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And there is all the difference in the world
between paying and being paid.
The act of paying is perhaps
the most uncomfortable infliction (...)
But being paid, —what will compare with it?
The urbane activity with which man receives money
is really marvellous.

Herman Melville, Moby Dick

1 Origin of Value and Prices

Price theory is concerned with explaining economic activity in terms of the creation and transfer
of value, which includes the trade of goods and services between different economic agents. A
puzzling question addressed by price theory is, for example: why is water so cheap and diamonds
are so expensive, even though water is critical for survival and diamonds are not? In a discussion
of this well-known ‘Diamond-Water Paradox,’ Adam Smith (1776) observes that

[t]he word value, it is to be observed, has two different meanings, and sometimes
expresses the utility of some particular object, and sometimes the power of purchasing
other goods which the possession of that object conveys. The one may be called “value
in use;” the other, “value in exchange.” (p. 31)

For him, diamonds and other precious stones derive their value from their relative scarcity and
the intensity of labor required to extract them. Labor therefore forms the basic unit of the
exchange value of goods (or ‘items’), which determines therefore their ‘real prices.’ The ‘nominal
price’ of an item in Smith’s view is connected to the value of the currency used to trade it and
might therefore fluctuate. In this labor theory of value the Diamond-Water Paradox is resolved
by noting that it is much more difficult, in terms of labor, to acquire one kilogram of diamonds
than one kilogram of water.
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About a century later, the work of Carl Menger, William Stanley Jevons, and Léon Walras
brought a different resolution of the Diamond-Water Paradox, based on marginal utility rather
than labor. Menger (1871) points out that the value of an item is intrinsically linked to its utility
‘at the margin.’ While the first units of water are critical for the survival of an individual, the
utility for additional units quickly decreases, which explains the difference in the value of water
and diamonds. Commenting on the high price of pearls, Jevons (1881) asks “[d]o men dive for
pearls because pearls fetch a high price, or do pearls fetch a high price because men must dive in
order to get them?” (p. 102), and he concludes that “[t]he labour which is required to get more
of a commodity governs the supply of it; the supply determines whether people do or do not
want more of it eagerly; and this eagerness of want or demand governs value” (p. 103). Walras
(1874/77) links the idea of price to the value of an object in an exchange economy by noting that
the market price of a good tends to increase as long as there is a positive excess demand, while
it tends to decrease when there is a positive excess supply. The associated adjustment process is
generally referred to as Walrasian tâtonnement (“groping”). Due to the mathematical precision
of his early presentation of the subject, Walras is generally recognized as the father of general
equilibrium theory.1

To understand the notion of price it is useful to abstract from the concept of money.2 In
a barter where one person trades a quantity x1 of good 1 for the quantity x2 of good 2, the
ratio x1/x2 corresponds to his price paid for good 2. If apples correspond to good 1 and bananas
to good 2, then the ratio of the number of apples paid to the number of bananas obtained in
return corresponds to the (average) price of one banana, measured in apples. The currency in
this barter economy is denominated in apples, so that the latter is called the numéraire good,
the price of which is normalized to one.

The rest of this survey, which aims at providing a compact summary of the (sometimes tech-
nical) concepts in price theory, is organized as follows. In Section 2, we introduce the concepts
of “rational preference” and “utility function” which are standard building blocks of models that
attempt to explain choice behavior. We then turn to the frictionless interaction of agents in mar-
kets. Section 3 introduces the notion of a Walrasian equilibrium, where supply equals demand
and market prices are determined (up to a common multiplicative constant) by the self-interested
behavior of market participants. This equilibrium has remarkable efficiency properties, which
are summarized by the first and the second fundamental welfare theorems. In markets with
uncertainty, as long as any desired future payoff profile can be constructed using portfolios of
traded securities, the Arrow-Debreu equilibrium directly extends the notion of a Walrasian equi-
librium and inherits all of its efficiency properties. Otherwise, when markets are “incomplete,”
as long as agents have “rational expectations” in the sense that they correctly anticipate the
formation of prices, the Radner equilibrium may guarantee at least constrained economic effi-
ciency. In Section 4 we consider the possibility of disequilibrium and Walrasian tâtonnement as a
price-adjustment process in an otherwise stationary economy. Section 5 deals with the problem
of “externalities,” where agents’ actions are payoff-relevant to other agents. The presence of
externalities in markets tends to destroy the efficiency properties of the Walrasian equilibrium
and even threaten its very existence. While in Sections 3 and 4 all agents (including consumers
and firms) are assumed to be “price takers,” we consider strategic interactions between agents
in Sections 6 and 7, in the presence of complete and incomplete information, respectively. The

1The modern understanding of classical general equilibrium theory is well summarized by Debreu’s (1959)
concise axiomatic presentation and by Arrow and Hahn’s (1971) more complete treatise. Mas-Colell (1985)
provides an overview from a differentiable viewpoint, and McKenzie (2002) a more recent account of the theory.
Friedman (1962/2007), Stigler (1966), and Hirshleifer et al. (2005) present ‘price theory’ at the intermediate level.

2Keynes’ (1936) theory of liquidity gives some reasons for the (perhaps somewhat puzzling) availability of
money, which, after all, cannot be directly consumed, but provides a fungible means of compensation in exchange.
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discussion proceeds from optimal monopoly pricing (which involves the problems of screening,
signaling, and, more generally, mechanism design when information is incomplete) to price com-
petition between several firms, either in a level relationship when there are several oligopolists
in a market, or as an entry problem, when one incumbent can deter (or encourage) the entrance
of other firms into the market. Section 8 deals with dynamic pricing issues, and in Section 9
we mention some of the persistent behavioral irregularities that are not well captured by classi-
cal price theory. Finally, Section 10 concludes and provides a number of directions from which
further research contributions may be expected.

2 Price-Taking Behavior and Choice

Normative predictions about what agents do, i.e., about their “choice behavior,” requires some
type of model. In Section 2.1, we introduce preferences and the concept of a utility function to
represent those preferences. Section 2.2 then presents the classical model of consumer choice in
terms of a “utility maximization problem” in an economy where agents take the prices of the
available goods as given. In Section 2.3, we examine how choice predictions depend on the given
prices or on an agent’s wealth, an analysis which is referred to as “comparative statics.” In
reality it is only rarely possible to make a choice which achieves a desired outcome for sure. The
effects of uncertainty, discussed in Section 2.4, are therefore important for our understanding
of how rational agents behave in an economy. Decision problems faced by two typical agents,
named Joe and Melanie, will serve as examples.

