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ABSTRACT
The availability of an increasing amount of user generated data is
transformative to our society. We enjoy the benefits of analyzing
big data for public interest, such as disease outbreak detection and
traffic control, as well as for commercial interests, such as smart
grid and product recommendation. However, the large collection
of user generated data contains unique patterns and can be used
to re-identify individuals, which has been exemplified by the AOL
search log release incident. In this paper, we propose a practical
framework for data analytics, while providing differential privacy
guarantees to individual data contributors. Our framework gener-
ates differentially private aggregates which can be used to perform
data mining and recommendation tasks. To alleviate the high per-
turbation errors introduced by the differential privacy mechanism,
we present two methods with different sampling techniques to draw
a subset of individual data for analysis. Empirical studies with real-
world data sets show that our solutions enable accurate data analyt-
ics on a small fraction of the input data, reducing user privacy risk
and data storage requirement without compromising the analysis
results.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration—Se-
curity, integrity, and protection; H.2.8 [Database Management]:
Database Applications—Data mining

Keywords
Data Analytics, Differential Privacy, Sampling

1. INTRODUCTION
We live in the age of big data. With an increasing number of

people, devices, and sensors connected with digital networks, in-
dividual data now can be largely collected and analyzed to under-
stand important phenomena. One example is Google Flu Trends 1,
a service that estimates flu activity by aggregating individual search

∗work done while interning with Samsung.
1http://www.google.org/flutrends/

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2015, May 18–22, 2015, Florence, Italy.
ACM 978-1-4503-3469-3/15/05.
http://dx.doi.org/10.1145/2736277.2741122.
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Figure 1: Record Distribution of Netflix Users
queries. In the retail market, individual purchase histories are used
by recommendation tools to learn trends and patterns. Performing
analytics on private data is clearly beneficial, such as early detec-
tion of disease and recommendation services. However, user con-
cerns rise from a privacy perspective, with sharing an increasing
amount of information regarding their health, location, service us-
age, and online activities.

As a matter of fact, the uniqueness of each user is increased
by the big collection of individual data. The AOL data release in
2006 is an unfortunate example of privacy catastrophe [1], in which
the search logs of an innocent citizen were quickly identified by
a newspaper journalist. A recent study by de Montjoye et al. [9]
concludes that human mobility patterns are highly unique and four
spatio-temporal points are enough to uniquely identify 95% of the
individuals. In order to protect users from re-identification attacks,
their private data must be transformed prior to release for analysis.

The current state-of-the-art paradigm for privacy-preserving data
analysis is differential privacy [10], which allows un-trusted par-
ties to access private data through aggregate queries. The aggre-
gate statistics are perturbed by a randomized algorithm, such that
the output remains roughly the same even if any user is added or
removed in the input data. Differential privacy provides a strong
guarantee: given the output statistics, an adversary will not be able
to infer whether any user is present in the input database. However,
this indistinguishability can be only achieved at high perturbation
cost. Intuitively, the more data a user contributes to the analysis
process, the more perturbation noise is needed to hide his/her pres-
ence. In some cases, a user could generate an unbounded amount of
data, such as purchase or check-in history, the addition or removal
of which may result in unlimited impact on the output.

The challenge of enforcing differential privacy is that it incurs a
surplus of privacy cost, i.e. high perturbation error, being designed
to protect each user according to the highest possible data contri-
bution. In reality, only a very small number of users generate large
amount of personal data, while the rest contribute little data each.
As shown in Figure 1, out of 500K users from Netflix prize com-
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petition [2], only 1 user generated around 17K data records, while
the majority of users generated much less personal data, less than
2K data records each. If a upper bound is imposed on individual
user data contribution, the surplus of privacy, e.g. high perturbation
noise, can be reduced at the cost of data loss, i.e. part of data from
those users who contributed more than the threshold.

To limit individual data contribution, some strategies have been
adopted by several works [16][25]. The authors of [16] used the
first d search queries submitted by each user, and the work in [25]
reduced the number of items contained in each transaction to l with
“smart” truncation. However, there has been no discussion on the
choice of the bounds, i.e., d and l. Furthermore, the choice of actual
user records (or items in a single transaction) remains non-trivial,
for generic applications.

With a rigorous privacy notion, we consider how to analyze in-
dividually contributed data to gain a deep understanding of service
usage and behavior patterns, for various application domains. We
would like to understand the impacts of privacy and data loss on the
resulting data analytics, and design algorithms to draw private data
accordingly. Example data analytical questions are: “Which places
do people visit on Thursdays?” and “What are the most popular
movies with female watchers under age 25?” We formally define
the tasks as database queries and details are provided in Section 3.

Contributions. In this paper, we address the problem of differ-
entially private data analytics, where each user could contribute a
large number of records. We propose a generic framework to gen-
erate analysis results on a sampled database, and study two sam-
pling methods as well as the sampling factor in order to achieve a
balance between data loss and privacy surplus. We summarize the
contributions of this paper as follows:
(1) We propose a generic, sampling-based framework for an im-
portant class of data analytical tasks: top-K mining and context-
aware recommendation. We consider the problem of releasing a
set of count queries regarding the domain-specific items of interest
as well as customizable predicates to answer deep, analytical ques-
tions. The count queries are perturbed prior to release such that
they satisfy differential privacy.
(2) We design two algorithms that draw a sample of user records
from the raw database and generate analysis results on the sampled
data. The SRA algorithm randomly samples up to l records per
user. The HPA algorithm selects up to l records from each user that
are most useful for the specific analytical tasks. The utility of each
record can be customized based on the actual application domain.
We outline each sampling method and provide pseudo code for easy
implementation.
(3) We provide analysis on the accuracy of random sampling,
i.e. Mean Squared Error of released counts, with respect to the
sampling factor l. We conclude that the optimal l value is posi-
tively correlated the privacy constraint. We show that performing
record sampling on individual user’s data does not inflict extra pri-
vacy leakage. We formally prove that both sampling algorithms
satisfy differential privacy.
(4) We conduct extensive empirical studies with various real-
world data sets. We compare our approaches with existing differ-
entially private mechanisms and evaluate the accuracy of released
count data with three utility metrics. The experimental results show
that although performed on a small sampled database, our methods
provide comparable performance to the best existing approaches
in MSE and KL-divergence, and superior performance in top-K
discovery and context-aware recommendation tasks. The HPA al-
gorithm yields higher precision, while the SRA algorithm preserves
well the distributional properties in released data. We believe that
our privacy-preserving framework will enable data analytics for a

variety of services, reducing user privacy cost and data storage re-
quirement without compromising output utility.

