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Abstract—In the last decades, due to the development of the
parallel programming, the lattice Boltzmann method (LBM) has
attracted much attention as a fast alternative approach for solving
partial differential equations. In this paper, we first designed an
energy functional based on the fuzzy c-means objective function
which incorporates the bias field that accounts for the intensity
inhomogeneity of the real-world image. Using the gradient descent
method, we obtained the corresponding level set equation from
which we deduce a fuzzy external force for the LBM solver based
on the model by Zhao. The method is fast, robust against noise,
independent to the position of the initial contour, effective in the
presence of intensity inhomogeneity, highly parallelizable and can
detect objects with or without edges. Experiments on medical and
real-world images demonstrate the performance of the proposed
method in terms of speed and efficiency.

Index Terms—Fuzzy c-means (FCM), image segmentation, in-
tensity inhomogeneity, lattice Boltzmann method (LBM), level set
equation (LSE), partial differential equation (PDE).

I. INTRODUCTION

IN COMPUTER vision, image segmentation [38]–[40] is a
major and nontrivial task which aims to partition a given

image into several regions or to detect an object of interest
from the background. This task is more challenging that most
of the actual imaging devices produce images corrupted by
intensity inhomogeneity. The level set method (LSM) is a part
of the whole family of active contour methods (ACMs). The key
idea that started the level set fanfare was the Hamilton–Jacobi
approach, i.e., a time-dependent equation for a moving surface.
This was first done in the seminal work of Osher and Sethian
[1]. In 2-D space, the LSM represents a closed curve in the
plane as the zero level set of a 3-D function φ. For instance,
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starting with a curve around the object to be detected, the
curve moves toward its interior normal and has to stop on the
boundary of the object. Two approaches are usually used to stop
the evolving curve on the boundary of the desired object; the
first one uses an edge indicator depending on the gradient of
the image like in classical snakes and ACMs [2]–[5], [21], [31],
and the second one uses some regional attributes to stop the
evolving curve on the actual boundary [22], [23], [32] where
the authors extend the representative region-based level set
from scalar to tensors by simultaneously taking into account
the pixel’s gray level and some local statistics such as gradient
and orientation. The latter is more robust against noise and can
detect objects without edges. One of the most interesting ap-
proach was done in [6] where Chan and Vese introduced a level
set formulation to minimize the Mumford and Shah functional
[24] that converted the problem into a mean curvature flow
problem just like the active contours, but the results outper-
formed the classical active contours because the stopping term
did not depend on the gradient of the image which reduces the
dependence on clear edges. However, the method is sensitive
to the position of the initial contour, and the evolving curve
can be trapped into local minima. In addition, the Chan–Vese
(CV) method is not suitable for parallel programming because,
at each iteration, the average intensities inside and outside the
contour should be computed, which increases drastically the
CPU time by increasing communications between processors.
For this purpose, we propose a new method which tries to
overcome the aforementioned drawbacks. Our method is based
on a new idea which aims to stop the evolving curve according
to the membership degree of the current pixel to be inside or
outside of the active contour. This is done with the help of the
modified fuzzy C-means (FCM) objective function obtained in
[19] which also takes into consideration the shading image due
to the intensity inhomogeneity.

In the LSM, the movement of the zero level set is actually
driven by the level set equation (LSE), which is a partial
differential equation (PDE). For solving the LSE, most classical
methods such as the upwind scheme are based on some finite
difference, finite volume or finite element approximations and
an explicit computation of the curvature [20]. Unfortunately,
these methods cost a lot of CPU time.