2.1 Rational Preferences

An agent’s preferences can be expressed by a partial order over a choice set X.3 For example,
consider Joe’s preferences over the choice set X = {Apple,Banana,Orange} when deciding which
fruit to pick as a snack. Assuming that he prefers an apple to a banana and a banana to an
orange, his preferences on X thus far can be expressed in the form

Apple ≽ Banana,

Banana ≽ Orange,

where ≽ denotes “is (weakly) preferred to.” However, these preferences are not complete, since
they do not specify Joe’s predilection between an apple and an orange. If Joe prefers an orange
to an apple, then the relation

Orange ≽ Apple

completes the specification of Joe’s preference relation ≽ which is then defined for all pairs of
elements of X. When Joe is ambivalent about the choice between an apple and a banana, so that
he both prefers an apple to a banana (as noted above) and a banana to an apple (i.e., Apple ≽
Banana and Banana ≽ Apple both hold), we say that he is indifferent between the two fruits
and write Apple ∼ Banana. On the other hand, if Apple ≽ Banana holds but Banana ≽ Apple
is not true, then Joe is clearly not indifferent: he strictly prefers an apple to a banana, which is
denoted by

Apple ≻ Banana.

If the last relation holds true, a problem arises because Joe’s preferences are now such that he
strictly prefers an apple to a banana, weakly prefers a banana to an orange, and at the same time

3Fishburn (1970) and Kreps (1988) provide more in-depth overviews of choice theory.
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weakly prefers an orange to an apple. Thus, Joe would be happy to get an orange in exchange
for an apple. Then he would willingly take a banana for his orange, and, finally, pay a small
amount of money (or a tiny piece of an apple) to convert his banana back into an apple. This
cycle, generated by the intransitivity of his preference relation, leads to difficulties when trying
to describe Joe’s behavior as rational.4

Definition 1 A rational preference ≽ on the choice set X is a binary relationship defined for
any pair of elements of X, such that for all x, y, z ∈ X: (i) x ≽ y or y ≽ x (Completeness),
(ii) x ∼ x (Reflexivity), and (iii) x ≽ y and y ≽ z together imply that x ≽ z (Transitivity).

To make predictions about Joe’s choice behavior over complex choice sets, dealing directly with
the rational preference relation ≽ is from an analytical point of view unattractive, as it involves
many pairwise comparisons. Instead of trying to determine all ‘undominated’ elements of Joe’s
choice set, i.e., all elements that are such that no other element is strictly preferred, it would be
much simpler if the magnitude of Joe’s liking of each possible choice x ∈ X was encoded as a
numerical value of a ‘utility function’ u(x), so that Joe’s most preferred choices also maximize
his utility.

Definition 2 A utility function u : X → R represents the rational preference relation ≽ (on X)
if for all x, y ∈ X:

x ≽ y if and only if u(x) ≥ u(y).

It is easy to show that as long as the choice set is finite, there always exists a utility representation
of a rational preference relation onX.5 In addition, if u represents≽ onX, then for any increasing
function φ : R → R the utility function v : X → R with v(x) = φ(u(x)) for all x ∈ X also
represents ≽ on X.

2.2 Utility Maximization

If Joe has a rational preference relation on X that is represented by the utility function u, in
order to predict his choice behavior it is enough to consider solutions of his utility maximization

4When aggregating the preferences of a society of at least three rational agents (over at least three items),
Arrow’s (1951) seminal ‘impossibility theorem’ states that, no matter what the aggregation procedure may be,
these cycles can in general be avoided only by declaring one agent a dictator or impose rational societal preferences
from the outside. For example, if one chooses pairwise majority voting as aggregation procedure, cycles can
arise easily, as can be seen in the following well-known voting paradox, which dates back to Condorcet (1785).
Consider three agents with rational preferences relations (≽1, ≽2, and ≽3, respectively) over elements in the
choice set X = {A,B,C} such that A ≻1 B ≻1 C, B ≻2 C ≻2 A, and C ≻3 A ≻3 B. However, simple majority
voting between the different pairs of elements of X yields a societal preference relation ≽ such that A ≻ B,
B ≻ C, and C ≻ A implying the existence of a ‘Condorcet cycle,’ i.e., by Definition 1 the preference relation ≽
is intransitive and thus not rational.

5If X is not finite, it may be possible that no utility representation exists. Consider for example lexicographic
preferences defined on the two-dimensional choice set X = [0, 1] × [0, 1] as follows. Let (x1, x2), (x̂1, x̂2) ∈ X.

Suppose that (x1, x2) ≽ (x̂1, x̂2)
def⇐⇒ (x1 > x̂1) or (x1 = x̂1 and x2 ≥ x̂2). For example, when comparing

used Ford Mustang cars, the first attribute might index a car’s horsepower and the second its color (measured as
proximity to red). An individual with lexicographic preferences would always prefer a car with more horsepower.
However, if two cars have the same horsepower, the individual prefers the model with the color that is closer to
red. The intuition why there is no utility function representing such a preference relation is that for each fixed
value of x1, there has to be a finite difference between the utility for (x1, 0) and (x1, 1). But there are more than
countably many of such differences, which when evaluated with any proposed utility function can be used to show
that the utility function must in fact be unbounded on the square, which leads to a contradiction. For more
details, see Kreps (1988). In practice, this does not lead to problems, since it is usually possible to discretize the
space of attributes, which results in finite (or at least countable) choice sets.
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problem (UMP),
x∗ ∈ argmax

x∈X
u(x). (1)

Let us now think of Joe as a consumer with a wealth w that can be spent on a bundle x =
(x1, . . . , xL) containing nonnegative quantities xl, l ∈ {1, . . . , L}, of the L available consumption
goods in the economy. We assume henceforth that Joe (and any other agent we discuss) strictly
prefers more of each good,6 so that his utility function is increasing in x. To simplify further, we
assume that Joe takes the price pl of any good l as given, i.e., he is a price taker. Given a price
vector p = (p1, . . . , pL) he therefore maximizes his utility u(x) subject to the constraint that the
value of his total consumption, equal to the dot-product p ·x, does not exceed his total (positive)
wealth w. In other words, all feasible consumption bundles lie in his budget set

B(p, w) =
{
x ∈ RL

+ : p · x ≤ w
}
.