The rest of the paper is organized as follows: Section 2 briefly
surveys the related works on privacy-preserving data publishing
and analytics. Section 3 defines the problem and privacy notion.
Section 4 presents the technical details of the proposed framework
and two sampling algorithms. Theoretical results of privacy guar-
antees are provided in Section 5. Section 6 describes the data set
and presents a set of empirical studies. Finally, Section 7 concludes
the paper and states possible directions for future work.

2. RELATED WORKS
A plethora of differentially private techniques have been devel-

oped since the introduction of ε-differential privacy in [12]. Here
we briefly review the most recent, relevant works to our problem.

Differential Privacy. Dwork et al. [12] first proposed ε-differential
privacy and established the Laplace mechanism to perturb aggre-
gate queries to guarantee differential privacy. Since then, two vari-
ants have been proposed and adopted by many works as relaxations
of ε-differential privacy. The (ε, δ)-probabilistic differential pri-
vacy [19] achieves ε-differential privacy with high probability, i.e.
≥ (1−δ). The (ε, δ)-indistinguishability [11, 21] relaxes the bound
of ε-differential privacy by introducing an additive term δ. Our
work adopts the strict definition of ε-differential privacy and the
Laplace mechanism to release numeric data for analysis.

Data Publication Techniques. A plethora of works have been pro-
posed to publish sanitized data with differential privacy. To list a
few representatives among them, there is histogram publication for
range queries [7], for a given workload [24], and for sparse data [8].
The majority of data publication methods consider settings where
each user contributes only one record, or affects only one released
count. In contrast, we focus on those services where each individ-
ual may contribute a large number of records and could even have
unbounded influence on the released count queries.

Bounding Individual Contribution. Here we review works es-
tablished in a similar problem setting, i.e. where individual data
contribution is high, i.e. high global sensitivity. The work of Nis-
sim et al. [21] proposed smooth sensitivity, which measures indi-
vidual impact on the output statistics in the neighborhood of the
database instance. They showed that smooth sensitivity allows a
smaller amount of perturbation noise injected to released statistics.
However, it does not guarantee ε-differential privacy. Proserpio et
al. [22] recently proposed to generalize ε-DP definition to weighted
datasets, and scale down the weights of data records to reduce sen-
sitivity. Rastogi and Nath [23], Fan and Xiong [13] and Chan et.
al [5] studied the problem of sharing time series of counts with
differential privacy, where the maximum individual contribution is
T , the number of time points. The authors of [23] proposed to
preserve only k discrete Fourier coefficients of the original count
series. The FAST framework in [13] reduced the sensitivity by
sampling M points in a count series and predicts at other points.
The work [5] proposed the notion of p-sum to ensure each item
in the stream only affects a small number of p-sum’s. Two works
by Korolova et al. [16] and Hong et al. [14] addressed the differ-
entially private publication of search logs, where each user could
contribute a large search history. The work of [16] keeps the first
d queries of each user, while the work of [14] explicitly removes
those users whose data change the optimal output by more than a
certain threshold. Zeng et al. [25] studied frequent itemset mining
with differential privacy and truncated each individual transaction
to contain up to l items. Recently, Kellaris and Papadopoulos [15]
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Figure 2: Releasing Counts for Data Analytics
proposed to release non-overlapping count data by grouping similar
columns, i.e. items in our definition. In their work, each user is al-
lowed to contribute no more than one records to each column, thus
the maximum individual contribution is bounded by the number of
columns. However, the binary representation of user data may not
truly convey information about each column, i.e. place of interest
or product. For example, when the bit for a user and a location is
set, we cannot distinguish whether it was an accidental check-in or
the user went there many times due to personal preference.

Sampling Differential Privacy. There have been a few works
which studied the relationship between sampling and differential
privacy. Chaudhuri and Mishra [6] first showed that the combina-
tion of k-anonymity and random sampling can achieve differential
privacy with high probability. Li et al. [17] proposed to sample
each record with a calibrated probability β and then perform k-
anonymity on the sampled data, to achieve (ε, δ)-indistinguishability.
Both works adopt the random sampling technique which samples a
data record with certain probability. However, when applied in our
setting, no guarantee is provided on bounding the individual data
in the sampled database.

Our Competitors. After reviewing existing differentially private
technique, we identify three works that allow high individual con-
tribution, release aggregate statistics, and satisfy ε-differential pri-
vacy. The first is a straight-forward application of Laplace pertur-
bation mechanism [12] to each released count, denoted as LPA. The
second is the Fourier transform based algorithm from [23], which
can be adapted to share count vectors, denoted as DFT. The third is
GS, which is the best method proposed in [15].

3. PRELIMINARIES

3.1 Problem Formulation
Suppose a database D contains data records contributed by a

set of n users about m items of interest. Each item could rep-
resent in reality a place or a product. Each record in dataset D
is a tuple (rID, uID, vID, attrA), where rID is the record ID,
uID corresponds to the user who contributed this record, vID is
the item which the record is about, and attrA represents contex-
tual/additional information regarding this record. In reality, vari-
ous information is often available in the actual database, such as
transaction time, user ratings and reviews, and user demographic
information. In our problem setting, attrA can be an attribute, e.g.
dayOfWeek, or a set of attributes, e.g. (Gender, Age), which can be
customized to offer deep insight in a specific application domain.
Let h denote the number of possible attrA values.

To be more concrete, we select two analytic tasks, i.e. top-K
discovery and context-aware recommendation, to illustrate the us-
ability of our solutions. The first task answers questions as “What
are the most popular places in city X?”, while the second task aims

more specifically at “Recommend good places to visit on a Tues-
day!”. Moreover, we consider the problem of performing the above
tasks on released count data. As in Figure 2, each Vi’s represents
an item of interest, e.g. a restaurant, and eachAj represents a value
of the context, e.g.“Monday”. For each Vi, the number of records
containing Vi is released. For each edge connecting Vi and Aj , the
number of records containing Vi and Aj is released. As a result,
top-K discovery can be performed on the item counts and context-
aware recommendation on the edge counts connected to any con-
text Aj . We formally state the problem to investigate below.