Recently, the lattice Boltzmann method (LBM) has been
used as an alternative approach for solving LSE [12], [14],
[29], [36]. It can better handle the problem of time consuming
because the curvature is implicitly computed and the algorithm
is simple and highly parallelizable.
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In this paper, the LBM is used to solve the LSE. The pro-
posed method is based on the approach of the LBM PDE solver
defined in [14]. In our proposed method, using a modified
FCM objective function, we design a new fuzzy external force
(FEF). The method is fast, robust against noise, and efficient
whatever the position or the shape of the initial contour and
can detect efficiently objects with or without edges. It has, first,
the advantage of the FCM which gives it the latitude to stop
the evolving curve according to the membership degree of the
current pixel, second, the advantages of the LSM which allow
it to handle complex shapes, topological changes, and different
constraints on the contour smoothness, speed, size, and shape
which are easily specified, and, third, the advantages of the
LBM which make it very suitable for parallel programming due
to its local and explicit nature.

The rest of this paper is organized as follows. In Section II, a
general overview of the LSM and the LBM models is presented.
In Section III, we explain the formulation of the proposed
method. Section IV validates the proposed method through
experimental results. Section V concludes this paper.

II. BACKGROUND

The proposed method uses mainly two techniques belonging
to different frameworks: the LSM and the LBM.

A. LSM

The LSM is a numerical technique for tracking interfaces
and shapes. Using an implicit representation of active contours,
it has the advantage of handling automatically topological
changes of the tracked shape. In 2-D image segmentation, the
LSM represents a closed curve as the zero level set of φ, called
the level set function. The evolution of the curve starts from an
arbitrary starting contour and evolves itself driven by the LSE
which can be seen as a convection–diffusion equation

∂θ

∂t
+ �V · ∇φ = bΔφ (1)

where ∇φ and Δφ are the gradient and the Laplacian of φ,
respectively. The term bΔφ is called artificial viscosity (Sethian
suggested replacing it with bk|∇φ| which is better for handling
the evolution of lower dimensional interfaces [12]), and k is the
curvature of the distance function φ. The LSE can therefore be
written as

∂θ

∂t
+ �V · ∇φ = bk|Δφ|. (2)

Being an alternative method for solving PDE, the LBM has
several advantages, such as parallelizability and simplicity. In
this paper, we use the D2Q9 LBM model to resolve the LSE in
2-D space.

B. LBM

The LBM is a numerical framework for modeling Boltzmann
particle dynamics on a 2-D or 3-D lattice [13]. It was first
designed to solve macroscopic fluid dynamics problems [14].
The method is second order accurate both in time and in

Fig. 1. Spatial structure of the D2Q9 LBM lattice.

space, and in the limit of zero time step and lattice spacing,
it yields the Navier–Stokes equations for an incompressible
fluid [15].

The proposed method uses the D2Q9 (2-D with eight links
with its neighbors and one link for the cell itself) LBM lattice
structure. Fig. 1 shows a typical D2Q9 model. Each link has its
velocity vector ei(�r, t) and the particle distribution fi(�r, t) that
moves along this link, where �r is the position of the cell and t is
the time. The LBM evolution equation can be written as follows
using the Bhatnagar, Gross, and Krook collision model [7]

fi(�r + �ei, t+ 1) = fi(�r, t) +
1

τ
[f eq

i (�r, t)− fi(�r, t)] (3)

where τ represents the relaxation time determining the kine-
matic viscosity ϑ of the fluid by

ϑ =
1

3

(
τ − 1

2

)
(4)

and f eq
i is the equilibrium particle distribution defined as

f eq
i (ρ, �u) = ρ

(
Ai +Bi(�ei · �u) + Ci(�ei · �u)2 +Di(�u)

2
)

(5)

where Ai to Di are constant coefficients depending on the
geometry of the lattice links and ρ and �u are the macroscopic
fluid density and velocity, respectively, computed from the
particle distributions as

ρ =
∑
i

fi �u =
1

ρ

∑
i

fi�ei. (6)

For modeling typical diffusion computations, the equilibrium
function can be simplified as follows [14]:

f eq
i (ρ, �u) = ρAi. (7)

In the case of D2Q9 model, Ai = 4/9 for the zero link,
Ai = 1/9 for the axial links, and Ai = 1/36 for the diagonal
links. Now, the relaxation time τ is determined by the diffusion
coefficient γ defined as

γ =
2

9
(2τ − 1). (8)

As shown in [14], LBM can be used to solve the
parabolic diffusion equation which can be recovered by the
Chapman–Enskog expansion

∂ρ

∂t
= γ∇ · ∇ρ. (9)
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In this case, the external force can be included as follows:

fi ← fi +
2τ − 1

2τ
Bi(

−→
F · �ei). (10)

Moreover, thus, (9) becomes

∂ρ

∂t
= γ∇ · ∇ρ+ F. (11)

Replacing ρ by the signed distance function φ, the LSE can be
recovered.

