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We study the transit frequency optimization problem, which aims to determine the time interval
between subsequent buses for a set of public transportation lines given by their itineraries, i.e., sequences
of stops and street sections. The solution should satisfy a given origin–destination demand and a
constraint on the available fleet of buses. We propose a new mixed integer linear programming (MILP)
formulation for an already existing model, originally formulated as a nonlinear bilevel one. The proposed
formulation is able to solve to optimality real small-sized instances of the problem using MILP tech-
niques. For solving larger instances we propose a metaheuristic which accuracy is estimated by compar-
ing against exact results (when possible). Both exact and approximated approaches are tested by using
existing cases, including a real one related to a small-city which public transportation system comprises
13 lines. The magnitude of the improvement of that system obtained by applying the proposed method-
ologies, is comparable with the improvements reported in the literature, related to other real systems.
Also, we investigate the applicability of the metaheuristic to a larger-sized real case, comprising more
than 130 lines.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

When designing a public transportation system, the planners
take decisions that impact in the cost of the system, which is deter-
mined by the monetary cost of operation and fares, and the travel
time of the users. In systems based on buses, the literature identi-
fies five stages for designing a public transportation system (Ceder
& Wilson, 1986): route network design, frequency setting, timeta-
ble design, fleet assignment and crew assignment. In real systems,
usually these stages are performed sequentially, where decisions
taken at a given stage influence decisions taken at subsequent
stages. Also, these decisions are taken for different planning hori-
zons, whether the context of the planning is strategic (long term),
tactical (medium term) or operational (short term).

The frequency setting problem implies to determine the time
interval between subsequent buses on the lines, based on their
itinerary (sequence of street segments and bus stops) and the de-
mand given by an origin–destination matrix. During the strategic
planning of a public transportation system (in particular, when
designing the itinerary of the lines, i.e. the route network), a preli-
minary setting of frequencies is needed. Also, during the tactical
planning it is necessary to adjust the frequencies to demand
variations along different seasons of the year or time of day, or
as response to changes in the route network design (Desaulniers
& Hickman, 2007). The frequencies impact both on the users (wait-
ing time, capacity of the lines) and also in the operators (opera-
tional cost determined strongly by the size of the required fleet).

The frequency setting problem has been approached in the lit-
erature as an optimization problem, where usually the objective
function states the minimization of the overall travel time of the
users (walking, on-board and waiting), under a fleet size constraint
as well as other infrastructure and policy constraints (Constantin &
Florian, 1995; Han & Wilson, 1982; Schéele, 1981). Since frequency
optimization models should include measures relative to the per-
formance of the systems from the viewpoint of the users (typically
the waiting time), they should include a sub-model of the behavior
of the users with respect to a set of bus lines. Such a model, known
as assignment sub-model, usually has a complex formulation and
solution method, specially when the influence of the bus capacity
is considered in the modeling of the user behavior. That complexity
determines an important part of the overall complexity of the fre-
quency optimization model. Moreover, the validity of an assign-
ment model for public transportation, in most cases depends on
the real context where it is applied.

The existing studies concerning frequency optimization usually
involve nonlinear models which are solved approximately (Const-
antin & Florian, 1995; Schéele, 1981). The nonlinearity arises from
the fact that the waiting time is inversely proportional to the fre-
quencies; also, the modeling of the interaction among different
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lines results in nonlinear expressions. The existing models consider
assignment sub-models exhibiting different degrees of realism.
The cases used to test the methodologies range from small-sized
and fictitious cases to medium-sized cases related to real cities
comprising up to 100 lines approximately (Constantin & Florian,
1995; Yu, Yang, & Yao, 2010).

Taking into account this state of the art (more widely discussed
in Section 2), in this work we contribute in two specific directions:

� We propose a mixed integer linear programming (MILP) formu-
lation for an already existing frequency optimization model
(Constantin & Florian, 1995). Given the nature of the proposed
formulation, it can be solved exactly by using a commercial
MILP solver. Moreover, it includes an assignment sub-model
(Spiess & Florian, 1989) that is widely accepted in the literature.
� With the aim of solving large-sized instances of the problem

(systems comprising more than 100 lines), we propose a meta-
heuristic which accuracy (in the sense of distance to optimum)
is estimated by comparing against results produced by the exact
model (when possible, i.e. for the smaller instances).

Concerning the first contribution, we note that no method exist-
ing in the literature is able to find solutions with proven (global)
optimality. This is particularly important in the transit frequency
optimization problem, since the improvements reported over
user’s travel time of current solutions are relatively small
(Constantin & Florian, 1995; Yu et al., 2010). Therefore, given the
heuristic nature of existing solution methods, it remains unclear
whether is possible to improve the results even more.

Our metaheuristic is able to find solutions which accuracy is
estimated (when possible) by comparing against exact solutions.
To the best of our knowledge, this is the first published approxi-
mated method which results are validated against optimal ones
using a real case. The metaheuristic produces results in relatively
short time and it includes routines which execute in polynomial
time (with respect to the number of lines, size of the underlying
graph model and density of the origin–destination matrix), so it
is suitable to be applied for solving larger cases.

The models and algorithms proposed in this work are applied to
real cases and fictitious ones, which illustrate their applications.