Joe’s so-called Walrasian demand correspondence is

x(p, w) = arg max
x∈B(p,w)

u(x). (2)

Depending on the uniqueness of the solutions to Joe’s UMP, the Walrasian demand correspon-
dence may be multivalued. Optimality conditions for this constrained optimization problem can
be obtained by introducing the Lagrangian

L(x, λ, µ; p, w) = u(x)− λ(p · x− w) + µx,

where λ ∈ R+ is the Lagrange multiplier associated with the inequality constraint p · x ≤ w
and µ = (µ1, . . . , µL) ∈ RL

+ the Lagrange multiplier associated with the nonnegativity con-
straint x ≥ 0. The necessary optimality conditions are

∂L(x, λ, µ; p, w)
∂xl

=
∂u(x)

∂xl

− λpl + µl = 0, l ∈ {1, . . . , L}. (3)

Together with the complementary slackness conditions

λ(p · x− w) = 0 (4)

and
µlxl = 0, l ∈ {1, . . . , L}, (5)

they can be used to construct Joe’s Walrasian demand correspondence. For this, we first note that
since Joe’s utility function is increasing in x, the budget constraint is binding, i.e., p·x = w, at the
optimum (Walras’ Law). In particular, if Joe consumes positive amounts of all commodities, i.e.,
if x ≫ 0,7 the complementary slackness condition (5) implies that µl = 0 for all l ∈ {1, . . . , L},
so that by (3) (with λ > 0) we obtain that

MRSlj(x) =

∂u(x)
∂xl

∂u(x)
∂xj

=
pl
pj
, l, j ∈ {1, . . . , L}, (6)

6More precisely, it is sufficient to assume that Joe’s preferences are ‘locally nonsatiated,’ meaning that in the
neighborhood of any bundle x there is another bundle x̂ (located at an arbitrarily close distance) that Joe strictly
prefers. The consequence of this assumption is that Joe values any small increase of his wealth.

7We use the following conventions for inequalities involving vectors x = (x1, . . . , xL) and x̂ = (x̂1, . . . , x̂L):
(i) x ≤ x̂ ⇔ xi ≤ x̂i ∀ i; (ii) x < x̂ ⇔ x ≤ x̂ and ∃ j s.t. xj < x̂j ; and (iii) x ≪ x̂ ⇔ xi < x̂i ∀ i.
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where MRSlj(x) is called the marginal rate of substitution between good l and good j (evaluated
at x). Condition (6) means that the marginal rate of substitution between any two goods has
to be equal to the ratio of the corresponding prices. It is interesting to note that Joe’s marginal
rate of substitution at the optimum would therefore be the same as Melanie’s if she were to
solve the same problem, even though her preferences might be very different from Joe’s. In other
words, any consumer chooses his or her Walrasian demand vector such that L − 1 independent
conditions in Eq. (6) are satisfied (e.g., for i = 1, j ∈ {2, . . . , L}). The missing condition for the
determination of the Walrasian demand correspondence is given by the budget constraint,

p · x = w. (7)

As an example, consider the case where Joe has a utility function u(x) = xα1
1 xα2

2 for consuming
a bundle x = (x1, x2),

8 where α1, α2 ∈ (0, 1) are constants. Then Eqs. (6) and (7) immediately
imply Joe’s Walrasian demand,

x(p, w) =

(
α1w

(α1 + α2)p1
,

α2w

(α1 + α2)p2

)
.

Note that the Lagrange multiplier λ for the UMP (2) corresponds to the increase in Joe’s indirect
utility,9

v(p, w) = max
x∈B(p,w)

u(x). (8)

Indeed, by the well-known envelope theorem (Milgrom and Segal, 2002) we have that

∂v(p, w)

∂w
=

∂L(x, λ, µ; p, w)
∂w

= λ. (9)

Lagrange multipliers are sometimes also referred to as “shadow prices” of constraints. In this
case, λ corresponds to the value of an additional dollar of budget as measured in terms of Joe’s
utility. Its unit is therefore “utile” per dollar.

Let us now briefly consider the possibility of a corner solution to Joe’s utility maximization
problem, i.e., his Walrasian demand vanishes for (at least) one good l. In that case, µl > 0 and
therefore

MRSlj(x) =
λpl − µl

λpj
=

pl
pj

(
1− µl

λ

)
<

pl
pj
,

provided that xj > 0, i.e., Joe consumes a positive amount of good j.10 Thus, Joe’s marginal
utility ∂u(x)/∂xl for good l, which is not consumed, is lower relative to his marginal utility for
good j that he does consume, when compared to a consumer (e.g., Melanie) who uses positive
amounts of both good l and good j. The latter consumer’s marginal rate of substitution is equal
to the ratio of prices (pl/pj), whereas Joe’s marginal rate of substitution is strictly less. This
means that a consumer may choose to forego consumption of a certain good if its price is too high
compared to the price of other goods, so that it becomes ‘too expensive’ to adjust the marginal
rate of substitution according to the (interior) optimality condition (6).

8This functional form, first proposed by Cobb and Douglas (1928) for identifying ‘production functions’ (cf. Sec-
tion 3.2) rather than utility functions, is often used for its analytical simplicity and the fact that its parameters
can easily be identified using data (e.g., by a linear regression).

9Joe’s value function v(p, w) is called “indirect utility” because he does usually not have a direct utility for
the parameters p and w representing price and wealth, respectively, as they cannot be consumed directly. Yet
they influence the problem and v can be thought of as representing a rational preference relation over different
values of (p, w).

10Clearly, because his utility is increasing and his wealth is positive, he will always demand a positive amount
of at least one good.
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2.3 Comparative Statics

Samuelson (1941) describes ‘comparative statics’ as the task of examining how a decision variable
changes as a function of changes in parameter values. Examining the shifts of model predictions
with respect to parameter changes is at the heart of price theory. We illustrate the main compar-
ative statics techniques for the utility maximization problem. Consider, for example, the question
of how Joe’s Walrasian demand x(p, w) changes as his wealth w increases. His demand xl(p, w)
for good l is called normal if it is nondecreasing in w. If that demand is positive, the first-order
condition (3) can be differentiated with respect to the parameter w (using Eq. (9)) to obtain

∂x(p, w)

∂w
=
(
D2u(x(p, w))

)−1
p
∂2v(p, w)

∂w2
=
(
D2u(x(p, w))

)−1
p
∂λ(p, w)

∂w
.

If u is strongly concave, then ∂λ(p, w)/∂w ≤ 0,11 i.e., the shadow value of wealth is decreasing
as more and more wealth is added, since the individual’s marginal utility for the additional
consumption decreases.

Remark 1 A good that is not normal, i.e., for which demand decreases as wealth rises, is called
inferior. Typical examples of such goods are frozen foods and bus transportation. In somewhat
of a misnomer a normal good is referred to as a superior (or luxury) good if its consumption
increases more than proportionally with wealth. Typical examples are designer apparel and
expensive foods such as caviar or smoked salmon. In some cases the consumption of superior
goods can drop to zero as price decreases. Luxury goods are often consumed as so-called positional
goods, the value of which strongly depends on how they compare with the goods owned by others
(Hirsch, 1976; Frank, 1985). �

The change of the Walrasian demand vector with respect to a change in the price vector
(price effect) is more intricate. It is usually decomposed into a substitution effect and a wealth
effect (Figure 1). For example, if Joe notices a change in the price vector from p to p̂, then the
substitution effect of this describes how Joe’s consumption vector changes if enough wealth is
either added or subtracted to make sure that Joe’s utility is the same before and after the price
change. For example, if his utility level before the price change is U , then his wealth-compensated
(or Hicksian) demand vector h(p, U) is such that it solves the expenditure minimization problem

h(p, U) ∈ arg min
x∈{ξ∈RL

+:u(ξ)≥U}
{p · x} .