III. PROPOSED METHOD

This section details first the conception of the FCM-based
energy function from which we deduce the corresponding LSE.
We then set the FEF. Moreover, finally, we implement the
proposed method.

A. Energy Function Design

In the image segmentation context, the standard FCM algo-
rithm is an optimization problem for partitioning an image of
N pixels, X = {xi}Ni=1, into c classes. It aims to minimize a
clustering criterion as [7]

J(U, V,X) =

c∑
k=1

N∑
i=1

up
ki‖xi − vk‖2

s.t.
c∑

k=1

uki =1 ∀i 0 ≤ uki ≤ 1 ∀k, i (12)

where U is the partition matrix whose element uki is the mem-
bership of the ith voxel for kth class. V is the centroid vector
whose element vk is the centroid (or prototype) of kth class. The
parameter p, called fuzzy index, is a weighting exponent on each
fuzzy membership and determines the amount of “fuzziness”
of the resulting partition. The norm operator ‖.‖ represents
the standard Euclidean distance. The objective function J is
minimized when high membership values are assigned to the
pixels whose intensities are close to the centroid of its particular
class and low membership values are assigned to the pixels
whose intensities are far from the centroid.

As done in [7], the bias field is incorporated into the FCM
framework by modeling the observed image as follows:

Yi = XiGi ∀i ∈ {1, 2, . . . , N} (13)

where Yi, Xi, and Gi are the observed intensity, true intensity,
and gain field at the ith pixel, respectively. N is the total number
of pixels in the magnetic resonance image. The artifact can be
modeled as an additive bias field by applying a logarithmic
transformation to both sides of (13) [7], [8]

yi = xi + βi ∀i ∈ {1, 2, . . . , N} (14)

where yi and xi are the observed and true log-transformed
intensities at the ith voxel, respectively, and βi is the bias field
at the ith voxel. By incorporating the bias field model into an
FCM framework, we will be able to iteratively estimate both the
true intensity and the bias field from the observed intensity. By

substituting (14) into (12), the clustering criterion to minimize
in the presence of bias field becomes a constrained optimization
problem

J(U, V,B, Y ) =

c∑
k=1

N∑
i=1

up
ki‖yi − βi − vk‖2

s.t.
c∑

k=1

uki =1 ∀i 0 ≤ uki ≤ 1 ∀k, i (15)

where Y = {yi}Ni=1 is the observed image and B = {βi}Ni=1 is
the bias field image.

In a continuous form, the aforementioned criterion can be
written as

J(U, V,B, Y )

=

c∑
k=1

∫
Ωk

Up
k (x, y) ‖Y (x, y)−B(x, y)− vk‖2 dxdy

s.t.
c∑

k=1

Uk(x, y)

= 1 ∀x, y 0 ≤ Uk(x, y) ≤ 1 ∀k, x, y. (16)

Consider the two-phase level set although the method can be
easily extended to more than two phases. The image domain Ω
is segmented into two disjoint regions Ω1 and Ω2, i.e., c = 2. In
this case, we can introduce a level set function as follows:

J(U, V,B, Y, φ)

=

∫
Ω

Up
1 (x, y)‖Y (x, y)−B(x, y)−v1‖2 H(φ)dxdy

+

∫
Ω

Up
2 (x, y)‖Y (x, y)−B(x, y)−v2‖2(1−H(φ)) dxdy

s.t. U1(x, y)+U2(x, y)