The structure of the article is as follows. Section 2 presents a lit-
erature review while Section 3 contains a description of the math-
ematical model and the proposed mathematical formulation.
Section 4 describes the metaheuristic proposed to solve the prob-
lem approximately while Section 5 presents numerical results of
both exact and approximated methods over different test cases. Fi-
nally, Section 6 comments conclusions and further work.
2. Literature review

In this section we provide a review of representative studies in
the field of frequency optimization for public transportation sys-
tems. Almost all models are formulated in terms of a graph which
nodes represent bus stops, centroids (fictitious points where the
demand of a given zone is assumed to be concentrated) or end-
points of a section of line’s itinerary. The arcs represent either a
section of a line’s itinerary, a walking trajectory (between centroids
and stops) or a specific event or action, like waiting for a line or
performing a transfer between different lines. Moreover, typically
it is assumed that the demand between different zones of the city
(represented by centroids) is given in the form of an origin–desti-
nation (OD) matrix; each element different from zero of this matrix
is called OD pair. It is worth mentioning that different levels of de-
tail of the graph model mentioned above can be found in the
literature.
The model proposed in (Schéele, 1981) states the minimization
of the walking and on-board travel time plus the waiting time. A
constraint imposes an upper limit on the fleet size. The behavior
of the users is implicitly embedded into the model: given an OD
pair, its demand is divided among the different lines according to
an entropy and a bus capacity constraint. The formulation has a
nonconvex objective function and linear or convex constraints.
The solution algorithm computes an approximated solution by
refining a set of frequencies according to a descent strategy. The
methodology is tested with a case relative to the city of Linköping
(Sweden), with 6 lines and 38 zones.

In (Han & Wilson, 1982) a model is proposed to set frequencies
on heavily utilized lines. Therefore the objective function states the
minimization of the occupancy level at the most heavily loaded
point on any route in the system. The constraint set includes upper
limits on the fleet size and the capacity of the buses. The assign-
ment sub-model is represented by a nonexplicit constraint which
encodes the hypothesis concerning the user behavior: passengers
give preference to lines that lead to destination directly (i.e. with-
out transfers), although they imply higher travel time. Besides this
rule, the demand corresponding to a given OD pair is distributed
among the different lines following the frequency-share rule
(Chriqui & Robillard, 1975). A two stage heuristic is proposed to
solve the model: first, a base allocation procedure (which itera-
tively corrects passenger flows and line frequencies) is performed
in order to find a lower bound for the bus capacity constraint;
second, a surplus allocation procedure solves a problem with only
linear constraints. Although the methodology was proposed to be
applied to the city of Cairo (Egypt), only an illustrative case com-
prising 6 nodes and 3 routes is shown.

The frequency optimization problem is stated in (Constantin &
Florian, 1995) as a nonlinear bilevel problem. In this model, the
upper level represents the planner who wants to ensure minimal
overall travel time and fleet size feasibility. The lower level repre-
sents the users who act by minimizing the travel time, according to
the optimal strategies assignment model (Spiess & Florian, 1989).
Therefore, the objective functions of both levels have the same
expression. The model is solved approximately by an iterative
algorithm based on a gradient descent which uses specific proper-
ties of the problem. The methodology is tested by using cases re-
lated to the cities of Stockholm (Sweden), Winnipeg (Canada)
and Portland (U.S.A.), comprising 38, 67 and 115 lines respectively.

In (Gao, Sun, & Shan, 2004) a multi-objective model is proposed,
which seeks to minimize the overall travel time of the users and
the operational cost of the operators (assumed to be linearly pro-
portional to the frequencies). The salient characteristic of this work
is the internalization of the congestion in the behavior of the users.
For a given set of frequencies, the assignment model proposed in
(de Cea & Fernández, 1993) is applied, which distributes the de-
mand according to the effective frequencies. The proposed approx-
imate solution method starts with an initial set of frequencies,
which is successively improved by a sensitivity analysis procedure.
The methodology is tested by using a very small illustrative exam-
ple comprising 4 nodes and 4 lines.

More recently, Yu et al. (2010) propose a genetic algorithm for
bus frequency optimization. To the best of our knowledge, this is
the first application of metaheuristics to this problem. The optimi-
zation model considers the minimization of the on-board and wait-
ing time, subject to a fleet size constraint. The behavior of the users
is modeled by using the optimal strategies assignment model
(Spiess & Florian, 1989). The approximate solution method uses
an integer encoding of frequencies and genetic operators which
redistribute the available fleet among the different lines of the sys-
tem. The methodologies are tested with an illustrative small-sized
case and with a case related to the city of Dalian (China) compris-
ing 3,004 bus stops and 89 lines.



Table 1
Main symbols and their definitions.

G Graph representing the transit system
N Set of nodes with generic element n

NP (NS) Set of stop (endpoint of street segment) nodes

A Set of arcs with generic element a

AT Set of travel arcs

AB (AL) Set of boarding (alighting) arcs

Aþn (A�n ) Set of outgoing (incoming) arcs from (to) node n

L Set of lines with generic element l
H Set of frequencies with generic element hf

ylf Variable which indicates whether frequency hf is set to line l
B Upper limit on the fleet size
ca Cost of arc a
va Amount of demand flowing through arc a
fa Frequency value of the line corresponding to boarding arc a
f ðaÞ Index in H of the frequency which represents arc a
lðaÞ Index in L of the line corresponding to arc a
K Set of OD pairs with generic element k
Ok (Dk) Origin (destination) node of OD pair k
dk Amount of trips of OD pair k
wn Waiting time multiplied by the demand at stop node n
bn A value equal to dk if n ¼ Ok; �dk if n ¼ Dk and 0 otherwise

H. Martínez et al. / European Journal of Operational Research 236 (2014) 27–36 29
The latest references to transit frequency optimization can be
found in (dell’Olio, Ibeas, & Ruisánchez, 2012; Ruisánchez,
dell’Olio, & Ibeas, 2012), where a bilevel model is proposed. The
upper level seeks to improve an overall cost function by varying
frequencies and bus sizes; both Hooke-Jeeves algorithm and Tabu
Search are used as heuristic search. The lower level problem solves
the capacity constrained assignment problem formulated by de
Cea and Fernández (1993). The authors test the methodologies
by using the case of the city of Santander (Spain), comprising 15
bus lines. Also, in (Szeto & Wu, 2011) the frequency optimization
is solved heuristically as part of the transit network design prob-
lem and tested with a suburban residential area in Hong Kong
comprising 10 lines.