DEFINITION 1 (ITEM COUNTS). For each item Vi in database
D, release

ci(D)← select ∗ from D

where vID = Vi (1)

DEFINITION 2 (EDGE COUNTS). For each edge connecting
item Vi and attribute Aj , release

ci,j(D)← select ∗ from D

where vID = Vi and attrA = Aj (2)

PROBLEM 1 (PRIVATE DATA ANALYTICS). Given database
D and privacy parameter ε, release a sanitized version of item
counts and edge counts, such that the released data satisfies ε-
differential privacy.

Note that the problem definition, i.e. the counting queries to
release, can be customized according to the analytical task to per-
form. For instance, to understand the correlation between items, the
bipartite graph in Figure 2 can be adapted as follows: A∗ nodes will
be replaced by items, i.e. V∗ nodes; and each edge (Vi, Vj) repre-
sents “the number of times that Vj is purchased/watched/visited by
users who also purchase/watch/visit Vi”. Similarly, those counts
can be released privately with slight adaption of our proposed solu-
tions below.

3.2 Privacy Definition
The privacy guarantee provided by our work is differential pri-

vacy [4]. Simply put, a mechanism is differentially private if its
outcome is not significantly affected by the removal or addition
of any user. An adversary thus learns approximately the same in-
formation about any individual, irrespective of his/her presence or
absence in the original database.

DEFINITION 3 (ε-DIFFERENTIAL PRIVACY). A non-interactive
privacy mechanism A : D → T satisfies ε-differential privacy if
for any neighboring databases D1 and D2, and for any set D̃ ∈ T ,

Pr[A(D1) = D̃] ≤ eε · Pr[A(D2) = D̃] (3)

where the probability is taken over the randomness of A.

The privacy parameter ε, also called the privacy budget [20],
specifies the degree of privacy offered. Intuitively, a lower value
of ε implies stronger privacy guarantee and a larger perturbation
noise, and a higher value of ε implies a weaker guarantee while
possibly achieving higher accuracy. The neighboring databasesD1

and D2 differ on at most one user.

Laplace Mechanism. Dwork et al. [12] show that ε-differential
privacy can be achieved by adding i.i.d. noise to query result q(D):

q̃(D) = q(D) + (Ñ1, . . . , Ñz)
ᵀ (4)

Ñi ∼ Lap(0,
GS(q)

ε
) for i = 1, . . . , z (5)

313



Symbol Description
D/D Input database / Domain of all databases
Tk Set of records contributed by user uk in D

DR/DR SRA sampled database / Domain of DR
DG/DG HPA sampled database / Domain of DG
DE/DE HPA sampled database / Domain of DE
q1/q̃1 Query of all item counts / Noisy output of q1

q2/q̃2 Query of all edge counts / Noisy output of q2

p/p̃ Popularity vector for all items / Estimation of p
M Max records per user allowed in D
l Max records per user allowed in DR and DG
d Max records per user allowed in DE

Table 1: Summary of notations
where z represents the dimension of q(D). The magnitude of Ñ
conforms to a Laplace distribution with 0 mean andGS(q)/ε scale,
where GS(q) represents the global sensitivity [12] of the query q.
The global sensitivity is the maximum L1 distance between the re-
sults of q from any two neighboring databases. Formally, it is de-
fined as follows:

GS(q) = max
D1,D2

||q(D1)− q(D2)||1 . (6)

Sensitivity Analysis. LetM denote the maximum number of records
any user could contribute and D denote the domain of database D.
Let q1 = {c1, . . . , cm} output the item counts for every Vi. Let
q2 = {c1,1, c1,2, . . . , cm,h} output the edge counts for every Vi
and Aj . The following lemmas establish the global sensitivity of
q1 and q2, in order to protect the privacy of each individual user.
The proof is quite straightforward thus omitted here for brevity.

LEMMA 1 (ITEM COUNTS SENSITIVITY). The global sensi-
tivity of q1 : D → Rm is M , i.e.

GS(q1) =M. (7)

LEMMA 2 (EDGE COUNTS SENSITIVITY). The global sensi-
tivity of q2 : D → Rmh is M , i.e.

GS(q2) =M. (8)

Composition.. The composition properties of differential privacy
provide privacy guarantees for a sequence of computations, which
can be applied to mechanisms that require multiple steps.

THEOREM 1 (SEQUENTIAL COMPOSITION [20]). LetAi each
provide εi-differential privacy. A sequence of Ai(D) over the
dataset D provides (

∑
i εi)-differential privacy.

4. PROPOSED SOLUTIONS
Below we describe two sampling-based solutions to privacy-preserving

data analytics. The notations used in the problem definition and our
proposed solutions are summarized in Table 1.

4.1 Simple Random Algorithm (SRA)
Our first solution has been inspired by the fact that the maxi-

mum number of records contributed by each user, i.e. M , could be
rather large in real applications. For example, the Netflix user who
contributed the most data submitted 17, 000 reviews, as shown in
Table 4. In fact, a user could contribute as many records as the
domain size, i.e. m, as in the total number of movies on Netflix.
As a result of the large magnitude of M , a very high perturba-
tion noise is required to provide differential privacy, according to
the Laplace mechanism. Furthermore, the number of records con-
tributed by each user can be unbounded for many applications, as a

Figure 3: Outline of SRA Algorithm

Algorithm 1 Simple Random Algorithm (SRA)
Input: raw dataset D, sampling factor l, privacy budget ε
Output: sanitized answer q̃1 and q̃2

/* Simple Random Sampling */
1: DR ← ∅
2: for k = 1, . . . , n do
3: Tk ← σuID=uk (D) /* Tk: records of user uk */
4: if |Tk| ≤ l do
5: DR ← DR

⋃
Tk

6: else do
7: T ′k ← random sample l records from Tk
8: DR ← DR

⋃
T ′k

/* Generate Private Item Counts */
9: q1(DR)← compute count ci(DR) for every i

10: Output q̃1(DR) = q1(DR) + 〈Lap( lε1 )〉
m

/* Generate Private Edge Counts */
11: q2(DR)← compute count ci,j(DR) for every i, j
12: Output q̃2(DR) = q2(DR) + 〈Lap( lε2 )〉

mh

user could repeatedly check in at the same location or purchase the
same product. In that case,M may not be known without breaching
individual user privacy.