=1 ∀x, y 0≤Uk(x, y)≤1 ∀k, x, y (17)

where φ is a signed distant function. The aforementioned term
J(U, V,B, Y, φ) is used as the data link in our energy functional
which is defined as follows:

E(U, V,B, Y, φ) = J(U, V,B, Y, φ) + ν|C| (18)

where ν|C| is a regularization term with ν > 0 being a fixed
parameter and C being a given curve which is represented
implicitly as the zero level of φ and |C| is the length of C and
can be expressed by the following equation [9]

|C| =
∫
Ω

|∇H(φ)| dxdy. (19)

B. LSE

As done in [10], to obtain the LSE, we minimize
E(U, V,B, Y, φ) with respect to φ. For fixed U , V , and B, we
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use the gradient descent method

∂φ

∂t
= −∂E

∂φ
(20)

where ∂E/∂φ is the Gâteaux derivative [11] of E. We obtain
the following LSE:

∂φ

∂t
= δ(φ)

(
Up
1 (x, y) ‖Y (x, y)−B(x, y)− v1‖2

−Up
2 (x, y) ‖Y (x, y)−B(x, y)− v2‖2

)

+ νδ(φ)div

(
∇φ

|∇φ|

)

s.t. U1(x, y) + U2(x, y) = 1 ∀x, y
0 ≤ Uk(x, y) ≤ 1 ∀k, x, y. (21)

However, for solving the minimization problem of
E(U, V,B, Y, φ), we should also compute the first derivatives
of E(U, V,B, Y, φ) with respect to uki, vk, and βi and set them
equal to zero. We thus obtain three necessary conditions

U ∗
k(x, y) =

1∑c
l=1

(
‖Y (x,y)−B(x,y)−vk‖
‖Y (x,y)−B(x,y)−vl‖

) 2
(p−1)

(22)

v∗k =

∫
Ω Up

k (x, y) (Y (x, y)−B(x, y)) dxdy∫
Ω Up

k (x, y)dxdy
(23)

B∗(x, y) =Y (x, y)−
∑c

k=1 U
p
k (x, y)vk∑c

k=1 U
p
k (x, y)

. (24)

C. Lattice Boltzmann Solver for LSE

By using the gradient projection method of Rosen [17], we
can replace δ(φ) by |∇φ| in the proposed LSE, and as φ is a
distance function, we have |∇φ| = 1 [16], [20] and will stay at
each step since an adaptive approach is not used and the distant
field is valid in the whole domain [25]. Thus, the proposed LSE
becomes

∂φ

∂t
= Up

1 (x, y) ‖Y (x, y)−B(x, y)− v1‖2

− Up
2 (x, y) ‖Y (x, y)−B(x, y)− v2‖2 + νdiv(∇φ)

s.t. U1(x, y) + U2(x, y) = 1 ∀x, y
0 ≤ Uk(x, y) ≤ 1 ∀k, x, y. (25)

Replacing ρ by the signed distance function φ, (11) becomes

∂φ

∂t
= γdiv(∇φ) + F. (26)

By setting the external force

F = λ
(
Up
1 (x, y) ‖Y (x, y)−B(x, y)− v1‖2

−Up
2 (x, y) ‖Y (x, y)−B(x, y)− v2‖2

)
(27)

where λ is a positive parameter; we can see that (25) is only
a variational formula of (26) and, thus, can be solved by the
LBM with the above-defined FEF. The choice of parameter p is
at great importance for the segmentation result. Different values
for p will result in the different results, as following.

1) If p > 2, then the exponent 2/(p− 1) in (22) decreases
the membership value of the pixels that are closed to the
centroid. The segmentation result will therefore be wrong
since it is intuitively better that the membership value be
high for those pixels who are closed to the centroid.

2) If p → ∞, all the membership values tend to 1/c. This
implies that the

FEF → λ

((
1

c

)p

‖Y (x, y)−B(x, y)− v1‖2

−
(
1

c

)p

‖Y (x, y)−B(x, y)− v2‖2
)

→ 0.