As a summary, we can say that although different models for
frequency optimization have been proposed in the literature, they
have very similar objective functions and constraints. Slight varia-
tions are observed in the hypothesis assumed by most of the
assignment sub-models considered. The bus capacity is mostly
added as a constraint enforced by the planner, who should ensure
sufficient capacity on the lines that the users desire to use. On the
other hand, Gao et al. (2004), dell’Olio et al. (2012); Ruisánchez
et al. (2012) model the effect of the bus capacity in the user behav-
ior, by means of a congested assignment sub-model. To the best of
our knowledge, no study discusses formally the conditions under
which a specific treatment of the bus capacity should be applied.
All solution methods are approximated; some of them are driven
by the mathematical formulation while others are purely heuris-
tics. Finally, the largest test cases used are relative to cities com-
prising approximately 100 lines.
3. Mathematical model

Our model is mostly based on the one proposed by Constantin
and Florian (1995). This model has an explicit formulation based
on the optimal strategies assignment model (Spiess & Florian,
1989) whose properties have been largely discussed in the litera-
ture. These characteristics enable a detailed discussion at the levels
of mathematical structure, computational tractability as well as
model realism. Moreover, the frequency optimization model of
Constantin and Florian (1995) neither has an exact solution meth-
od nor has an approximate one validated against exact results.

Our contribution with respect to the reference study is a linear-
ization which allows to avoid the bilevel structure under certain
conditions and enables to apply MILP techniques to solve the mod-
el to optimality. We remark that the nonlinear bilevel structure of
the formulation proposed by Constantin and Florian (1995) makes
the problem very difficult to solve; no standard solution method
exists to solve such a formulation.

In order to present the model, first we explain the representa-
tion of the lines, the demand and the user behavior. Next, we pres-
ent the proposed linearization and the model for frequency
optimization. To ease the reading of the formulations, a glossary
of the main symbols used is provided in Table 1.
3.1. Lines, demand and user behavior

We consider a public transportation system with supply and
demand components. On the supply side, we have the lines which
itineraries are defined in terms of existing bus stops and street seg-
ments; their frequencies will be determined by the optimization
model. On the demand side, we have the users that need to per-
form trips between different points of the city; also, given a set
of lines, the users should decide how to perform such trips using
those lines.
We represent the supply side as a directed graph G ¼ ðN;AÞ
where the set N includes nodes which represent bus stops and end-
points of street segments for each line (NP and NS respectively,
such that N ¼ NP [ NS). The arcs between nodes of NS are called tra-
vel arcs (set AT ). They represent the movement of the buses (and
the passengers on-board) along the street, which elapses in a non-
negative fixed travel time ca; a 2 AT . Arcs which go from NP to NS

are called boarding arcs (set AB); conversely, arcs from NS to NP

are called alighting arcs (set AL). These sets are such that
A ¼ AT [ AB [ AL. Fig. 1 illustrates the structure of the graph G.
Based on this model, we consider a given set of lines L, where each
line has either a forward and a backward itinerary or a single cir-
cular itinerary. An itinerary is a sequence of adjacent travel arcs.
For any line l 2 L we consider that the concatenation of its itinerar-
ies (or its single itinerary if it is circular) forms a closed cycle,
therefore we can express its round-trip time as

P
a2lca.

For sake of simplicity we assume that the demand is generated
(both produced and attracted) in the bus stops. A more detailed
modeling would include centroid nodes representing zones and
walking arcs connecting such centroids with bus stops. Including
these elements do not change the nature of the formulations dis-
cussed in this work. We represent the demand as a set of OD pairs
K such that Ok; Dk 2 NP are origin and destination respectively of
OD pair k 2 K and the nonnegative value dk represents its corre-
sponding amount of trips (persons per time unit) in a given time
horizon.

For representing the user behavior, we should consider an
assignment sub-model. It states the way in which the users move
themselves from their origins to their destinations, using a given
set of public transportation lines. It is necessary to compute the
performance of the system, namely the waiting time and occu-
pancy of buses experienced by the users. Note that decisions of
the users depends on the line frequencies; since they are decision
variables of our overall optimization model, the assignment sub-
model is a very relevant component.

We consider the assignment model proposed in (Spiess &
Florian, 1989), called optimal strategies. A strategy is defined as a
set of rules that when applied, enables the user to reach his desti-
nation. In terms of the graph G and for a given OD pair k, a strategy
can be seen as a subset of arcs in A which represents all the lines
that the user identifies a priori, for traveling from Ok to Dk. The
model assumes that a given user selects the strategy that
minimizes his total travel time. To do this, he will select a priori



Fig. 1. Graph model.

Fig. 2. Graph model representing the discretized domain of frequencies.
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(i.e., before leaving the place where the trip is originated) a set of
attractive lines among all the possible lines that connect its origin
and destination bus stops (even including transfers). In this pro-
cess, the passenger considers information related to the on-board
travel time of all the lines of the system (given by the cost of the
travel arcs in G); he also knows the frequency of all lines, needed
to compute the waiting time. While waiting at the bus stop, the
user will take the first bus passing by that stop, belonging to the
set of attractive lines determined a priori. A strategy is optimal if
it minimizes the total expected travel time.