The Hicksian demand h(p, U) achieves the utility level U at the price p at the lowest possible
expenditure. For example, if U = u(x(p, w)), where x(p, w) is Joe’s Walrasian demand vector,
then h(p, U) = x(p, w). If we denote the expenditure necessary to achieve the utility level U
by e(p, U) = p·h(p, U), then one can (using the envelope theorem) show that Dpe(p, U) = h(p, U)
(Roy’s identity) and from there deduce that for w = e(p, U): Dpx(p, e(p, U)) = ∂x(p, w)/∂p +
(∂x(p, w)/∂w)h(p, U), so that one obtains Slutsky’s identity,

∂xl(p, w)

∂pj︸ ︷︷ ︸
Price Effect

=
∂2e(p, u(x(p, w)))

∂pl∂pj︸ ︷︷ ︸
Substitution Effect

− ∂xl(p, w)

∂w
hj(p, u(x(p, w)))︸ ︷︷ ︸

Wealth Effect

, l, j ∈ {1, . . . , L}. (10)

The (symmetric, negative semi-definite) matrix S =
[
∂2e(p,U)
∂pl∂pj

]
of substitution effects is referred

to as Slutsky matrix.

11The function u is strongly concave if its Hessian D2u(x) is negative definite for all x.
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Figure 1: Price effect as a result of a price increase for the first good, i.e., a shift from p = (p1, p2)
to p̂ = (p̂1, p̂2) (with p̂1 > p1 and p̂2 = p2), decomposed into substitution effect and wealth effect
using the compensated wealth ŵ = e(p̂, u(x(p, w))).

Remark 2 A Giffen good is such that demand for it increases when its own price increases. For
example, when the price of bread increases, a poor family might not be able to afford meat any
longer and therefore buy even more bread (Marshall, 1920). It is necessarily an inferior good
with a negative wealth effect that overcompensates the substitution effect, resulting in a positive
price effect.12 A related but somewhat different effect of increased consumption as a result of a
price increase is observed for a so-called Veblen good (e.g., a luxury car or expensive jewelry).
Veblen (1899, p. 75) pointed out that “[c]onspicuous consumption of valuable goods is a means
of reputability to the gentleman of leisure.” Thus, similar to positional goods (cf. Remark 1),
Veblen goods derive a portion of their utility from the price they cost (compared to other goods),
since that implicitly limits their consumption by others. �

We have seen that situations in which the dependence of decision variables is monotone in
model parameters are especially noteworthy. The field of monotone comparative statics, which
investigates conditions on the primitives of a UMP (or similar problem) that guarantee such
monotonicity, is therefore of special relevance for price theory (and economics as a whole).
Monotone comparative statics was pioneered by Topkis (1968; 1998), who introduced the use
of lattice-theoretic (so-called ‘ordinal’) methods, in particular the notion of supermodularity.13

Milgrom and Shannon (1994) provide sufficient and in some sense necessary conditions for the
monotonicity of solutions to UMPs in terms of (quasi-)supermodularity of the objective func-

12Sørensen (2007) provides simple examples of utility functions which yield Giffen-good effects.
13For any two vectors x, x̂ ∈ RL

+, let x∧ x̂ = min{x, x̂} be their componentwise minimum and x∨ x̂ = max{x, x̂}
be their componentwise maximum. The choice set X ⊂ R is a lattice if x, x̂ ∈ X implies that x ∧ x̂ ∈ X
and x ∨ x̂ ∈ X. A function u : X → R is supermodular on a lattice X if u(x ∨ x̂) + u(x ∧ x̂) ≥ u(x) + u(x̂) for
all x, x̂ ∈ X.
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tion, as long as the choice set is a lattice.14 Consider normal goods as an example for monotone
comparative statics. One can show that if u is strongly concave and supermodular, then the di-
agonal elements of the Hessian of u are nonpositive and its off-diagonal elements are nonnegative
(Samuelson, 1947). Strong concavity and supermodularity of u therefore imply that all goods are
normal goods (Chipman, 1977). Quah (2007) strengthens these results somewhat using ordinal
methods.

Remark 3 The practical interpretation of supermodularity is in terms of “complementarity.”
To see this, consider a world with only two goods. Joe’s utility function u(x1, x2) has increasing
differences if (x̂1, x̂2) ≫ (x1, x2) implies that u(x̂1, x̂2) − u(x1, x̂2) ≥ u(x̂1, x2) − u(x1, x2). That
is, the presence of more of good 2 increases Joe’s utility response to variations in good 1. For
example, loudspeakers and a receiver are complementary: without receiver an agent can be almost
indifferent about the presence of loudspeakers, whereas when the receiver is present, it makes a
big difference if loudspeakers are available or not. A parameterized function is supermodular if it
has increasing differences with respect to any variable-variable pair and any variable-parameter
pair. �

2.4 Effects of Uncertainty

So far, Joe’s choice problems have not involved any uncertainty. Yet, in many situations, instead
of a specific outcome a decision maker can select only an action, which results in a probability
distribution over many outcomes x ∈ X, or, equivalently, a random outcome x̃ (or “lottery”)
with realizations in X. Thus, given an action set A, the decision maker would like to select
an action a ∈ A so as to maximize the expected utility EU(a) = E[u(x̃)|a]. The conditional
distributions F (x|a) defined for all (x, a) ∈ X × A are part of the primitives for this expected-
utility maximization problem,

a∗ ∈ argmax
a∈A

EU(a) = argmax
a∈A

∫
X

u(x)dF (x|a).

For example, if Joe’s action a ∈ A = [0, 1] represents the fraction of his wealth w that he can
invest in a risky asset that pays a random return r̃, distributed according to the distribution
function G(r) = P (r̃ ≤ r), then the distribution of his ex-post wealth x̃ = w(1 + ar̃) conditional
on his action a is F (x|a) = G(( x

w
− 1)/a) for a ̸= 0 (and F (x|a = 0) = δ(x−w) and δ is a Dirac

distribution15), so that EU(a) =
∫
R u(x)dF (x|a) =

∫
R u(w(1 + ar))dG(r) for all a ∈ A by simple

substitution. The solution to Joe’s classic portfolio investment problem depends on his attitude
to risk. Joe’s absolute risk aversion, defined by

ρ(x) = −u′′(x)/u′(x),

is a measure of how much he prefers a risk-free outcome to a risky lottery (in a neighborhood
of x). For example, in Joe’s portfolio investment problem, there exists an amount π(a) such
that u(E[x̃|a] − π(a)) = EU(a), which is called the risk premium associated with Joe’s risky
payoff lottery as a consequence of his investment action a. If Joe’s absolute risk aversion is

14Monotone comparative statics under uncertainty is examined by Athey (2002); non-lattice domains are in-
vestigated by Quah (2007). The latter is relevant, as even in a basic UMP of the form (2) for more than two
commodities the budget set B(p, w) is generally not a lattice. Strulovici and Weber (2008; 2010) provide meth-
ods for finding a reparametrization of models that guarantees monotone comparative statics, even though model
solutions in the initial parametrization may not be monotone.

