simplifying assumption that each of the Edist items is seen in exactly m′′ lists. As
we don’t know in which lists the item will occur, we cannot compute the convolution
of the score distribution in those lists. Instead, we need to assume that all lists have a
similar score distribution that can be modeled, for example, as Poisson mix. Now we
can estimate the convolution of the m′′ lists by computing the m′′-fold convolution of
this distribution and estimate min-k(m′, n′) as shown in the previous subsection.

With the non-uniform sampling strategy that selects the m′ “heaviest” lists, the
analysis of Eseen and Edist is analogous. To take into account the fact that some
peers have much “heavier” value mass than others, we now consider also the peer-
specific wi values and adjust the Poisson-mixture parameters in the estimation of
min-k(m′, n′) as follows. We assume that all m′ lists have the same value distributions
but together constitute fraction ϕ of the overall value sum over all lists. Thus, the
expected value of an item in one of the m′ lists is larger than the expected value
in a model with all lists having equal weight by the factor ϕm/m′ =: ρ, the “boost
factor”. We then adjust the parameters of the per-list Poisson-mixture model to have
this boosted expectation. The expectation of the non-weighted Poisson mix is αβ +
(1 − α)γ . This easiest way of boosting the expectation then is by setting β ′ := ρβ

and γ ′ := ργ , yielding the expectation ρ(αβ + (1 − α)γ) of Sect. 4 for estimating
the adjusted min-k(m′, n′).

This way the selection of the peers to be sampled can be made locally by the
query initiator, without contacting other peers. All it requires is global knowledge of
the Poisson-mix parameters α, β , γ , and the peer-specific masses wi . As these values
change infrequently, we can periodically re-estimate them and disseminate them to
all peers.

8 Node failures and network dynamics

Our query execution strategies assume that the network is stable for the duration of
the query in order to have a clear semantics for the query result. Peer failures and
other aspects of network dynamics (e.g., traffic bursts that slow down peers or the
churn phenomenon in P2P systems) pose extra difficulties. While a comprehensive
discussion of these issues is beyond the scope of this paper, we offer some simple
steps to increase the robustness of our methods, based on standard techniques for
monitoring the liveness of peers (e.g., “heart-beat” messages and timeouts).

When the query originator fails, the query can be aborted anyway; if the failure is
transient, the query originator can resubmit the query after its restart. When a node
fails that was involved in message routing (e.g., an intermediate node in DHT-based

Distrib Parallel Databases (2009) 26: 3–27 19

routing) but is not involved in the query execution, we employ whatever routing re-
dundancy the underlying network provides (there is ample literature on dynamic re-
routing in the networking and P2P systems community).

The remaining, not so straightforward, case is when one of the peers fails that is
involved in the query execution tree. When a peer realizes that its parent has failed,
the techniques of [1] can be applied: the orphaned peer sends its results either directly
to the query initiator or to some known ancestor in its caller tree. Conversely, when
a peer realizes that one of its children has failed, it may either find alternative routes
to reach its affected grandchildren or it could view the entire subtree as unavailable.
Such steps may even include dynamic re-optimizations, e.g., to adjust thresholds.
Exploring approaches along these lines is left for future work.

9 Experiments

9.1 Setup

We have implemented all algorithms and our testbed in C++. The distributed nature
of the algorithms complicates experiments, in particular since we want to measure
effects of (sometimes small) variations to execution strategies. Experiments in real-
world networks like PlantetLab, while highly desirable, add a significant amount of
noise and are hard to control for systematic experiments. To obtain reproducible and
comparable results, we simulate the network. As a simulation environment we used
the ns-2 network simulator [24], which is a highly detailed and validated, state-of-
the-art packet level network simulator. It mimics the 4.x BSD TCP stack and thus
accurately models the behavior of real systems. We used the Inet-3.0 topology gener-
ator [42] to create an Internet-style topology with 3037 nodes and bandwidths ranging
from 1 MBit/s in the leaves to 10 GBit/s in the backbone. For the experiments, we
assigned the individual data lists to random nodes, and employed the network simu-
lator to compute the execution time for each algorithm given the network topology
and the data placement. The run-times include the complete network traffic, includ-
ing opening connections, SYN and ACK packets, TCP send window effects, etc. All
results are averages over 10 random placements.