In order to mitigate the effect of very large or unbounded individ-
ual data contribution, we propose to sample the raw input datasetD
and allow up to l records per user in the sampled database. There-
fore, the individual contribution to the sampled database is bounded
by the fixed constant l. The aggregate statistics will be generated
from the sampled data and then perturbed correspondingly in order
to guarantee differential privacy. The sampling technique used in
our solution is simple random sampling without replacement, af-
ter which our solution is named. An outline of the algorithm is
provided in Figure 3.

Given the input database D and a pre-defined sampling factor
l, the SRA method generates a sampled database DR by random
sampling without replacement at most l records for each user in
input databaseD. The sampled databaseDR could be different ev-
ery time the algorithm is run, due to the randomness of sampling.
However, it is guaranteed that for every possible sample DR, any
user could have no more than l records. The following lemma es-
tablishes the sensitivity of q1 and q2 under such constraint.

LEMMA 3 (SAMPLE SENSITIVITY). In the domain of DR, it
holds that GS(q1) = l and GS(q2) = l.

Subsequently, the SRA method computes the query answers to
q1 and q2 from the sampled database DR, where all individual
count queries ci and ci,j are evaluated based on the data records
in DR. According to the Laplace mechanism, it is sufficient to
add perturbation noise from Lap( l

ε1
) to each item count ci(DR)

to guarantee ε1-differential privacy. Similarly, adding perturbation
noise from Lap( l

ε2
) to each edge count ci,j(DR) guarantees ε2-

differential privacy. The pseudocode of SRA method is provided in
Algorithm 1.

314



rID uID vID Day-Of-Week
r1 Alice Gym Monday
r2 Alice Mary’s house Tuesday
r3 Alice de Young Museum Friday
r4 Alice Golden Gate Bridge Saturday

Table 2: Example Check-in Records
To sum up, SRA injects low Laplace noise into released query re-

sults, due to reduced sensitivity in the sampled database. However,
the accuracy of released query results is affected by only usingDR,
a subset of the input data D. Intuitively, the more we sample from
each user, the closer q1(DR) and q2(DR) are to the true results
q1(D) and q2(D), respectively, at the cost of a higher Laplace per-
turbation error to achieve differential privacy. Below we formally
analyze the trade-off between accuracy and privacy for query q1 to
study the optimal choice of l. Similar analysis can be conducted
for query q2 and is thus omitted here for brevity.

DEFINITION 4 (MEAN SQUARED ERROR). Let c̃i denote the
noisy count released by q̃1(DR) and ci denote the real count com-
puted by q1(D), for each item Vi. The Mean Squared Error of the
noisy count c̃i is defined as follows:

MSE(c̃i) = V ar(c̃i) + (Bias(c̃i, ci))
2 . (9)

THEOREM 2. Given DR is a simple random sample of D and
q̃1(DR) = q1(DR) + 〈Lap( lε1 )〉

m, the value of l that minimizes
MSE is a monotonically increasing function of ε21.

PROOF. See Appendix A.

The above theorem provides a guideline to choose the l value given
the privacy budget ε1: when the privacy budget is higher, we can af-
ford to use more private data to overcome the error due to data loss;
When privacy budget is limited, a small number of data records
should be taken from each user to reduce the perturbation error by
the differential privacy mechanism.

4.2 Hand-Picked Algorithm (HPA)
Observing that a majority of data analytical tasks depend on

“popular” places or products, such as in traffic analysis and recom-
mendation services, data related to popular items should preferably
be preserved in the sample database. In other words, some records
generated by one user might be more useful for data analytics than
the rest. The following example illustrates the concept of record
“usefulness”.

EXAMPLE 1. Table 2 illustrates Alice’s check-in records in the
raw database. Among the 4 places Alice has been, de Young Mu-
seum and the Golden Gate Bridge are places of interest and attract
a large number of visitors. On the other hand, gym and Mary’s
house are local and personal to Alice and may not interest other
people. Therefore we consider r3 and r4 more useful than r1 and
r2 for data analytics. However, r1 and r2 may be chosen by SRA
over r3 and r4, due to the simple random sampling procedure.

From Example 1, it can be seen that r3 and r4 should be picked
by the sampling procedure over r1 and r2, in order to generate
meaningful recommendation results. Therefore, we define the fol-
lowing popularity-base utility score for each private data record and
propose to preserve records with highest scores for each user.

DEFINITION 5 (UTILITY SCORE). Given record r and r.vID =
Vi, the utility score of r is defined as follows:

score(r) = pi (10)

where pi represents the underlying popularity of item Vi.

Figure 4: Outline of HPA Algorithm

rID uID vID Day-Of-Week Utility
r4 Alice Golden Gate Bridge Saturday 0.2
r3 Alice de Young Museum Friday 0.1
r1 Alice Gym Monday 0.001
r2 Alice Mary’s house Tuesday 0.0001

Table 3: Example Check-in Records Sorted by Utility Score
Note that the record utility can be defined in other ways according
to the target analytical questions. Our choice of the popularity-
based measure is motivated by the tasks of discovering popular
places or products, as well as the fact that popular items are less
personal/sensitive to individual users.

In order to maximize the utility of the sampled database, we pro-
pose to greedily pick up to l records with highest utility scores for
each user. Note that a user’s records with the same score will have
equal chance to be picked. The outline of HPA is provided in Fig-
ure 4. Below we describe (1) private estimation of record utility
and (2) greedy sampling procedure.

Popularity Estimation. For each item Vi, the popularity pi repre-
sents the probability of any record r having r.vID = Vi, which is
often estimated by the relative frequency of such records. However,
the estimation of pi’s from the private user data must not violate the
privacy guarantee. We present our privacy-preserving utility esti-
mation in Algorithm 2 from Line 1 to Line 7, which is outlined in
the upper half of Figure 4.

The utility estimation is also conducted on a sampled database
DE with sampling factor d. DE is obtained by randomly choos-
ing up to d records per user from the raw database D. We adopt
randomly sampling here because we do not have prior knowledge
about the database at this point. The query q1 is computed based on
DE and each count is perturbed with Laplace noise from Lap( d

ε0
).

The perturbed counts {c̃i(DE)} are used to estimate the popularity
for each item Vi by the following normalization:

p̃i =
max(c̃i(DE), 0)∑m
i=1max(c̃i(DE), 0)

. (11)

Since the Laplace perturbation noise is a random variable and there-
fore could be negative, we replace the negative counts with 0’s in
computing item popularity. The resulting p̃i is used to estimate the
utility score of each record r with r.vID = Vi.