15The (singular) Dirac distribution δ can be defined in terms of a limit, δ(x) = limε→0+ (ε− |x|)+ /ε2. It
corresponds to a probability density with all its unit mass concentrated at the origin.
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positive, so is his risk premium. The latter is the difference between the amount he is willing to
accept for sure and the actuarially fair value of his investment under action a.

Remark 4 In economic models, it is often convenient to assume that agents have constant abso-
lute risk aversion (CARA) ρ > 0, which implies utility functions of the form u(x) = − exp(−ρx)
for all monetary outcomes x ∈ R. The advantage is that the agents’ risk attitude is then inde-
pendent of their starting wealth, which insulates models from “wealth effects.” Another common
assumption, when restricting attention to positive wealth levels (where x > 0), is that agents
have a relative risk aversion ρ̂(x) = xρ(x) that is constant. Such agents with constant relative
risk aversion (CRRA) ρ̂ > 0 have utility functions of the form

u(x) =

{
lnx, if ρ̂ = 1,
x1−ρ̂/(1− ρ̂), otherwise.

For more details on decision making under risk, see Pratt (1964) and Gollier (2001). An axiomatic
base for expected utility maximization is provided in the pioneering work by Von Neumann and
Morgenstern (1944). �

3 Price Discovery in Markets

So far we have assumed that agents take the prices of all goods as given. Naturally, if goods are
bought and sold in a market, prices will depend on the balance between demand and supply.
Section 3.1 explains how prices are formed in a pure-exchange economy, in the absence of any
uncertainty. Under weak conditions, trade achieves an economically “efficient” outcome in the
sense that it maximizes “welfare,” i.e., the sum of all agents’ utilities. Under some additional
assumptions, any efficient outcome can be achieved by trade, provided that a social planner can
redistribute the agents’ endowments before trading starts. In Section 3.2, we note that these
insights carry over to economies where firms producing all available goods are owned and operated
by the agents. Section 3.3 shows that these insights also apply in the presence of uncertainty,
as long as the market is “complete” in the sense that all contingencies can be priced by bundles
of available goods. Section 3.4 provides some details about “incomplete” markets, where this is
not possible.

3.1 Pure Exchange

Consider an economy in which N agents can exchange goods in a market at no transaction
cost. Each agent i has utility function ui(xi), where xi ∈ RL

+ is his consumption bundle, and
is endowed with the bundle ωi ∈ RL

+ (his endowment). At the nonnegative price vector p this
agent’s Walrasian demand xi(p, p · ωi) is obtained by solving a UMP, where p · ωi is used as his
wealth. The market-clearing condition that supply must equal demand yields

N∑
i=1

xi(p, p · ωi) =
N∑
i=1

ωi, (11)

and thus L relations (one for each good) that imply the price vector p = (p1, . . . , pL) up to a
common multiplicative constant, for only L− 1 components in Eq. (11) can be independent.
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Definition 3 A Walrasian equilibrium (p̂, x̂) in a pure-exchange economy consists of an equi-
librium price p̂ ∈ RL

+ and an equilibrium allocation x̂ = (x̂1, . . . , x̂N) such that

x̂i ∈ arg max
xi∈B(p̂,p̂·ωi)

ui(xi), i ∈ {1, . . . , N}, (12)

and
N∑
i=1

(
x̂i − ωi

)
= 0. (13)

As an example, let us consider Joe (= agent 1) and Melanie (= agent 2) with identical
Cobb-Douglas utility functions u1(x1, x2) = u2(x1, x2) = xα

1x
1−α
2 , where α ∈ (0, 1) is a given

constant. Suppose that Joe is endowed with the bundle ω1 = (1, 2) and Melanie with the
bundle ω2 = (2, 1). The UMP (12) implies that agent i’s Walrasian demand vector (or “offer
curve” (OC) when viewed as a function of price) is

xi(p, p · ωi) =

(
αp · ωi

p1
,
(1− α)p · ωi

p2

)
.

From Eq. (13) we obtain that α(p1 + 2p2)/p1 + α(2p1 + p2)/p1 = 3, so that the ratio of prices
becomes p1/p2 = α/(1 − α). By setting p1 = 1 (which amounts to considering good 1 as the
numéraire, cf. Section 1) we can therefore immediately determine a unique Walrasian equilib-
rium (p̂, x̂), where p̂ = (1, (1−α)/α) and x̂i = xi(p̂, p̂ ·ωi) for i ∈ {1, 2}, so that x̂1 = (2−α, 2−α)
and x̂2 = (1+α, 1+α). The distribution of resources in a two-agent exchange economy, such as in
this example, can be conveniently displayed using the so-called Edgeworth-Bowley box diagram
as shown in Figure 2.16 The figure also shows that the intersection of the agents’ offer curves lies
on a “contract curve” which contains all “efficient” allocations as explained below.

The beauty of an exchange economy in which price takers interact freely without any trans-
action cost is that a Walrasian equilibrium allocation cannot be improved upon in the following
sense. A feasible allocation x = (x1, . . . , xN) is said to be Pareto-efficient (relative to the set X
of feasible allocations) if there exists no other allocation x̂ = (x̂1, . . . , x̂N) in X at which all
individuals are at least as well off as at x and at least one individual is better off. More precisely,
x is Pareto-efficient if for all x̂ ∈ X:17(

ui(xi) ≤ ui(x̂i) ∀ i
)

⇒
(
ui(xi) = ui(x̂i) ∀ i

)
.

Adam Smith (1776, Book IV, Chapter 2) pointed to an “invisible hand” that leads individuals
through their self-interest to implement socially optimal outcomes. A key result of price the-
ory is that Walrasian equilibria, even though merely defined as a solution to individual utility
maximization problems and a feasibility constraint (supply = demand), produce Pareto-efficient
outcomes.

Theorem 1 (First Fundamental Welfare Theorem) Any Walrasian equilibrium alloca-
tion is Pareto-efficient.18

16A simple diagram of this sort was used by Edgeworth (1881, p. 28) to illustrate exchange allocations, and it
was later popularized by Bowley (1924).