Algorithms under comparison

We have presented three different optimizations. In principle any combination of
these techniques is possible, but our experimental evaluation focuses on the following
instances:

TPUT is the three-phase uniform threshold algorithm [9]. We do not consider the
variant of TPUT that uses a compression technique based on hash array encoding to
decrease the network bandwidth consumption. We consider it an orthogonal issue to
apply compression techniques to any of the investigated algorithms.

KLEE is an extension of TPUT that employs histograms and Bloom filters to in-
crease the min-k/m threshold [33]. It is an approximate algorithm, i.e., it does not
guarantee to find the exact top-k query results. The overall performance of KLEE

20 Distrib Parallel Databases (2009) 26: 3–27

depends on a parameter c that determines the number of Bloom filters that are trans-
ferred in the first execution phase as a fraction of the total value mass of an input
list. We set c = 5%. We use only the three-phase KLEE variant, and disregard the
KLEE-4 variant of [33] as its additional filtering step would be orthogonal to the
issues studied here.

AdaptiveTPUT is an extension of TPUT that uses our adaptive thresholding de-
scribed in Sect. 6, i.e., the second execution phase is enhanced by non-uniform thresh-
olds. AdaptiveKLEE is the equivalent extension of KLEE.

TreeTPUT uses hierarchical query execution plans resulting from the optimiza-
tions introduced in Sect. 5, in addition to the adaptive-threshold technique of Adap-
tiveTPUT. Adding hierarchical execution plans to AdaptiveTPUT adds the flexibility
to solve a problem by either using a flat aggregation or by splitting it into smaller
problems and solving them hierarchically (while still also using adaptive threshold-
ing). In the experiments, we use the dynamic-programming algorithm for m up to
10 and switch to the fast heuristics for higher m. In general the threshold should be
chosen such that the expected gain is larger than the expected run-time. Both can be
estimated reasonably, we used a fixed threshold to avoid CPU dependency. TreeK-
LEE is the equivalent extension of KLEE.

SamplingTreeKLEE additionally extends TreeKLEE by utilizing the sampling
techniques described in Sect. 7; i.e., SamplingTreeKLEE combines all three opti-
mizations presented in this paper. We sample a number of peers, in descending order
of value mass, so that our min-k estimate predicts a maximum error of at most 20%
compared to the min-k estimate if we ran the query on all peers. In the experiments
this resulted in typically selecting between 10 and 30 percent of the peers involved
in a query. We did not combine sampling with TPUT, as in contrast to KLEE TPUT
is designed as an exact algorithm. If desired one could combine sampling with the
approximate variant of TPUT.

Approximate vs. exact mode

KLEE has explicitly been designed as an approximate algorithm [33]. However,
KLEE and all non-sampling methods can be turned into exact algorithms by adding
an additional random-lookup phase at the end. The resulting algorithms can be con-
sidered as TPUT variants flavored with KLEE’s techniques plus our optimization
techniques. On the other hand TPUT has been designed as an exact algorithm [9], but
can be transformed into an approximate algorithm by skipping the random-lookup
phase at the end. In our experiments we study both TPUT and KLEE both in exact
and in approximate mode.

Datasets

The WorldCup HTTP server log collection1 consists of about 1.3 billion HTTP re-
quests recorded during the 1998 FIFA soccer world cup. The data was served by 33
load-balancing web servers distributed over Europe and the US, and is provided as

1http://ita.ee.lbl.gov/html/contrib/WorldCup.html.

http://ita.ee.lbl.gov/html/contrib/WorldCup.html

Distrib Parallel Databases (2009) 26: 3–27 21

249 individual access logs. We constructed 249 peers by converting each access log
into a peer. The task is to identify the top-100 clients that caused the most traffic on a
given set of peers.