There is, therefore, no link with the image data in the
LSM process. Therefore, segmentation is impossible.

3) If p → 1, the exponent 2/(p− 1) increases the member-
ship values of the pixels who are closed to the centroid.
As p → 1, the membership tends to one for the closest
pixels and tends to zero for all the other pixels. This case
is equivalent to the use of the k-means objective function
instead of the FCM one. The segmentation is therefore
rigid, and we lose the advantage of FCM over k-means.

For all these reasons, a suitable choice of the parameter p
can be the value of two, which is therefore used in all our
experiments.

D. Implementation

When using LBM to resolve the convection–diffusion equa-
tion, the particle density is set as φ which is a signed distance
function. Since the particle number of the cell cannot be nega-
tive, we modify the distance function as φ′ = φ−min(φ). The
contour is those pixels which satisfy φ′ = −min(φ).

The steps for the computation are outlined as follows.

1) Initialize the distance function φ and class centroid values
v1 and v2. Initialize B with zeros.

2) Compute Up
1 (x, y) and Up

2 (x, y) with (22).
3) Compute v1 and v2 with (23).
4) Compute B with (24).
5) Compute the external force with (27).
6) Include the external force based on (10).
7) Resolve the convection–diffusion equation with LBM

with (3).
8) Accumulate the fi(�r, t) values at each grid point by (6),

which generates an updated distance value at each point.
9) Find the contour.

10) If the segmentation is not done, increase the value of λ
and go back to step 5).

We should notice that the B obtained from (24) is a “resid-
ual” image but not necessarily the bias field image [7]. In [18],
the adaptive fuzzy c-means (AFCM) algorithm by Pham and
Prince solved the problem by introducing regularization terms
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into the objective function that ensure the resulted bias field
image to be smooth. The regularization terms, however, make
the estimation of the bias field a computationally intensive
process. As done in [7], another solution is to estimate the
bias field by filtering the residual image B in (24) using an
iterative low-pass spatial filter. This filtering strategy is based
on the fact that the bias field is of low spatial frequency and the
assumption that other components in the residual image are of
higher frequency.

IV. EXPERIMENTS AND ANALYSIS

This section is divided into three parts. The first part demon-
strates the accuracy and the effectiveness of the proposed
method by comparing it with four level set image segmentation
methods [10], [12], [25], [37]. The second part illustrates the
ability of the proposed method in terms of speed and efficiency.
The third part evaluates objectively our method using the super-
vised Hausdorff method and the global consistency error (GCE)
by Martin. In the implementation of our method, the value of
the fuzzy index p is set to two, the class centroid values v1 and
v2 are randomly initialized at zero and one, respectively, and the
diffusion coefficient γ is set to 15. All the methods have been
implemented using Matlab R2010b installed on a PC Advanced
Micro Devices (AMD) Athlon [trademark (tm)] 5200 processor
with a clock speed of 2.31 GHz and 2 GB of RAM.

A. Comparison in Terms of Effectiveness and Accuracy

In this part, we compare the proposed method with four level
set image segmentation methods of which three are LBM based.
The first one was introduced by Hagan and Zhao in [25] for
3-D image segmentation, the second one was introduced by
Chen et al. in [12], the third one was introduced by Li et al.
in [10], and the last one was introduced by Wang et al. in [37].

Fig. 2 shows the proposed method on Magnetic Resonance
Imaging (MRI) image of the knee. Intensity inhomogeneities
can be clearly seen in the image. Fig. 2(a) shows the initial con-
tour, Fig. 2(b) shows the segmentation result using the method
by Chen et al., Fig. 2(c) shows the segmentation result using the
method by Hagan and Zhao, Fig. 2(d) shows the segmentation
result using the method introduced by Wang et al., Fig. 2(e)
shows the segmentation result using the method by Li et al.,
and Fig. 2(f) shows the segmentation result using the proposed
method.