17For each Pareto-efficient allocation x∗ ∈ X there exists a vector λ = (λ1, . . . , λN ) ≥ 0 of nonnegative weights

such that x∗ ∈ argmaxx∈X

{∑N
i=1 λ

iui(xi)
}
. The last problem can be used to generate all such Pareto-efficient

allocations by varying λ.
18The Pareto-efficiency of a Walrasian equilibrium allocation depends on the fact that consumer preferences

are locally nonsatiated (cf. Footnote 6).
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Figure 2: Offer curves (OC1 and OC2), Walrasian equilibrium, and Pareto-efficient allocations.

The intuition for the Pareto-efficiency of a Walrasian equilibrium allocation is best seen by
contradiction. Suppose that there exists an allocation x = (x1, x2) that would improve Joe’s
well-being and leave Melanie at the utility level she enjoys under the Walrasian equilibrium
allocation x̂ = (x̂1, x̂2). By Walras’ Law, for Joe allocation x1 is not affordable under the
equilibrium price p̂, so that p̂ · x1 > p̂ · x̂1. Furthermore, because Melanie is maximizing her
utility in equilibrium, the alternative allocation x2 cannot leave her with any excess wealth, so
that p̂ · x2 ≥ p̂ · x̂2. Thus, the total value of the alternative allocation, p̂ · (x1 + x2), is strictly
greater than the total value of the Walrasian equilibrium allocation, p̂ · (x̂1 + x̂2). But this
contradicts the fact that the total amount of goods in the economy does not depend on the
chosen allocation, so that the total value in the economy is constant for a given price. Hence,
we have obtained a contradiction, which implies that the Walrasian equilibrium allocation must
indeed be Pareto-efficient.

Theorem 2 (Second Fundamental Welfare Theorem) In a convex economy it is possi-
ble to realize any given Pareto-efficient allocation as a Walrasian equilibrium allocation, after a
lump-sum wealth redistribution.

This important result rests on the assumption that the economy is convex, in the sense that each
consumer’s sets of preferred goods (“upper contour sets”) relative to any feasible endowment
point is convex. The latter is necessary to guarantee the existence of an equilibrium price; it is
satisfied if all consumers’ utility functions are concave.19 Figure 3 provides an example of how
in a nonconvex economy it may not be possible to obtain a Walrasian equilibrium: as a function
of price, agent 1 switches discretely in his preference of good 1 and good 2, so that the market

19The proof of the second fundamental welfare theorem relies on the separating hyperplane theorem (stating
that there is always a plane that separates two convex sets which have no common interior points). In an economy
with production (cf. Section 3.2) the firms’ production sets need to also be convex.
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Figure 3: Nonconvex exchange economy without a Walrasian equilibrium.

cannot clear at any price (except when all its components are infinity, so that agents simply keep
their endowments).

The set of Pareto-efficient allocations in an economy is often referred to as the “contract curve”
(or Pareto set; cf. Footnote 17 and Figure 2). The subset of Pareto-efficient allocations which
present Pareto-improvements over the endowment allocation is called the core of the economy.
While the first fundamental welfare theorem says that the Walrasian market outcome is in the
core of an economy, the second fundamental welfare theorem states that it is possible to rely on
markets to implement any outcome in the Pareto set, provided that a lump-sum reallocation of
resources takes place before markets are opened.

3.2 Competitive Markets

The setting of the exchange economy in Section 3.1 does not feature any productive activity by
firms. Consider M such firms. Each firm m has a (nonempty) production set Y m ⊂ RL which
describes its production choices. For a feasible production choice ym = (ym1 , . . . , y

m
L ), we say that

firm m produces good l if yml is nonnegative; otherwise it uses that good as an input. Thus, since
it is generally not possible to produce goods without using any inputs, it is natural to require
that Y ∩RL

+ ⊆ {0}. This so-called no-free-lunch property of the production set Y m means that if
a firm produces goods without any inputs, then it cannot produce a positive amount of anything.
Given a price vector p, firm m’s profit is p ·y. The firms’ profit-maximization problem is therefore
to find

ym(p) ∈ arg max
ym∈Y m

{p · y} , m ∈ {1, . . . ,M}. (14)

13



In a private-ownership economy each firm m is privately held. That is, each agent i owns the
nonnegative share ϑi

m of firm m, such that

N∑
i=1

ϑi
m = 1, m ∈ {1, . . . ,M}. (15)

Definition 4 A Walrasian equilibrium (p̂, x̂, ŷ) in a private-ownership economy is such that all
agents maximize utility,

x̂i ∈ arg max
xi∈B(p̂,p̂·ωi+

∑M
m=1 ϑ

i
m(p̂·ŷm))

ui(xi), i ∈ {1, . . . , N},

all firms maximize profits,

ŷm ∈ arg max
ym∈Y m

{p̂ · y} , m ∈ {1, . . . ,M},

and the resulting allocation is feasible,

N∑
i=1

(
x̂i − ωi

)
=

M∑
m=1

ŷm.

The two fundamental welfare theorems continue to hold in the more general setting with produc-
tion. The existence of a Walrasian equilibrium is guaranteed as long as there are no externalities
(cf. Section 5) and the economy is convex (cf. Footnote 19).

3.3 Complete Markets

The agents’ consumption choice and the firms’ production decisions are generally subject to
uncertainty. As in Section 2.4, this may simply mean that agents maximize expected utility and
firms expected profits. However, in many situations the agents can use a market mechanism
to trade before a random state of the world realizes. Arrow (1953) and Debreu (1953) have
shown that all the efficiency properties of the Walrasian equilibrium carry over to case with
uncertainty, provided that ‘enough’ assets are available, a notion that will be made precise in
the definition of complete markets below (cf. Definition 5). For simplicity we assume that the
uncertain state of the world, denoted by the random variable s̃, can have realizations in the finite
state space S = {s1, . . . , sK}. Agent i believes that state sk occurs with probability µi

k.
We now develop a simple two-period model to understand how agents (or “traders”) can

trade in the face of uncertainty. Consider Joe (= agent 1), who initially owns firm 1, and
Melanie (= agent 2), who initially owns firm 2. The state space S = {s1, s2} contains only
two elements (i.e., K = 2). Let V m be the market value of firm m in period 1. The monetary
value of firm m in state sk is ωm

k . After trading of firm shares takes place in the first period,
Joe and Melanie each hold a portfolio ϑi = (ϑi

1, ϑ
i
2) of ownership shares in the firms. In the

second period all uncertainty realizes and each agent i can make consumption decisions using
the wealth wi

k(ϑ
i) = ϑi

1ω
1
k + ϑi

2ω
2
k in state sk, obtaining the indirect utility vik(w

i
k). Hence, in

period one, the traders Joe and Melanie, can trade firm shares as follows. Each trader i solves
the expected utility maximization problem

ϑ̂i(V ) ∈ arg max
ϑi∈B((V 1,V 2),V i)

{
K∑
k=1

µi
kv

i
k(w

i
k(ϑ

i))

}
.
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Figure 4: Market for contingent claims.