AOL Query Log:2 This search-engine query log consists of ∼20M queries col-
lected from ∼650k users over three months. We have considered all (userid,
terms, date) triplets (userid provides a stable mapping from queries to users
over the entire time period). We have grouped the queries by userid and, for each
user, created all possible term pairs from her queries after applying stemming and
stopword elimination. We have finally created 5,000 peers from the users with the
highest numbers of different term pairs. Here, a top-k query consists of a set of m

users and the task to find the top-100 most frequent term pairs that occur in the queries
issued by the users over the complete time interval.

The Retail Benchmark consists of retail market basket data from an anonymous
Belgian retail store [6]. A set of 100 peers was generated by randomly assigning
each of the ∼88k transactions to exactly one peer, modeling a situation in which the
transactions had occurred at distributed shopping sites. At each peer, we generated
all possible triplets of basket items present in any of the transactions, yielding a total
number of 51,788,094 (16,769,821 distinct) triplets. As for queries, we are interested
in finding the globally most frequent triplets, using only a subset of the 100 peers
(i.e., retail stores).

Performance metrics

Cost factor bandwidth consumption: Total number of bytes transferred between the
query initiator and the peers that are involved in executing a query.

Cost factor query response time: Elapsed “wall-clock” time for the benchmarks,
using the network simulation (see above) for deriving elapsed time.

Quality factor relative recall: Overlap between the top-k results produced in the
experiments by approximate algorithms and the true global top-k results produced by
an exact method. By the exact nature of the algorithms, both the original TPUT and
the exact KLEE variants have a relative recall of 1.

9.2 Results

Figure 4 (left) shows the average query response times for the Retail benchmark for
different query sizes (number of peers queried), when all algorithms operate in exact
mode. Each point in the chart is computed by averaging over 10 independently chosen
random queries for the given number of peers (i.e., appropriately chosen query para-
meters). For all queries, TPUT is improved by AdaptiveTPUT and further improved
by TreeTPUT. Interestingly, KLEE performs worse than TPUT, and AdaptiveKLEE
performs slightly worse than KLEE for query size 20. This is caused by additional
random lookups in Phase 3: while KLEE indeed retrieves less data items in Phase 2,
it requires more random lookups in Phase 3, which are quite expensive. For query
size 20, the scan depth balancing aggravates this by reading even less data items and

2http://www.gregsadetsky.com/aol-data/.

http://www.gregsadetsky.com/aol-data/

22 Distrib Parallel Databases (2009) 26: 3–27

Fig. 4 Retail results in exact (left) and approximate (right) mode

thus requiring more random lookups. For larger query sizes 40 and 100 the benefit
of adaptive scan depths outweights the additional random lookups. The TreeKLEE
variant performs much better than KLEE and AdaptiveKLEE, but is still slower than
TreeTPUT.

Figure 4 (right) illustrates the average query response times when all algorithms
operate in approximate mode; Table 1 shows the relative recall for the largest queries.
The differences between TPUT and KLEE are smaller here, but still KLEE is slower
due to its relative expensive Phase 1 communication (which does not pay off here).
Only the TreeKLEE optimization can make use of the improved thresholds gained
from Phase 1 and thus performs better than TreeTPUT. Overall AdaptiveKLEE is
only a minor improvement over KLEE here, while TreeKLEE improves the run-time
of KLEE up to a factor of two. For TPUT the adaptive scan depths have a much
larger impact, with AdaptiveTPUT performing nearly as good as TreeTPUT for small
queries.