Core assumptions of an assignment model are those which de-
fine the computation of the waiting time and the selection of lines
by the users. As commonly accepted in the literature (Desaulniers
& Hickman, 2007), the waiting time of a passenger waiting on a
stop for a set of lines R ¼ fr1; . . . ; rmg with corresponding frequen-
cies F ¼ ff1; . . . ; fmg can be modeled with a random variable of
mean value EðtwÞ ¼ b=

P
ri2R f i, where b is a parameter which de-

pends on assumptions concerning service regularity. Moreover,
assuming that the passengers take the first bus arriving at the stop
(among the buses that perform routes of the set R), the probability
of using the route ri is Pi ¼ fi=

P
rj2R f j, which is known as the fre-

quency share rule.
Upon introducing variables Vn (flow on node n) and xa (a binary

variable that indicates whether arc a belongs to the optimal strat-
egy), the assignment problem can be formulated as a travel time
minimization one where the objective function includes the wait-
ing time expression 1=

P
a2Aþn

faxa and the frequency share rule takes
the form va ¼ Vnfaxa=

P
a02Aþn

fa0xa0 , where va is the amount of de-
mand flowing through arc a 2 A;Aþn are the outgoing arcs from
node n and fa is the frequency (buses per time unit) of the line cor-
responding to the boarding arc a. That optimization problem in-
cludes nonlinear expressions and binary variables; we refer to its
original publication (Spiess & Florian, 1989) for the complete de-
tails. In the context of this study, it is relevant to take into account
that by means of a change of variables and considerations about
the feasible space of the resulting model, the authors of the original
study simplify the model. Thus, by introducing variable
wn ¼ Vn=

P
a2Aþn

faxa and eliminating variable xa, the assignment
model can be reformulated as follows, for a single OD pair (implicit
in the notation):

min
v;w

X
a2A

cava þ
X
n2NP

wn; ð1Þ

s:t:
X
a2Aþn

va �
X
a2A�n

va ¼ bn 8n 2 N; ð2Þ

va 6 fawn 8n 2 NP; a 2 Aþn ; ð3Þ
va P 0 8a 2 A; ð4Þ

where wn is the waiting time multiplied by the amount of demand
at node n 2 NP; A�n are incoming arcs to node n and bn is a value
equal to dk if n ¼ Ok; �dk if n ¼ Dk and 0 otherwise.
Formulation (1)–(4) states that users behave in order to mini-
mize the sum of on-board travel time and waiting time. Constraint
(2) states flow conservation, meaning that the whole demand
should be able to reach destination. In constraint (3), va is zero if
arc a is not part of the optimal strategy, while for arcs included
in the optimal solution, the constraint verifies with equality,
restoring the frequency share rule expression.

This formulation is linear and closely resembles a shortest path
problem. The difference is that objective function (1) includes a
term which represents waiting at nodes and constraint (3) repre-
sents the splitting of demand among the attractive lines that pass
by a given stop and lead to destination. Because of that constraint,
the solution of the assignment problem is not a single path on the
graph, instead it is a hyperpath (Nguyen & Pallottino, 1988) which
represents different trajectories from origin to destination.
3.2. Frequency optimization model

Our model for frequency optimization is based on the one pro-
posed by Constantin and Florian (1995), which has a nonlinear bi-
level formulation. The key difference of our proposal is the
introduction of an auxiliary structure of the underlying graph,
which allows to obtain a linear formulation that under certain con-
ditions has a single-level structure.

We define a discretization of the domain of frequencies by
means of a given set H ¼ fh1; . . . hmg, where each element hi is a
nonnegative value representing a possible value for the frequency
of any line. A feasible setting of frequencies should set a value from
H to each line l 2 L. Moreover, we define a new structure for G
where each line passing by a given stop has one boarding arc for
each value of H. Fig. 2 illustrates such structure for the example
of Fig. 1 and for an instance of H having 3 frequencies. Note that
by discretizing the domain of frequencies, we introduce a loss of
precision. On the other hand, in real systems it is convenient to
consider a reduced set of frequency values, due to service coordi-
nation and fleet management issues. We resume this discussion
in Section 5.3.2.

Then we introduce a binary variable ylf which takes value 1 if
frequency hf is set to line l. Based on these definitions and the
assignment sub-model stated by (1)–(4) we formulate the fre-
quency optimization model as (5)–(12) where B is an upper limit
on the fleet size, f ðaÞ denotes the index in H of the frequency which
represents arc a and lðaÞ denotes the line corresponding to that arc.
Note that we have added index k to indicate the corresponding OD
pair.

Formulation (5)–(12) expresses simultaneously decisions of the
planner regarding the setting of frequencies (variable y), as well as
the corresponding decisions of the passengers regarding flow
assignment (variables v and w). Note that although the objective
function does not include variable y, constraints (6) and (7) bound
its possible values; among them, the model will select those which
minimize v and w according to constraints which involve such
variables. Arc flow values v are minimized in the objective func-
tion, subject to flow conservation (8) and arc (i.e. frequency) avail-
ability (10). Waiting time w is also minimized in the objective
function, while constraint (9) acts as lower bound to its value.
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min
y;v;w

X
k2K

X
a2A

cavak þ
X
n2NP

wnk

 !
; ð5Þ

s:t:
X
l2L

X
f21...m

hf ylf

X
a2l

ca 6 B; ð6Þ
X

f21...m

ylf ¼ 1 8l 2 L; ð7Þ
X
a2Aþn

vak �
X
a2A�n

vak ¼ bnk 8n 2 N; k 2 K; ð8Þ

vak 6 hf ðaÞwnk 8n 2 NP; a 2 Aþn ; k 2 K; ð9Þ
vak 6 dkylðaÞf ðaÞ 8a 2 AB

; k 2 K; ð10Þ
vak P 0 8a 2 A; k 2 K; ð11Þ
ylf 2 f0;1g 8l 2 L; f 2 1 . . . m: ð12Þ

Observe that for a given setting of frequencies to lines (fixed va-
lue of y) which respects constraints (6) and (7), the resulting linear
problem represents jKj independent assignment problems as sta-
ted by (1)–(4). Constraint (9) involves a fixed frequency while con-
straint (10) is redundant for ylðaÞf ðaÞ ¼ 1; therefore, in absence of
other constraints involving variables v and w, the proposed mixed
integer single-level formulation is equivalent (restricted to a dis-
cretization) to the nonlinear bilevel formulation proposed in
(Constantin & Florian, 1995).