If in addition the market-clearing condition (15) holds, then the resulting equilibrium (V̂ , ϑ̂),
with V̂ = (V̂ 1, V̂ 2) and ϑ̂ = (ϑ̂1(V̂ ), ϑ̂2(V̂ )), is called a rational expectations equilibrium.20 In
this equilibrium, Joe and Melanie correctly anticipate the equilibrium market prices of the firm
when making their market-share offers, just as in the Walrasian pure-exchange economy discussed
in Section 3.1.

In the last example, Joe and Melanie each owned a so-called asset (or security), the defining
characteristic of which is that it entitles the owner to a determined monetary payoff in each
state of the world. All that matters for consumption after the conclusion of trade in the first
period is how much money an agent has available in each state. Thus, Joe and Melanie could
come to the conclusion that instead of trading the firm shares, it would be more appropriate to
trade directly in ‘state-contingent claims to wealth.’ If trader i holds a state-contingent claim
portfolio ci = (ci1, . . . , c

i
K), then in state sk that trader obtains the indirect utility vik(c

i
k). In

the first period when trading in contingent claims takes place, the price for a claim to wealth in
state sk is pk. Hence, each trader i has demand

ĉi ∈ arg max
ci∈B(p,p·ωi)

{
K∑
k=1

vik(c
i
k)

}
, i ∈ {1, . . . , N}, (16)

that maximizes expected utility. Eq. (16) and the market-clearing relation

N∑
i=1

(
ĉi − ωi

)
= 0 (17)

together constitute the conditions for a Walrasian equilibrium (p̂, ĉ) in the market of contingent
claims, referred to as Arrow-Debreu equilibrium (Figure 4). Using the insights from Section 2.2,
note that the marginal rate of substitution between claims in state sk and claims in state sl

20The concept of rational expectations in economics originated with Muth (1961), and the rational expectations
equilibrium which is used here with Radner (1972).
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equals the ratio of the corresponding market prices at an (interior) equilibrium,

MRSkl(c
i) =

µi
kv

i
k(c

i
k)

µi
lv

i
l(c

i
l)

=
pk
pl
.

This is independent of the agent i, so that after normalizing the market prices to sum to one,
the prices p1, . . . , pK define a probability distribution over the states of the world, which is
referred to as equivalent martingale measure. While traders may disagree about their probability
assessments for the different states of the world, they are in agreement about the equivalent
martingale measure in equilibrium.21

It is possible to go back and forth between the market for firm shares and the market for
contingent claims if and only if the system of equations ω1

1 · · · ωM
1

...
...

ω1
K · · · ωM

K


︸ ︷︷ ︸

Ω

 ϑi
1
...

ϑi
M


︸ ︷︷ ︸

ϑi

=

 ci1
...
ciK


︸ ︷︷ ︸

ci

possesses a solution, or, equivalently, if the asset return matrix Ω is of rank K.

Definition 5 (i) If the K×M asset return matrix Ω has rank K, then the market for contingent
claims is called complete. (ii) A Walrasian equilibrium (p, c) in a complete market for contingent
claims, satisfying Eqs. (16) and (17), is called an Arrow-Debreu equilibrium.

The concept of completeness can easily be extended to multi-period economies (Debreu, 1959),
where time is indexed by t ∈ {0, 1, . . . , T}. The state of the world s̃t at time t ≥ 1 can depend
on the state of the world s̃t−1 at time t− 1. As the states of the world successively realize, they
plow a path through an event tree. In a complete market it is possible to trade claims that are
contingent on any possible path in the event tree.

3.4 Incomplete Markets

If the market is not complete (in the sense of Definition 5(i)), the rational expectations equilib-
rium (also referred to as Radner equilibrium) may produce a Pareto-inefficient allocation. The
reason is that if there are more states of the world than linearly independent assets, then it is
generally not possible for agents to trade contracts that diversify the risks in the economy to the
desirable degree. To see this, consider two risk-averse agents in an economy with two or more
states, where there are no firms (or assets) that can be traded, so that there is no possibility
for mutual insurance. The latter would be the Pareto-efficient outcome in an Arrow-Debreu
equilibrium when contingent claims are available.

The consequence of market incompleteness is that agents in the economy cannot perfectly
trade contingent claims. One can show that, in an economy with only two periods, a rational
expectations equilibrium is “constrained Pareto-efficient,” in the sense that trade in the first
period is such that agents obtain a Pareto-efficient allocation in expected utilities, subject to the
available assets.22

21Aumann (1976) points out that, in a statistical framework, it is in fact impossible for agents to “agree to
disagree” on probability distributions if all the evidence is made available to all agents. Naturally, without such
information exchange, the agents’ subjective probabilities may vary significantly.

22In multi-period (and/or multi-good) economies, rational expectations equilibria are not even guaranteed to
be constrained Pareto-efficient (for details see, e.g., Magill and Quinzii (1996)).
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The question naturally arises as to how assets should be priced when markets are incomplete.
The answer is that depending on the agents’ beliefs in the market, a number of different prices are
possible. In general, it is reasonable to assume that, as long as transaction costs are negligible,
asset prices do not allow for arbitrage possibilities, i.e., ways of obtaining a risk-free profit through
mere trading of assets. For concreteness, let us assume that there are three assets and that each
asset m ∈ {1, 2, 3} is characterized by a return vector ωm = (ωm

1 , . . . , ω
m
K) which specifies the

payoffs for all possible states s1, . . . , sK . In addition, suppose that the return vector of the third
asset is a linear combination of the return vectors of the first two assets, so that

ω3 = ϕ1ω1 + ϕ2ω2

for some constants ϕ1 and ϕ2. If V m is the market price of asset m, then clearly we must have
that

V 3 = ϕ1V 1 + ϕ2V 2

in order to exclude arbitrage opportunities. In other words, if the state-contingent payoffs of
an asset can be replicated by a portfolio of other assets in the economy, then the price of the
asset must equal the price of the portfolio.23 Accordingly, no-arbitrage pricing refers to the
selection of prices that do not allow for risk-free returns resulting from merely buying and selling
available assets.24 But no-arbitrage pricing in an incomplete market alone provides only an
upper and a lower bound for the price of an asset. Additional model structure (e.g., provided by
general equilibrium assumptions or through the selection of an admissible equivalent martingale
measure) is required to pinpoint a particular asset price. Arbitrage pricing theory (Ross, 1976;
Roll and Ross, 1980) postulates that the expected value of assets can be well estimated by a
linear combination of fundamental macro-economic factors (e.g., price indices). The sensitivity
of each factor is governed by its so-called β-coefficient.