The following lemma establishes the sensitivity of q1 and q2

where each user can contribute up to d records. The proof is straight-
forward and is thus omitted.

LEMMA 4. In the domain of DE , it holds that GS(q1) = d.

Greedy Sampling. The greedy sampling procedure hand-picks up
to l records with highest utility scores among each user’s data in
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Algorithm 2 Hand-Picked Algorithm (HPA)
Input: raw dataset D, sampling factor l
Output: sanitized answer q̃1 and q̃2

/* Popularity Estimation */
/* Random Sample */

1: DE ← ∅
2: for k = 1, . . . , n do
3: Tk ← σuID=uk (D) /* Tk: records of user uk */
4: Random sample d record from Tk, add to DE

/* Generate Private Item Counts */
5: q1(DE)← compute count ci(DE) for every i
6: q̃1(DE) = q1(DE) + 〈Lap( dε0 )〉

m

/* Estimate Popularity */
7: p̃← normalize histogram q̃1(DE)
/* Greedy Sampling */
8: DG ← ∅
9: for k = 1, . . . , n do

10: Tk ← σuID=uk (D)
11: if |Tk| ≤ l do
12: DG ← DG

⋃
Tk

13: else do
14: for record r in Tk do
15: assign score(r) = p̃i iff r.vID = Vi
16: T ′k ← pick l records with highest scores from Tk
17: DG ← DG

⋃
T ′k

/* Generate Private Item Counts */
18: q1(DG)← compute count ci(DG) for every i
19: Output q̃1(DG) = q1(DG) + 〈Lap( lε1 )〉

m

/* Generate Private Edge Counts */
20: q2(DG)← compute count ci,j(DG) for every i, j
21: Output q̃2(DG) = q2(DG) + 〈Lap( lε2 )〉

mh

D. The pseudo code is provided in Algorithm 2 from Line 8 to
Line 17. Table 3 illustrates Alice’s records sorted by utility score.
Since “Gym” and “Mary’s House” do not interest greater public,
their scores are likely to be much lower than “Golden Gate Bridge"
and “de Young Museum”. Then the top l records on the sorted list
will be put in the sampled database DG. This step is performed on
every user’s data in the raw database D.

LEMMA 5. In the domain ofDG, it holds thatGS(q1) = l and
GS(q2) = l.

After the greedy sampling step, the results to q1 and q2 will be
computed on the sampled databaseDG. Each individual item count
and edge count will be perturbed by Laplace noise from Lap( l

ε1
)

and Lap( l
ε2
), respectively. We will provide proof of privacy guar-

antee in the next section.
The advantage of HPA is that it greedily picks the most valuable

data records from each user, without increasing the sample data
size, i.e. l records per user. The utility of each data record is es-
timated privately from the overall data distribution. Records with
high utility have higher chance to be picked by greedy sampling.
Since the sampled data greatly depends on the relative usefulness
among each user’s records, it is difficult to analyze the accuracy of
released counts. We will empirically evaluate the effectiveness of
this approach in Section 6.

5. PRIVACY GUARANTEE
In this section, we prove that both SRA and HPA algorithms are

differentially private. We begin with the following lemma, which
states that record sampling on each user does not inflict differential
privacy breach.

Dataset Gowalla Foursquare Netflix MovieLens
Users 12,579 45,289 480,189 6,040
Items 15,200 17,967 17,700 3,706
|D| 739,600 1,276,988 100,480,507 1,000,209

max |Tk| 14,380 1,303 17,000 2,314
avg |Tk| 58.8 60.2 209.2 165.6
min |Tk| 1 1 1 20

Table 4: Data Sets Statistics
LEMMA 6. Let A be an ε-differentially private algorithm and

S be a record sampling procedure which is performed on each user
individually. A ◦ S is also ε-differentially private.

PROOF. See Appendix B.

THEOREM 3. SRA satisfies (ε1 + ε2)-differential privacy.

PROOF. Let Srand,l denote the random sampling procedure in
SRA. Srand,l is therefore a function that takes an raw database and
outputs a sampled database, i.e. Srand,l : D → DR.

According to the Laplace mechanism and Lemma 3, q̃1 : DR →
Rm is ε1-differentially private. By the above Lemma 6, the item
counts by SRA, i.e. q̃1 ◦ Srand,l : D → Rm is ε1-differentially
private. Similarly, q̃2 : DR → Rmh is ε2-differentially private.
The edge counts by SRA, i.e. q̃2 ◦ Srand,l : D → Rmh is also
ε2-differentially private. Therefore, the overall SRA computation
satisfies (ε1 + ε2)-differential privacy by Theorem 1.

THEOREM 4. HPA satisfies (ε0 + ε1 + ε2)-differential privacy.

PROOF. Let Srand,d denote the random sampling procedure in
HPA for popularity estimation, i.e. Srand,d : D → DE . Let Sgrd,l
denote the greedy sampling procedure, i.e. Sgrd,l : D → DG .

According to the Laplace mechanism and Lemma 4, q̃1 : DE →
Rm is ε0-differentially private. By Lemma 6, the HPA popularity
estimation step, i.e. q̃1◦Srand,d : D → Rm is ε0-differentially pri-
vate. Similarly, we can prove that the HPA item counts q̃1 ◦Sgrd,l :
D → Rm is ε1-differentially private, and the HPA edge counts
q̃2 ◦ Sgrd,l : D → Rmh is ε2-differentially private. Therefore,
by Theorem 1, the overall HPA satisfies (ε0 + ε1 + ε2)-differential
privacy.

6. EXPERIMENTS
Here we present a set of empirical studies. We compare our

solutions SRA and HPA with three existing approaches: 1) LPA,
the baseline method that injects Laplace perturbation noise to each
count, 2) DFT, the Discrete Fourier Transform based algorithm pro-
posed in [23], applied to a vector of counts, and 3) GS, the best
method with grouping and smoothing proposed in [15], applied
to count histograms. Given the overall privacy budget ε, we set
ε1,2 = ε

2
for SRA method, and ε0 = ε

10
and ε1,2 = 0.45ε for HPA

method. Without speculating about the optimal privacy allocation,
we set ε0 to a small fraction of ε, because it is used to protect a
small sample of private data for utility score estimation. To achieve
the same privacy guarantee, we apply LPA, DFT, and GS to item
counts and edge counts separately, with privacy budget ε

2
for each

application.