Figure 5 (left) shows the average query response times for the AOL benchmark
where all algorithms operate in exact mode. Both TPUT and KLEE perform simi-
lar here, with AdaptiveTPUT/AdaptiveKLEE improving the performance up to 10%
and TreeTPUT/TreeKLEE improving the run-time up to a factor of two. It is notice-
able that the optimization gains go down with increasing query size. For 300 peers
the Adaptive variants perform nearly the same as the unoptimized versions, and the
Tree variants reduce the run-time by approx. 24%. The explanation for this is the
extremely massive network load for the large queries. The queries with 300 peers
involve nearly 10% of the whole network, which causes a massive overhead due to
TCP/IP messaging. The volume of the network traffic itself is not that large (ca. 5 MB
on average) but the network simulator showed that the data cannot be sent efficiently
anymore due to the bursty traffic between a large number of interacting peers.

When the algorithms operate in approximate mode (Fig. 5 (right)), the results for
TPUT and KLEE are similar to the exact mode. However SampleTreeKLEE performs
much better, improving the run-time of KLEE by more than a factor of 5, while
maintaining a relative recall of 90% (cf. Table 1). This indicates that for very large
queries sampling is a must, as otherwise the network itself cannot handle the query
load.

Distrib Parallel Databases (2009) 26: 3–27 23

Fig. 5 AOL results in exact (left) and approximate (right) mode

Fig. 6 Worldcup results in exact (left) and approximate (right) mode

Figure 6 illustrates the average query response times for the WorldCup bench-
mark. With all algorithms operating in exact mode (shown in Fig. 6 (left)) AdaptiveT-
PUT/AdaptiveKLEE improve the average response time only slightly over TPUT and
KLEE, whereas TreeTPUT and TreeKLEE improve the run-time up to a factor of
four. Overall TreeTPUT and TreeKLEE performed similar, which suggests that the
effect of the hierarchical optimization dominates the differences between TPUT and
KLEE here.

Table 1 shows the relative recall numbers for different numbers of peers, for all
algorithms operating in approximate mode. The run-time effects of the optimization
algorithms for TPUT and KLEE (Fig. 6 (right)) are similar to the exact case. In this
scenario sampling has very low recall values, which is caused by the data distribution
of the Worldcup data set: the top entries are randomly distributed among the peers,
which means that any strategy that considers only a subset of peers must lose recall.
Thus, sampling is no panacea; it assumes that there is some exploitable correlation in
the data, which is often the case, but not always. Still the non-sampling TreeKLEE
strategy performs very well, and can be used when sampling is not appropriate.

24 Distrib Parallel Databases (2009) 26: 3–27

Table 1 Recall results in approximate mode

#Peers TPUT Adaptive Tree KLEE Adaptive Tree Sampling

TPUT TPUT KLEE KLEE TreeKLEE

Retail

40 0.98 0.97 0.97 0.92 0.90 0.90 0.85

100 0.98 0.96 0.96 0.92 0.90 0.90 0.85

AOL

200 0.99 0.98 0.98 0.99 0.98 0.98 0.90

300 0.99 0.97 0.97 0.98 0.97 0.97 0.89

Worldcup

40 0.98 0.96 0.95 0.97 0.95 0.94 0.22

100 0.99 0.97 0.96 0.98 0.96 0.95 0.13

9.3 Prediction accuracy

The optimization methods rely on the predictions discussed in Sect. 4 for min-k val-
ues and execution costs. To study the accuracy of these estimations, we compare the
distribution function induced by the actual data with the distribution function implied
by the histograms. Notice that, by comparing the distribution functions directly, we
avoid depending on the actual values of k.