The transformations proposed in this work, change the original
source of complexity of the problem to a different one. While the
original formulation is nonlinear bilevel (for which no standard
solution method exists) the proposed one is mixed integer linear
(for which exact solution methods are available). The main source
of complexity of the proposed formulation is the existence of bin-
ary variables; moreover, the discretization of the domain of fre-
quencies enlarges the set of boarding arcs (and the
corresponding number of variables v) to a factor equals to the size
of the set H of possible frequencies.
4. Metaheuristic approach

Although the proposed MILP formulation enables to compute
optimal solutions to the frequency optimization problem, large-
sized instances are expected to be hard to solve. Note that by intro-
ducing the discretization of the domain of frequencies, we turn the
problem into a combinatorial one which search space has (in the
worst case) an exponential size jHjjLj.

In order to cope with this complexity, we propose a metaheuris-
tic approach based on Tabu Search (Glover, 1989). The method is
based on a local search in the space of frequencies (decisions of
the planner), while the variables representing decisions of the
users are computed by calling the assignment sub-model (1)–(4).
In order to avoid getting trapped in local optima, we apply tabu
concepts to the base local search mechanism. The search strategy
is based in operators which incorporate knowledge about the real
problem. Then, a descent method is naturally defined by the suc-
cessively application of those operators. Special mechanisms of
Tabu Search are applied to avoid many invocations to the assign-
ment sub-model (which may be computationally costly). Note that
a population based metaheuristic (like Genetic Algorithms) should
require a similar mechanism, since the process of each generation
entails the evaluation of many individuals.

In the following, we present the main concepts involved in the
proposed methaeuristic.
4.1. Local procedure

The local procedure is a search that uses an operation called
move to define the neighborhood of any given solution (Glover &
Laguna, 1998). Our solution is represented by an array of indexes
to the set of frequencies H. Each place in the array represents a line
of the public transportation system, and its value represents the
frequency of that line. We assume that the set of possible frequen-
cies is ordered from lowest (h1) to highest (hm) value. In this way, a
line increases (decreases) its frequency when it changes to the next
highest (lowest) value in H. Let us observe that a decrease of a line
frequency in a solution, always makes it less attractive (from the
user point of view) or in the best case equal. On the contrary, an
increase of a line frequency in a solution makes it more attractive
or at least equal. The move operation that defines the neighbor-
hood structure is then a compound change on a couple of line fre-
quencies of the solution, one increase and one decrease change.
With this basic operation, each solution has jLj � ðjLj � 1Þ neighbor
solutions when the frequency of every line can decrease or
increase.

4.2. Tabu Search

Tabu Search is a metaheuristic that guides a local procedure to
explore the solution space beyond local optimality (Glover &
Laguna, 1998). In order to do that, the search may accept moves
which worsen the current solution and may avoid moves which
were performed recently. One of the main components of Tabu
Search is its use of memory. Our work focuses on the short term
memory strategies.

4.2.1. Memory, tenure and tabu classification
We use the most common type of short term memory, namely,

recency based memory (Glover & Laguna, 1998). A tabu list called
TabuStart records the last iteration when each line changed its fre-
quency. Let suppose that TestDec and TestInc correspond to the
lines that will increase and decrease their frequencies respectively.
We will say that the move ðTestDec; TestIncÞ is tabu active if
Iter 6 TabuStartðTestDecÞ þ Tenure or Iter 6 TabuStartðTestIncÞ
þTenure. In this expression, Iter indicates the current iteration
number while Tenure indicates the number of iterations where a
move remains tabu active. In general terms, the search mechanism
usually avoids moves which are tabu active. However, when the
number of non-tabu active moves is small, additional mechanisms
are adopted, among them aspiration criteria.

4.2.2. Aspiration criteria
Aspiration criteria are introduced to determine when tabu acti-

vation rules can be overridden (Glover & Laguna, 1998). In our con-
text, given that the computation of the objective value of a solution
is costly (since it entails an invocation to the passenger assignment
sub-model), only neighbor solutions without tabu active status on
any of their line frequencies are evaluated. When the possible
number of neighbor solutions obtained exclusively by means of
non-tabu active moves (estimated as the product of the number
of lines that can increase and those that can decrease their fre-
quencies) is beyond a minimum threshold Nmin (a parameter of
the algorithm), the aspiration criterion implemented removes the
tabu active status of the line frequencies with lowest
TabuStartðTestXÞ þ Tenure (where X corresponds to Dec or Inc) until
reaching the minimum number of neighbors stated by Nmin. This is
known as aspiration by default.

4.2.3. Neighborhood exploration
As a systematical way to explore the neighbor solutions, we

implement the aspiration plus strategy (Glover & Laguna, 1998). It
explores a number plus of solutions after finding a solution which
objective value improves an aspiration value. To keep bounded the
number of neighbor solutions to visit, the strategy uses two values
that indicate the minimum and maximum number of solutions to
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explore (parameters Min and Max respectively). More specifically,
if the aspiration value is reached or surpassed during the explora-
tion of the ith neighbor, then the search explores:

1. iþ plus neighbors if Min 6 iþ plus 6 Max,
2. Min neighbors if iþ plus < Min, or
3. Max neighbors if Max < iþ plus.

The candidate neighbors resulting from the application of the
strategy explained above, are evaluated in random order.
4.3. Objective function and constraints

In order to evaluate each neighbor solution, we implemented
the label-setting algorithm proposed in (Spiess & Florian, 1989)
which solves the assignment model formulated by (1)–(4). In gen-
eral terms, the algorithm is very similar to the shortest path la-
bel-setting algorithm (Ahuja, Magnanti, & Orlin, 1993); the main
difference is that besides the consideration of arc costs, it takes
into account the frequencies in common lines, which split the
flow and therefore generates the hyperpath structure in the
solution.