We can see that the proposed method gives the best seg-
mentation results whatever the shape and the position of the
initial contour and the resulting contours are thin and present
no discontinuities. This allows it to be efficient in automatic
systems. The method by Chen et al. and the method by Li et al.
both based on an edge stopped function fail because the
objects in the image have weak edges. The method by
Hagan and Zhao is handicapped by intensity inhomogeneity
and tends to give an oversegmented result; furthermore, the
resulting contours present many discontinuities. The method by
Wang et al. gives a different result according to the initial
contour; it is therefore less robust than the proposed method,
and furthermore, the quality of the segmentation using the
proposed method is better.

Fig. 2. Segmentation of an MRI image of the knee. (a) shows the initial
contours, (b) shows the segmentation results of the method by Chen et al.,
(c) shows the segmentation results of the method by Hagan and Zhao, (d) shows
the segmentation results of the method introduced by Wang et al., (e) shows the
segmentation results of the method by Li et al., and (f) shows the segmentation
result of the proposed method.

Fig. 3 shows the segmentation result of an MRI image of the
knee corrupted by a multiplicative noise. We used the Matlab
speckle function with v = 0.04 to insert the multiplicative
noise. It can be seen that the proposed method is more robust to
noise and gives the best results.

Fig. 4 shows the segmentation result of an MRI image
of blood vessels. The result of the proposed method is
clearer and is not oversegmented like, for example, that of
method by Hagan and Zhao; furthermore, the resulting contours



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS

Fig. 3. Segmentation of an MRI image of the knee corrupted by a multiplicative noise. (a) Initial contour. (b) Segmentation result using the method by
Chen et al. (c) Segmentation result using the method by Hagan and Zhao. (d) Segmentation result using the proposed method.

Fig. 4. Segmentation of an MRI image of blood vessels. (a) Initial contour. (b) Segmentation result using the method by Chen et al. (c) Segmentation result
using the method by Hagan and Zhao. (d) Segmentation result using the method introduced by Wang et al. (e) Segmentation result using the method by Li et al.
(f) Segmentation result using the proposed method.

Fig. 5. (a) Initial contours. (b) Segmentation results of the CV method. (c) Segmentation results of the Gibou–Fedkiw method. (d) Segmentation results of the
proposed method.
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TABLE I
CPU TIMES OF THE EXPERIMENT SHOWN IN FIG. 5

Fig. 6. (a) Initial contours. (b) Segmentation results of the CV method. (c) Segmentation results of the Gibou–Fedkiw method. (d) Segmentation results of the
proposed method.

TABLE II
CPU TIMES OF THE EXPERIMENT SHOWN IN FIG. 6

are closed and present nondiscontinuities. The method by
Wang et al. gives again an undersegmented result, and in the
method by Li et al., the contour is trapped in a local minimum.

B. Comparison in Terms of Speed and Efficiency

In this part, we compare the proposed method with the well-
known CV method [6] and the fast Gibou–Fedkiw method
described in [26].

Fig. 5 shows the segmentation result obtained on a real-world
image with different initial contours. All the CPU times are
displayed in Table I. In terms of quality and accuracy, it can
be seen that the proposed method gives better result than the
Gibou-Fedkiw method whatever the shape and the position of
the initial contour. The Gibou-Fedkiw method cannot detect
steep corners and has all the inconveniences of k-means al-
gorithm, i.e., the result changes with the initial contour and

one should run the algorithm several times in order to choose
the best result; thus, this method cannot be used in automatic
systems, and even if it is fast when running it one time, the
segmentation will take more much time since one should run
the method several times. We can also remark that the proposed
method can give better results than the CV method and can
detect all the contours whatever the position of initial contour,
while in the CV method, the contour can be trapped in a local
minimum. Furthermore, the proposed method is more than
100 times faster than the CV method and can be faster when
implemented on graphics processing unit (GPU) due to the
local and explicit nature of the LBM solver.