Data sets. We conducted our empirical studies with four real-world
data sets referred to as Gowalla, Foursquare, Netflix, and Movie-
Lens, each named after its data source. The first two data sets con-
sist of location check-in records. Gowalla is collected among users
based in Austin from Gowalla location-based social network by
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Berjani and Strufe [3] between June and October 2010. Similarly,
Foursquare is collected from Foursquare by Long et al. [18] be-
tween February and July 2012. In these two data sets, each record
contains a user, a location, and a check-in time-stamp. Since a user
can check-in at one location many times, the check-in data sets can
represent a class of services which value the returning behavior,
such as buying or browsing. The other two data sets consist of
movie ratings, where a movie may not be rated more than once by
a user. Netflix is the training data set for the Netflix Prize compe-
tition. MovieLens is collected from users of MovieLens website 2.
Each rating corresponds to a user, a movie, a rating score, and a
time-stamp. Moreover, MovieLens also provides user demographic
information, such as gender, age, occupation, and zipcode. The
properties of the data sets are summarized in Table 4. Note that the
minimum individual contribution in MovieLens is 20, as opposed
to 1 for other data sets. This is because MovieLens was initially
collected for personalized recommendation, thus users with fewer
than 20 records were excluded from the published data set.

Setup. We implemented our SRA and HPA methods, as well as the
baseline LPA and DFT in Java.We obtained Jave code of GS from
the authors of [15]. All experiments were run on a 2.9GHz Intel
Core i7 PC with 8GB RAM. Each setting was run 20 times and the
average result was reported.

The default settings of parameters are summarized below: the
overall privacy ε = 1, the sampling parameter d for HPA popular-
ity estimation d = min |Tk|, the sampling parameter l = 10 for
Gowalla, Foursquare, and Netflix and l = 30 for MovieLens. Our
choice of parameter settings is guided by analytical results and min-
imal knowledge about the data sets and thus might not be optimal.
For LPA and DFT, we set M to be equal to max |Tk|. However,
this value may not be known a priori. Strictly speaking, M is un-
bounded for check-in applications. In this sense, we overestimate
the performance of LPA and DFT.

6.1 HPA-Private Popularity Estimation
We first examine the private popularity estimation step of HPA

method regarding the ability to discover top-K popular items from
the noisy counts q̃1(DE). Recall that DE is generated by ran-
domly sampling d records per user and the output of q1(DE) is
then perturbed with noise fromLap( d

ε0
) to guarantee privacy. Given

a small privacy budget ε0, it is only meaningful to choose a small
d value for accuracy, according to Theorem 2. Therefore, we set
d equal to the minimum individual contribution, i.e. min |Tk|, in
every data set.

In this experiment, we sort all items according to q̃1(DE) out-
put and K items with highest noisy counts are evaluated against
the ground truth discovered from the raw data set. Figure 5 re-
ports the precision results with various K values on Foursquare
and Netflix data. As can be seen, from the output of q̃1(DE), we
are able to discover more than 60% of top-20 popular locations in
Foursquare and 70% top-20 popular movies on Netflix. When look-
ing at K = 100, the output of q̃1(DE) captures 40% of the real
popular locations and almost 80% popular movies. We conclude
that HPA popularity estimation provides a solid step stone for sub-
sequent greedy sampling, at very small cost of individual data as
well as privacy.

6.2 Impact of Sampling Factor l

Here we look at the upper bound l of individual data contribution
required by our solutions and study its impact on the accuracy of
q̃1 and q̃2 output. Mean Squared Error(MSE) is adopted as the

2http://movielens.org
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Figure 5: Estimation of Item Popularity by HPA
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Figure 6: Impact of l with Foursquare Data Set
metric for accuracy and is calculated between the noisy output by
our methods and the true results of q1 and q2 from the raw input
data D. We ran our SRA and HPA methods varying the value of l,
in order to generate sampled database DR and DG with different
sizes. Figure 6(a) summarizes the results from Foursquare data for
item counts, i.e. q̃1, and Figure 6(b) for edge counts, i.e. q̃2 .

In both figures of Figure 6, when l value increases, the MSE of
the noisy output by our methods first drops as sampled database
gets larger. For example, we observe a decreasing trend of MSE
as l is raised to 30 in Figure 6(a) and as l is raised to 5 in Fig-
ure 6(b). Beyond these two points, when further increasing l, the
MSE grows due to the perturbation noise from Lap( l

ε1
). Clearly,

there is a trade-off between sample data size and the perturbation
error. The optimal value of l depends on actual data distribution
and the privacy parameter ε1, according to Theorem 2. This set of
results show that both SRA and HPA achieve minimum MSE with
relatively small l values, i.e. l = 30 for q̃1 and l = 5 for q̃2. Our
findings in Theorem 2 are confirmed and we conclude that choosing
a small upper bound l on individual data contribution is beneficial
especially when privacy budget is limited.

6.3 Comparison of Methods
Here we compare our SRA and HPA methods with existing ap-

proaches, i.e. LPA, DFT, and GS on all data sets. The utility of
item counts and edge counts released by all private mechanisms are
evaluated with three metrics. Note that for Gowalla, Foursquare,
and Netflix data, each edge connects an item with a day-of-week,
from “Monday” to “Sunday”. For MovieLens data set, each edge
connects a movie with a (Gender, Age) pair. The domain of Gen-
der is {“M”, “F”} and the domain of Age is {“Under 25”, “25-34”,
“Above 34”}. Below we review the results regarding the released
item counts and edge counts, for each utility metric.

Mean Squared Error (MSE). This metric provides a generic util-
ity comparison of different methods on the released counts. Fig-
ure 7(a) and Figure 8(a) summarize the MSE results for item counts
and edge counts, respectively. As can be seen, the baseline LPA
yields the highest error in both item counts and edge counts. The
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Figure 8: Utility of Released Edge Counts

GS method, as studied in the original work [15], is no worse than
DFT in every case except for MovieLens item counts. Our methods
SRA and HPA provide the lowest MSE error except in three cases,
i.e. Netflix item counts and MovieLens item/edge counts. This can
be interpreted by the high average user contribution in these two
data sets, where our methods inflict more data loss by limiting in-
dividual data in the sampled database.