Concerning the constraints of the optimization model, instead
of discarding solutions which violate the fleet size upper limit con-
straint (6), we allow infeasible solutions and guide the search by
penalizing the extra buses. An estimation of the influence of buses
with respect to the total time of the users (calculated as the objec-
tive value divided by the number of buses of the solution) is used
to penalize the amount of buses which surpasses the available fleet
size.
1 http://www.montevideo.gub.uy/institucional/datos-abiertos/introduccion.
5. Numerical results

In this section we report on numerical results obtained from the
application of the exact model explained in Section 3 and the
approximated solution method presented in Section 4. We use
three test cases:

1. The case of Mandl (1980), which represents a small city. Its
graph comprises 15 nodes and 21 undirected edges. Since no
route network is associated with this case, we generated a net-
work according to the purpose of our specific study. The OD
matrix comprises 172 OD pairs, which is a very high value with
respect to the number of nodes.

2. The case of the city of Rivera, Uruguay (Mauttone & Urquhart,
2009). Its graph comprises 84 nodes and 143 undirected edges,
while its OD matrix has 378 OD pairs which represent the
demand in a time horizon of 12 hours. We consider a set of lines
representing the public transportation system of the city which
operated when the case was built (year 2003); there are 11 lines
with forward and backward itineraries and 2 circular lines.

3. A case corresponding to Montevideo, capital city of Uruguay. Its
underlying graph has 4945 nodes and 14,672 edges, represent-
ing a transit system having 133 bus routes. Origin–destination
data was randomly generated (both OD location and amount
of trips), trying to maintain realistic characteristics; thus, the
case includes 7425 OD pairs evenly distributed along the city.

In the first two cases, the elements of the graph are given in a
high level of aggregation; therefore, we consider that each node
is a potential endpoint of section of itinerary as well as a bus stop
(see Fig. 3(a)). For the case of Mandl, we configured a set of possible
values of frequencies as H ¼ f1=60;1=50;1=40;1=30;1=20;1=10;
1=5;1=2g and we generated a set of 7 lines with symmetrical for-
ward and backward itineraries using the Pair Insertion Algorithm
(Mauttone & Urquhart, 2009). The upper bound for the fleet size
was set to 80, taken from (Baaj & Mahmassani, 1991). For Rivera,
we used the frequencies used by the lines of its current system,
namely H ¼ f1=60;1=40;1=30;1=20g as well as its resulting value
for the fleet size, namely 27.

For the case of Montevideo, we have a very detailed represen-
tation of the transit system (built from the published open data1),
including specific stop, centroid nodes and walk arcs (see Fig. 3(b)).
The possible frequencies are H ¼ f1=60;1=40;1=20;1=12;1=6;
1=4;1=3g and the fleet size is 1500, as indicated by the web page
of the municipality. We note that this case was not validated di-
rectly with the municipality, unlike of Rivera; a validated represen-
tation of the transit system of Montevideo was out of the scope of
this work. However, our main purpose is to have a case whose size
is comparable with the state of the art in transit frequency optimi-
zation, having real characteristics as much as possible.

Both cases of Rivera and Montevideo present overlapping
routes, specially in the city downtown. This is particularly rele-
vant to the model adopted in this work, where the frequency
share rule plays an important role, concerning both realism and
complexity.

The MILP model was implemented in AMPL and solved by using
CPLEX 12.2 in a Core-i7 computer with 16 GB of RAM; only the
Mandl and Rivera cases were run, since the computational require-
ments for running the CPLEX model with the Montevideo case ex-
ceeded our available resources. The metaheuristic was
implemented in C++ and run in a Core-i5 machine with 8 GB of
RAM. Given the different experimental platforms used, the execu-
tion times are not directly comparable. However, a direct compar-
ison of different methods is not the concern of this study.
Execution times are reported mainly to show the feasibility (or
not) of application of each proposed methodologies.
5.1. Comparison of objective values

Table 2 shows the objective values (overall users’ travel time)
of the exact and approximated methods (Oe and Oa respectively),
as well as the percentage of improvement (Ie and Ia respectively)
with respect to the objective value of the current system (only for
Rivera). It also shows the execution time (in seconds) as Te and Ta

respectively, and the relative MIP gap of the exact method as Ge

(a value computed and reported by CPLEX, representing the rela-
tive distance between the best integer solution found and a lower
bound). The exact model was stopped either after finding the
global optimum or when an imposed time limit was reached.
The metaheuristic was stopped either after a maximum number
of total iterations or a maximum number of no improvement
iterations.

From Table 2 we can observe that objective values obtained by
the exact model and the approximated algorithm are very similar
for both test cases. In order to obtain results for Rivera with the exact
model, we imposed a time limit of 48 hours (y), after which we ob-
tained a feasible solution with a 18% relative MIP gap. We note that
the resulting MILP model comprises 1,097,080 variables and
2,321,750 constraints, therefore it is expected to be hard to solve
to optimality within a relatively short time. Moreover, we observed
a very slow progress of the solution improvement in the linear sol-
ver, after reaching the best solution found relatively early in the exe-
cution; this might be caused by degeneracy or numerical issues
introduced by the nature of the data. Anyway, we note that the opti-
mal solution for Mandl has a gap of 19% with respect to the optimal
solution of its linear relaxation (a trivial lower bound); therefore, we



Fig. 3. Real test cases.

Table 2
Exact and approximated results, objective values.

Oe Oa Ie (%) Ia (%) Te Ta Ge (%)

Mandl 139.54 140.99 – – 2460 <1 19
Rivera 514.23 517.56 3.48 2.85 � 113 18

� Time limit reached.
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could infer that the solution obtained for Rivera (which has a relative
MIP gap of 18%) is not very far from the optimum.