The base histograms over unaggregated data have an average relative error of
< 0.5% for all lists in all data sets. So the estimations of the original, unaggregated
data (used by our non-hierarchical AdaptiveTPUT/AdaptiveKLEE) are nearly per-
fect, the estimation errors are negligible. When aggregating data we cannot expect
this level of accuracy, as we have to combine already aggregated data and assume
independence in the convolutions. Still, in experiments on the AOL data set, the er-
ror remains < 14% even for 10 convolutions and more. The error is probably caused
by correlations between the lists: While the Worldcup dataset behaves similar to the
AOL dataset, the estimations performed really well on the Retail dataset: the accu-
racy after a single convolution is very good (< 2%), and remains roughly at this level
even for 10 convolutions and more.

9.4 Discussion

Overall, TreeTPUT/TreeKLEE are the best-performing and most robust algorithms.
They are superior to all other competitors in all cases, and significantly outperform
the base algorithms with run-time gains up to a factor of four. In exact mode, TreeT-
PUT is slightly preferable to TreeKLEE (which is not surprising, as KLEE was de-
signed as an approximate algorithm). In approximate mode, TreeKLEE performs bet-
ter than TreeTPUT and is the algorithm of choice. The optimizations themselves have
a greater impact than the choice of the base algorithm: while TPUT and KLEE them-
selves perform quite differently, TreeTPUT and TreeKLEE are much closer to each
other. Optimizing only the scan depths in AdaptiveTPUT/AdaptiveKLEE already im-
proves the run-times, but the full cost-based optimizations of TreeTPUT and TreeK-
LEE give much better results and are essential for consistently good performance.

Shokoufeh
Highlight

Distrib Parallel Databases (2009) 26: 3–27 25

SamplingTreeKLEE has even shorter response times than TreeKLEE, but the two
methods are actually incomparable as SamplingTreeKLEE is inherently approximate
and typically exhibits a non-negligible loss in relative recall. Notwithstanding this ob-
servation, SamplingTreeKLEE is the method of choice for very high m and it achieves
a very impressive quality/cost ratio. For queries with 300 peers, SamplingTreeKLEE
outperforms all other methods, including TreeKLEE, by a factor of five while still
retaining decent result quality with relative recall often above 90 percent.

Although the issue of exact vs. approximate results is orthogonal to the contribu-
tions of this paper, we think it is worthwhile pointing out that the approximate variant
of TreeKLEE is a particularly intriguing algorithm for many practical applications.
It is often a factor of two faster than its exact counterpart, but consistently achieves a
relative recall above 90 percent or higher—an excellent result quality that would be
perfectly acceptable for most applications of top-k querying.

10 Conclusion and future work

This paper has developed and experimentally studied novel techniques for optimizing
top-k aggregation queries that involve many peers in a wide-area network. Each of our
main techniques can individually improve the performance of the state-of-the-art al-
gorithms, TPUT and KLEE. Together, our techniques exhibit additional synergies and
consistently outperform prior methods. We believe that distributed top-k querying
will gain even more practical importance with the further proliferation of network-
centric applications, such as network monitoring or mining of social communities.
Our future work will aim to eliminate the few limitations that our methods have: i)
generalizing beyond the current restriction to monotonic aggregation functions (e.g.,
supporting top-k average or median), ii) considering correlation information for the
underlying peers and their value distributions in the statistical predictor models, and
iii) looking for better approximation techniques for our hierarchical grouping and
adaptive thresholding methods, with the goal of being scalable to very large m while
yielding near-optimal plans.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

	Distributed top-k aggregation queries at large
	Abstract
	Introduction
	Motivation and problem statement
	Computational model, assumptions
	Contribution and outline of the paper

	Related work
	Query processing framework
	Cost prediction
	Estimating the number of transfered items
	Estimating the network costs

	Hierarchical grouping and its optimization
	Dynamic programming approach
	Fast heuristics

	Adaptive thresholds
	Site sampling
	Estimating min-k(m,n)
	Estimating min-k(m',n')

	Node failures and network dynamics
	Experiments
	Setup
	Algorithms under comparison
	Approximate vs. exact mode
	Datasets
	Performance metrics

	Results
	Prediction accuracy
	Discussion

	Conclusion and future work
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