KL-divergence. The KL-divergence is a common metric widely
used to measure the distance between two probability distributions.
In this set of experiments, we consider the item/edge counts as data
record distributions over the domain of items/edges. Both the re-
leased counts and original counts are normalized to simulate prob-
ability distributions. Note that prior to that, zero or negative counts
are replaced with 0.01 for continuity without generating many false
positives. We compute the KL-divergence of the released distri-
bution with respect to the original distribution for each query and
present the results in Figure 7(b) and Figure 8(b).

The released distributions by LPA are further from original data
distributions than those of other methods for every data set. As ex-
pected, DFT and GS preserve the count distributions well in gen-
eral, because: 1) the DFT method is designed to capture major
trends in data series, and 2) the GS method generates smooth distri-
butions by grouping similar columns. However, in several cases,
those two methods fail to provide similar distributions, e.g. on
Gowalla and Netflix data. We believe that their performance de-
pends on the actual data distribution, i.e. whether significant trend
or near-uniform grouping exists and can be well extracted. On the
other hand, our solutions SRA and HPA provide comparable per-
formance to the best existing methods, although not optimized to
preserve distributional similarities. Furthermore, SRA constantly
outperforms HPA in approximating the true distributions, thanks to
the nature of simple random sampling technique.

Top-K Discovery. In this set of experiments, we examine the qual-
ity of top-10 discovery retrieved by all privacy-preserving mecha-
nisms. For item counts, the top-10 popular items are evaluated.
For edge counts, the top-10 popular items associated with each at-

tribute value are evaluated and the average precision is reported,
to simulate discoveries for each day-of-week and each user demo-
graphic group. In Figure 7(c), we observe that existing methods
fail to preserve the 10 most popular items in any dataset. The rea-
son is the baseline LPA suffers from high perturbation error, and
DFT and GS yield over-smoothed released counts and thus cannot
distinguish the most popular items from those ranked next to them.
WhenK is large enough, we will see that their performance in top-
K discovery slowly recovers in a subsequent experiment. On the
other hand, our methods SRA and HPA greatly outperform existing
approaches and HPA even achieves 100% precision for Netflix data.
Similarly, our methods show superior performance in Figure 8(c),
with the absolute precision slightly dropped due to sparser data
distributions. Overall, HPA outperforms SRA by preserving user
records with high popularity scores. The only exception where SRA
is better than HPA is in finding the top-10 most popular movies on
MovieLens. The reason is that those users who contribute less than
20 records were excluded from the data set and no movies were
preferred by the majority of the rest users. As for finding top-10
movies for each demographic group, HPA greatly improves over
SRA, since users within a demographic group show similar inter-
ests.

We further look at top-K precision of the released item counts
by all methods, withK ranging from 1 to 1000. The results are pro-
vided in Figure 9. We can see that the performance of our greedy
approach HPA is 100% when K = 1 and drops as K increases,
since the sampling step only picks a small number of records, i.e.
l records, from each user with highest utility score, i.e. item popu-
larity. Our random approach SRA also shows decreasing precision
as K increases, due to the data loss caused by sampling. However,
the decreasing rate is much slower compared to that of HPA, be-
cause records of a user have equal chance to be selected by random
sampling. On the contrary, LPA, DFT, and GS show 0% precision
when K = 1 and higher precision as K increases. We conclude
that SRA and HPA can discover the most popular items, superior
to existing approaches up to K = 100, but do not distinguish less
popular items due to lack of information in the sampled database.
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Figure 9: Comparison of Methods: Top-K Mining
The existing approaches fail to distinguish the most popular items,
e.g. top-10, because of perturbation or the smoothing effect of
their methods, but might provide good precision for large K, e.g.
K ≥ 1000.

6.4 Additional Benefits
Data Reduction. One beneficial side effect of limiting individual
data contribution is the reduction of data storage space by generat-
ing analytics from a sampled database. Figure 10 shows the number
of records in the sampled databases used by SRA and HPA com-
pared to that of the raw input. As can be seen, the sampled data is
much smaller than the raw input for every data set. For Netflix data
set, our methods perform privacy-preserving analytics and generate
useful results on sample databases with less than 5% of the original
data, reducing the data storage requirement without compromising
the utility of output analytics.

Weekly Distribution. We also examine the sampled database by
SRA and HPA by the weekly distribution of data records. The per-
centage of Foursquare check-in records on each day of week is
plotted in Figure 11. As is shown, the percentage of Friday, Satur-
day, and Sunday check-ins is higher in the sampled databases gen-
erated by our methods than in the original data set, while the per-
centage of Monday-Thursday check-ins is lower than the original.
Since the majority of the users are occasional users and contribute
less than l records, our methods preserve their data completely in
the sampled databases. We may infer that the occasional users are
more likely to use the check-in service on Friday-Sunday. More-
over, the SRA sampled data is constantly closer to the original data
distribution, compared to HPA. We can further infer that users are
more likely to check-in popular places on Friday-Sunday.

Movie Recommendation. A example of context-aware, fine-grained
recommendation is to suggest items based on the common inter-
est demonstrated among the user group with similar demographics,
such as age and gender. We illustrate the top-10 movie recom-
mendation to male users under the age of 25 with released edge
counts by our solutions on MovieLens data set. The first column
in Table 5 shows the top-10 recommended movies using original
data, while the second and third columns list movies recommended
by our privacy-preserving solutions. We observe that some movies
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Top 10 Movies SRA Output HPA Output
American Beauty Phantasm II American Beauty

Star Wars VI Marvin’s Room Star Wars VI
Star Wars V All Dogs Go to Heaven Terminator 2
The Matrix In the Line of Duty 2 Star Wars V

Star Wars IV Star Wars V Jurassic Park
Terminator 2 The Slumber Party Massacre III The Matrix

Saving Private Ryan The Story of Xinghua Men in Black
Jurassic Park American Beauty The Fugitive
Star Wars I Shaft Braveheart
Braveheart Star Wars I Saving Private Ryan

Table 5: Movie Recommendations to Male, Under 25.
recommended by SRA may not interest the target audience, such as
“Marvin’s Room” and “The story of Xinghua”. Furthermore, the
top movie on SRA list, i.e. “Phantasm II”, is a horror movie and
not suitable for underage audience. On the other hand, the movies
recommended by HPA are quite consistent with the original top-
10 except for two movies, i.e. “Men in Black" and “The Fugitive",
which may interest the target audience as well. We believe that HPA
captures more information by greedy sampling and thus can make
better recommendations than SRA, especially when users have very
diverse interests.