This experiment shows that (a) the proposed MILP implemen-
tation is able to compute the global optimum for a small-sized
case and (b) it is capable of improving the quality of an existing
system of a real small-sized city. As a reference, we note that
the improvement of the solution method proposed in (Constantin
& Florian, 1995) with respect to the existing system, ranges from
1.2% to 5.0% over different test cases. Finally, we note that the
proposed metaheuristic also produces good solutions in a very
short time.
5.2. Comparison of solutions obtained

In this section, we look at the solutions found by both exact and
approximated methods for the case of Rivera. Table 3 shows the
ordinal in H of the frequencies of each line, for the existing system,
the exact and the approximated solutions. We can observe that
while the exact method changed the frequencies of 6 out of the
13 lines, the approximated one changed 9. While the former in-
creased the frequency of 3 lines and decreased the other 3, the lat-
ter increased 4 frequencies and decreased 5. If we look only at the
frequencies suggested by our proposed methodologies, we can ob-
serve that 5 out of the 13 lines exhibit different results, although in
all cases, the difference is not greater than one (the frequencies are
contiguous in H and therefore they are similar).

It is worth noting that the frequencies suggested by our models
and algorithms do not consider a constraint on the maximum wait-
ing time. For this reason, since the suggested solutions represent a
redistribution of the available resources (fleet of buses) among the
users of the system, some specific OD pairs may result disadvan-
taged, as it is the case of those who are captive to the last two lines.



Table 3
Exact and approximated results, resulting frequencies.

Line Existing Exact Approximated

1 3 3 3
2 1 1 1
3 3 3 2
4 3 4 3
5 1 3 3
6 3 3 2
7 3 4 4
8 1 1 2
9 4 3 3
10 3 3 4
11 4 4 4
12 2 1 1
13 2 1 1

Table 5
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5.3. Other experiments

In order to have more quantitative elements regarding the
behavior and possibilities of application of the proposed formula-
tion and solution method, we performed the three following exper-
iments: assuming that users do not perform transfers, sensitivity to
the set H of possible frequencies and sensitivity to the initial
solution.

5.3.1. Model without transfers
In the city of Rivera, the users of the public transportation sys-

tem rarely perform transfers between different lines. This is due to
the fact that they have to pay for each line that they use. Moreover,
both line itineraries and demand pattern have a radial structure,
where the city downtown concentrates the starting points of al-
most all lines. Therefore, the demand is somehow well served di-
rectly, i.e. without need of transfers. According to this
observation, we implemented a modified coding of the graph G,
which excludes the possibility of transfers. This alternative coding
turns the model easier to solve, in comparison with the model ex-
plained in Section 3.1.

Table 4 shows the same information as Table 2, for the model
explained above applied to the case of Rivera. We can observe that
in this experiment, the model could be solved to optimality in
much less time. Moreover, the metaheuristic found a solution
exhibiting an objective value very close to the global optimum.
We should note that the alternative coding for the graph G used
to obtain the results of this experiment, is not efficient for applying
the exact MILP formulation when including the possibility of
transfers.

These results show that under certain hypothesis (which are va-
lid in the context stated in this section), the model can be solved to
optimality, when applied to a real small-sized case.

5.3.2. Sensitivity to the set of possible frequencies
Since the MILP formulation is based on a discretization of the do-

main of frequencies, the results are expected to be sensitive to the in-
stance of the set H given as input to the model. Also, the size of H
greatly impacts in the size of the graph model and therefore in the
size of the resulting MILP model, which impacts the execution time.

In this experiment, we compare results obtained from different
sets of possible frequencies for the case of Rivera, using the model
without transfers explained in Section 5.3.1 (in order to be able to
Table 4
Model without transfers.

Oe Oa Ie Ia Te Ta

536.14 537.69 3.51% 3.23% 90 5
take as reference the global optimal value of Table 4). Table 5
shows objective values O and corresponding execution times T
for both exact and approximated approaches. The first line corre-
spond to the results already reported in Section 5.3.1, using the fre-
quencies of the existing system. The second line adds two higher
frequencies (1/10 and 1/5) to the previous set. We can observe that
the objective values are the same. We observed that none of the
new frequencies added to H are used in the optimal solution. Since
those frequencies are relatively high, assigning one of them to any
line would imply decreasing the frequencies in several other lines.
This result also suggests that the maximum frequency used in the
lines of Rivera (1/20 minutes) is a reasonable value given the avail-
able fleet of buses. In the third line, we configure the set H with a
relatively high number of frequencies, covering the range
½1=60;1=5� with values spaced every 5 minutes. In this case the
model grew considerably and the objective value obtained after
48 hours of execution (with a 2.3% relative MIP gap) is a bit smaller
(less than 1%) than the value of the first and second lines of the
table.

This experiment shows that when changing the set of possible
frequencies H (to a set of similar values), while objective values do
not change considerably, execution times of the exact model in-
crease proportionally to the size of H. The execution time of the
approximated method is not sensitive to the variations of H in this
experiment. Concerning the practical application of the model, we
may assume that the size of H cannot grow to an arbitrary high value,
therefore we can expect that execution times are kept bounded.
5.3.3. Sensitivity to the initial solution
Our current version of the metaheuristic uses a simple way for

setting the initial solution: it sets the same value of frequency to all
lines. However, the specific frequency is a parameter of the algo-
rithm and some preliminary experiments have shown that the re-
sults are sensitive to this frequency. Taking into account this
observation, we run the algorithm for the case of Mandl, starting
with all lines having the 4th frequency of the set H (which has 8
values) and then having the 6th frequency. In the first experiment,
the rationale was to set the value of the middle of H to all lines, in
order not to bias the search. The objective value obtained was
187.40, while for the second experiment the value was 140.99.
By observing the optimal solution, we note that none of the first
4 frequencies of H are used. Therefore, the second experiment in
fact started by setting the frequency located at the middle of the
range of frequencies which are part of the optimal solution. This
suggests that (a) different starting solutions lead to relatively dif-
ferent results and (b) information from the optimal solution could
be used in order to set the initial frequency. Thus, we may use for
example, the information from the optimal solution of the linear
relaxation of the exact model (which is easy to solve), for setting
the initial frequencies of the lines. This suggests a possible hybrid-
ization between both exact and approximated approaches.
5.4. Application to a large-sized case

In this section, we report and analyze the results of the meta-
heuristic approach applied to the case of Montevideo. We do not
Sensitivity to the set of possible frequencies.