Fig. 6 shows also the segmentation result obtained on a real-
world image with different initial contours. The CPU times are
displayed in Table II. The proposed method gives better result
than the CV and Gibou–Fedkiw methods whatever the shape
and the position of the initial contour. We can also remark that
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Fig. 7. (a) Original images. (b) Segmentation results using the CV method. (c) Segmentation results using the Gibou–Fedkiw method. (d) Segmentation results
using the proposed method. (e) Segmentations did by humans.
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TABLE III
RESULTS OF THE QUALITATIVE EVALUATION BETWEEN THE PROPOSED METHOD, THE CV METHOD, AND THE FAST GIBOU–FEDKIW METHOD

the result of the Gibou–Fedkiw method changes with the initial
contour. The proposed method gives the same good result,
while in the CV method, the contour is trapped in a local
minimum and it is far faster.

C. Supervised Evaluation of the Proposed Method

In order to objectively evaluate the proposed method, we use
two well-known metrics, the Hausdorff distance and the GCE
by Martin. As defined in [27] and [28], the Hausdorff distance
measures the similarity between two images. The lower it is,
the better the segmentation result is. The Hausdorff distance is
computed as follows:

HAU(IC , Iref) = max (h(IC , Iref), h(Iref , IC)) (28)

where

h(IC , Iref) = max
a∈IC

(
min
b∈Iref

‖a− b‖
)
. (29)

The metric by Martin measures also the similarity between
two images; it is shown to be effective for qualitative similarity
comparison between segmentations by humans, which often
produce results with different degrees of perceived details,
which are all intuitively reasonable and therefore “correct.”
There are two variants of the measure by Martin [33]–[35], the
GCE and the local consistency error (LCE). Specifically

GCE(I, V ) =
1

A
min

{∑
s

E(s),
∑
s

E ′(s)

}
(30)

LCE(R, V ) =
1

A

∑
s

min {E(s), E ′(s)} (31)

where I is the image, V is the ground truth, R is the segmenta-
tion result of the method to evaluate, A is the number of pixels
in the image

E(s) =
card

(
Vj

Ri

)
card(Vj)

(32)

and

E(s) =
card

(
Vj

Ri

)
card(Vj)

(32)

E′(s) =
card

(
Ri

Vj

)
card(Ri)

(33)

with Vj as the region of the ground truth to which the pixel s
belongs and Ri as the region of the segmented image to which
the pixel s belongs. This measure produces a real-valued output
in the range of [0, 1] where 0 signifies no error and 1 signifies
worst segmentation.

Fig. 7 shows the segmentation results used to quantita-
tively evaluate the proposed method, the CV method, and the
Gibou–Fedkiw method. The images, and the humans’ segmen-
tations used as the ground truth, are from the Berkeley segmen-
tation data set BSDS300 [30]. Table III displays the evaluation
results using the metrics by Hausdorff and Martin. We can
notice that the proposed method has the lowest values of the
criteria by Hausdorff and Martin; thus, its segmentation result
is better than those of CV and the Gibou–Fedkiw methods.

V. CONCLUSION

In this paper, we have presented a level set image segmenta-
tion method based on the idea of stopping the evolving contour
according to the degree of membership of the active pixel to be
inside or outside of this evolving contour. It is done with the
help of the FCM partition matrix. The LSE is solved by using
the powerful, simple, and highly parallelizable LBM which
allows the method to be a good candidate for GPU imple-
mentation. The method gives promising results. Experimental
results on medical and real-world images have demonstrated the
good performance of the proposed method in terms of speed,
effectiveness in the presence of intensity inhomogeneities, ac-
curacy, robustness against noise, and efficiency whatever the
initial contour. Future works can be an implementation of the
proposed method using a parallel device such as the GPU in
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order to fully take advantage of the LBM. The method will be
faster and suitable for 3-D volume image segmentation. The
segmentation result can also be enhanced by inserting spatial
information in the FEF, but one should be careful to not affect
the parallelizability of the method.
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