7. CONCLUSION AND DISCUSSION
We have proposed a practical framework for privacy-preserving

data analytics by sampling a fixed number of records from each
user. We have presented two solutions, i.e. SRA and HPA, which
implement the framework with different sampling techniques. Our
solutions do not require the input data be preprocessed, such as re-
moving users with large or little data. The output analysis results
are highly accurate for performing top-K discovery and context-
aware recommendations, closing the utility gap between no privacy
and existing differentially private techniques. Our solutions benefit
from sampling techniques that reduce the individual data contribu-
tion to a small constant factor, l, and thus reducing the perturba-
tion error inflicted by differential privacy. We provided analysis
results about the optimal sampling factor l with respect to the pri-
vacy requirement. We formally proved that both mechanisms sat-
isfy ε-differential privacy. Empirical studies with real-world data
sets confirm that our solutions enable accurate data analytics on a
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small fraction of the input data, reducing user privacy cost and data
storage requirement without compromising utility.

Potential future work may include the design of a hybrid ap-
proach between SRA and HPA which could have the benefits of
both. For real-time applications, we would like to consider how
to dynamically sample user generated data, in order to further re-
duce the data storage requirement. Another direction is to apply
the proposed sampling framework to solving more complex data
analytical tasks, which might involve multiple, over-lapping count
queries or other statistical queries.
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APPENDIX
A. PROOF OF THEOREM 2

PROOF. For item Vi, let c′i denote the true count computed by
q1 from the sample DR. Therefore, the noisy count c̃i is derived
by adding a Laplace noise to c′i as follows:

c̃i = c′i + νi , (12)
νi ∼ Laplace(0, l/ε1) . (13)

The MSE of c̃i can be re-written as:

MSE(c̃i) = V ar(c′i + νi) + (E(c′i + νi − ci))2

= V ar(c′i) + V ar(νi) + (E(c′i)− E(ci))
2 . (14)

Note that c′i and νi are mutually independent.
Let pi denote the popularity of item Vi, i.e. the probability of

any record having vID = Vi. For simplicity, we assume that users
are mutually independent, records are mutually independent, and
every user has M records in the raw data set D. To obtain DR, l
records out of M are randomly chosen for each user in D. Thus
for any item Vi, c′i can be represented as the sum of independent
random variables:

c′i =

n∑
k=1

∑
r∈Tk

δr,i (15)

δr,i =

{
1 if r.vID = Vi & r ∈ DR ,
0 otherwise . (16)

The event of δr,i = 1 is equivalent to the event of record r is about
Vi and r is sampled in DR by chance:

Pr[δr,i = 1] = Pr[r.vID = V i & r ∈ DR] = pi
l

M
. (17)

Therefore, we can obtain the following expectation and variance
for c′i:

E(c′i) =

n∑
k=1

∑
r∈Tk

E(δr,i) (18)

=

n∑
k=1

∑
r∈Tk

pi
l

M

= nlpi

V ar(c′i) =

n∑
k=1

∑
r∈Tk

V ar(δr,i) (19)

=

n∑
k=1

∑
r∈Tk

pi
l

M
(1− pi

l

M
)

= nlpi(1− pi
l

M
)

Similarly, we can obtain the expectation of ci:

E(ci) = nMpi . (20)

From the above results, we can re-write Equation 14 as follows:

MSE(c̃i) = nlpi(1− pi
l

M
) + 2

l2

ε2l
+ (nlpi − nMpi)

2 (21)

and we can perform the standard least square method to minimize
the MSE. The optimal l value is thus:

l =
2n2p2iM − npi

4/ε21 − 2np2i /M + 2n2p2i
(22)

We conclude that the optimal l value is a monotonically increasing
function of ε21.

B. PROOF OF LEMMA 6
PROOF. By definition of differential privacy, we are to prove

that for any neighboring raw databases D1 and D2, A ◦ S satisfies
the following inequality for D̃ ∈ Range(A ◦ S):

Pr[A ◦ S(D1) = D̃] ≤ eεPr[A ◦ S(D2) = D̃] . (23)

Without loss of generality, we assume D2 contains one more
user than D1. Let u denote the user that is contained in D2 but
not D1 and T be user u’s set of records in D2. By definition of
neighboring databases, we can rewrite D2 = D1 ⊕ T 3.

Let D̂1 denote any possible sampling output of S(D1). We have:

Pr[A ◦ S(D1) = D̃]

=
∑
D̂1

Pr[A ◦ S(D1) = D̃|S(D1) = D̂1]Pr[S(D1) = D̂1]

=
∑
D̂1

Pr[A(D̂1) = D̃]Pr[S(D1) = D̂1] (24)

Let T̂ denote any possible sampling output of S(T ). We note
that T̂ can take values from the entire domain, in general:∑

T̂

Pr[S(T ) = T̂ ] = 1 . (25)

Since S is performed independently on each user, we can derive:

Pr[S(D1) = D̂1]

=
∑
T̂

Pr[S(D1) = D̂1]Pr[S(T ) = T̂ ]

=
∑
T̂

Pr[S(D1 ⊕ T ) = D̂1 ⊕ T̂ ] . (26)

Note that since D1 and T are disjoint, the sampling output on D1

and T are also independent and disjoint. Therefore,

Pr[A ◦ S(D1) = D̃]

=
∑
D̂1

Pr[A(D̂1) = D̃]
∑
T̂

Pr[S(D1 ⊕ T ) = D̂1 ⊕ T̂ ]

=
∑
D̂1,T̂

Pr[A(D̂1) = D̃]Pr[S(D1 ⊕ T ) = D̂1 ⊕ T̂ ]

≤
∑
D̂1,T̂

eεPr[A(D̂1 ⊕ T̂ ) = D̃]Pr[S(D1 ⊕ T ) = D̂1 ⊕ T̂ ]

(27)

= eε
∑
D̂2

Pr[A(D̂2) = D̃]Pr[S(D2) = D̂2] (28)

= eεPr[A ◦ S(D2) = D̃] . (29)

Line 27 is due to the fact that A is ε-differentially private and D̂1

and D̂1 ⊕ T̂ are neighboring databases. In line 28 we change nota-
tion and let D̂2 represent D̂1⊕T̂ . The proof is hence complete.

3⊕ is used to denote a co-product, or disjoint union of two
databases.
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