H Oe Oa Te Ta

{1/60, 1/40, 1/30, 1/20} 536.14 537.69 90 5
{1/60, 1/40, 1/30, 1/20, 1/10, 1/5} 536.14 537.69 210 5
{1/60, 1/55, . . ., 1/5} 531.88 535.08 � 5

� Time limit reached.
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Fig. 4. Progress of the metaheuristic.
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have information about the frequencies of the optimal solution and
the current system. Therefore, the main objective of this experi-
ment is to observe (a) the ability of the algorithm to improve an
initial (realistic) solution and (b) the execution time needed to
reach such improvement. We set the initial solution as the one
having the same frequency in all lines and the corresponding value
of fleet size being the closest possible to its respective upper bound
(1500 buses). In this way, we set to all lines the frequency number
4 from the set H of Montevideo, namely, 1/12; the corresponding
fleet size is 1524, which derives in a (slightly) unfeasible solution.

We perform a single run of the algorithm, setting a fixed num-
ber of iterations as 500, observing a running time of approximately
90 minutes every 10 iterations. The percentage of improvement
with respect to the initial solution was 1.7%, observing that many
lines of the improved solution have changed their frequencies.
Therefore we can conclude that the metaheuristic is able to im-
prove the initial solution, while the improvement is higher accord-
ing to the increase in the number of local search iterations. Fig. 4
shows the progress of the algorithm according to the iteration
number. In Fig. 4(a) we can observe that both objective values of
the model (given by objective function (5)) and the metaheuristic
(given by the penalized objective function as explained in Sec-
tion 4.3) have several cycles ending with a local improvement.
Accordingly, in Fig. 4(b), we can observe that the fleet size oscil-
lates around the maximum value imposed by constraint (6), which
is a consequence of the mechanism designed to allow the algo-
rithm searching beyond the feasible space (see Section 4.3).
Finally, we note that the percentage of improvement obtained
for Montevideo is lower than the one obtained for Rivera. Anyway,
the improvement is still in the range obtained by the study used as
reference on this one: 1.2% to 5.0% in (Constantin & Florian, 1995).
Concerning execution times, the algorithm has an acceptable per-
formance taking into account the size and degree of detail of the
case as well as the purpose of the methodology (strategic and tac-
tical planning).
6. Conclusions and further work

We have proposed a new formulation and a new solution meth-
od to the frequency optimization problem. Based on the model
proposed in (Constantin & Florian, 1995), we derived a mixed inte-
ger linear programming (MILP) formulation which is equivalent to
the bilevel nonlinear one proposed in the original study. The nature
of our formulation enables to solve the problem exactly using MILP
techniques.

By means of the proposed model, we are able to compute opti-
mal or near optimal solutions (with estimation of its accuracy) for
a case relative to a real small-sized city. Although its public trans-
portation system has 13 lines, we obtained improvements of
around 3% by applying the model. This shows that even in small
cases, there is room for improving the efficiency of the system.
Although manual solutions benefit from the experience of the
planner, they are not necessarily optimal; therefore, the optimiza-
tion model may suggest changes that are not obvious or intuitive.
Moreover, we note that our percentages of improvement are sim-
ilar to the ones reported in the literature (Constantin & Florian,
1995).

Since the global optimum of the city of Rivera was not possible
to find after a considerable amount of execution time, we devised
the need of an alternative solution method. Thus, we proposed a
Tabu Search metaheuristic, which results are competitive when
compared against the exact model. The approximated method also
was tested with a larger and detailed case, showing its ability to
improve an initial solution in a reasonable amount of time.

As future work, an interesting research could be the integration
of the models studied in this work (which are mainly conceived for
the strategic and tactical planning) with operational models. By
adopting a more detailed representation of the transit system,
operational models may contribute to a more accurate evaluation
of the benefits obtained by our methodologies. Note that the per-
centages of improvement obtained (less than 5%) might be ab-
sorbed by the simplifications made in the frequency optimization
models. Thus, the inclusion of timetables and schedule-based
assignment models (Nuzzolo, 2003) could help to reduce that mod-
eling gap.

Concerning the solution methods, the exact formulation could
be improved by incorporating cuts and valid inequalities. On the
other hand, the Tabu Search metaheuristic admits some improve-
ments, in particular in the generation of the initial solution (prob-
ably through the incorporation of a long term memory). Also,
hybrid methods (with other metaheuristics or exact methods)
could be considered.

Finally, the assignment sub-model embedded in our formula-
tion for transit frequency optimization, assumes that there is suffi-
cient capacity to carry all the passengers that desire to use any line.
But in systems that exhibit high affluence of passengers, this is not
always true. System capacity is directly related to frequencies,
therefore this is a relevant issue. In the literature, the capacity issue
in the context of frequency optimization has been tackled by dif-
ferent approaches, including models where the planner ensures
sufficient capacity (Constantin, 1992; Leiva, Muñoz, Giesen, & Lar-
rain, 2010) and models which assume passenger behavior in a con-
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gested scenario (Gao et al., 2004). Underlying assumptions of these
models have different impacts on the overall system performance.
Further discussion would be needed in order to compare these
approaches.
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