A rational expectations equilibrium in an economy in which the ‘fundamentals of the econ-
omy,’ i.e., the agents’ utilities and endowments, do not depend on several states, but consump-
tions are different across those states, is called a sunspot equilibrium (Cass and Shell, 1983).
The idea is that observable signals that bear no direct effect on the economy may be able to
influence prices through traders’ expectations. In light of well-known boom-bust phenomena in
stock markets, it is needless to point out that traders’ expectations are critical in practice for the
formation of prices. When market prices are at odds with the intrinsic value of an asset (i.e., the
value implied by its payoff vector), it is likely that traders are trading in a “speculative bubble”
because of self-fulfilling expectations about the further price development. Well-known examples
of speculative bubbles include the tulip mania in the Netherlands in 1637 (Garber, 1990), the
dot-com bubble at the turn of last century (Shiller, 2005; Malkiel, 2007), and, more recently,
the U.S. housing bubble (Sowell, 2010). John Maynard Keynes (1936) offered the following
comparison:

“... professional investment may be likened to those newspaper competitions in which
the competitors have to pick out the six prettiest faces from a hundred photographs,
the prize being awarded to the competitor whose choice most nearly corresponds to

23To see this, assume for example that the market price V 3 is greater than ϕ1V 1 + ϕ2V 2. Thus, if a trader
holds a portfolio with quantities q1 = ϕ1V 3 of asset 1, q2 = ϕ2V 3 of asset 2, and q3 = −(ϕ1V 1+ϕ2V 2) of asset 3,

then the value of that portfolio vanishes, as
∑3

m=1 q
mV m = 0. However, provided an equivalent martingale

measure p1, . . . , pM (cf. Section 3.3) the total return of the portfolio,
∑K

k=1 pkV
mωm

k qk = pkω
3
k(V

3 − (ϕ1V 1 +
ϕ2V 2)), is positive for each state sk.

24Another approach to asset pricing is Luenberger’s (2001; 2002) zero-level pricing method, based on the
widely used Capital Asset Pricing Model (Markowitz, 1952; Tobin, 1958; Sharpe 1964). It relies on the geometric
projection of the prices of ‘similar’ traded assets.
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the average preferences of the competitors as a whole; so that each competitor has
to pick, not those faces which he himself finds prettiest, but those which he thinks
likeliest to catch the fancy of the other competitors, all of whom are looking at the
problem from the same point of view. It is not a case of choosing those which, to the
best of one’s judgment, are really the prettiest, nor even those which average opinion
genuinely thinks the prettiest. We have reached the third degree where we devote
our intelligences to anticipating what average opinion expects the average opinion to
be. And there are some, I believe, who practise the fourth, fifth and higher degrees”
(p. 156).

In this “beauty contest,” superior returns are awarded to the trader who correctly anticipates
market sentiment. For additional details on asset pricing see, e.g., Duffie (1988; 2001).

4 Disequilibrium and Price Adjustments

In practice, we cannot expect markets always to be in equilibrium, especially when agents are
free to enter and exit, economic conditions may change over time, and not all market participants
possess the same information. Section 4.1 specifies a possible price adjustment process, referred
to as “tâtonnement,” that tends to attain a Walrasian equilibrium asymptotically over time. In
Section 4.2, we summarize important insights about the strategic use of private information in
markets, e.g., the fundamental result that trade might not be possible at all if all agents are
rational and some hold extra information.

4.1 Walrasian Tâtonnement

In real life there is no reason to believe that markets always clear. At a given price it may be that
there is either excess demand or excess supply, which in turn should lead to an adjustment of
prices and/or quantities. While it is relatively simple to agree about the notion of a static Wal-
rasian equilibrium, which is based on self-interested behavior of price-taking agents and firms as
well as a market-clearing condition, there are multiple ways of modelling the adjustment dynam-
ics when markets do not clear. Walras (1874/77) was the first to formalize a price-adjustment
process by postulating that the change in the price of good l ∈ {1, . . . , L} is proportional to the
excess demand zl of good l, where (suppressing all dependencies from entities other than price)

zl(p) =
N∑
i=1

(
xi
l(p)− ωi

l

)
−

m∑
m=1

yml (p).

This leads to an adjustment process, which in continuous time can be described by a system of L
differential equations,

ṗl = κlzl(p), l ∈ {1, . . . , L}. (18)

This process is commonly referred to as a Walrasian tâtonnement. The positive constants κl

determine the speed of the adjustment process for each good l.25 One can show that if the
Walrasian equilibrium price vector p̂ is unique, and if p̂ · z(p) > 0 for any p not proportional to p̂,

25It may be useful to normalize the price vector p(t) such that p21(t)+ · · ·+ p2L(t) ≡ 1, since then d(p21(t)+ · · ·+
p2L(t))/dt = 2 p(t) · z(p(t)) ≡ 0 (with z = (z1, . . . , zL)). Under this normalization any trajectory p(t) remains in
the ‘invariant’ set S = {p : (p1)

2 + · · ·+ (pL)
2 = 1}.
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then a solution trajectory p(t) of the Walrasian tâtonnement (18) converges to p̂, in the sense
that

lim
t→∞

p(t) = p̂.

As an illustration, we continue the example of a two-agent two-good exchange economy with
Cobb-Douglas utility functions in Section 3.1. The tâtonnement dynamics in Eq. (18) become{

ṗ1 = 3κ1 (α(p1 + p2)/p1 − 1) ,
ṗ2 = 3κ2 ((1− α)(p1 + p2)/p2 − 1) ,

where κ1, κ2 > 0 are appropriate constants. It is easy to see that p1/p2 < α/(1 − α) implies
that ṗ1 > 0 (and that ṗ2 < 0) and vice versa. In (p1, p2)-space we therefore obtain that a
trajectory p2(p1) (starting at any given price vector) is described by

dp2(p1)

dp1
=

3κ2 ((1− α)(p1 + p2)/p2 − 1)

3κ1 (α(p1 + p2)/p1 − 1)
= −κ2

κ1

p1
p2
.

It follows a concentric circular segment, eventually approaching a ‘separatrix’ defined by p1/p2 =
α/(1− α) (cf. Figure 5). We see that when the price of good 1 is too low relative to the price of
good 2, then due to the positive excess demand, p1 will adjust upwards until the excess demand
for that good vanishes, which – by the market-clearing condition – implies that the excess demand
for the other good also vanishes, so that we have arrived at an equilibrium.26

Walrasian price-adjustment processes have been tested empirically. Joyce (1984) reports
experimental results in an environment with consumers and producers that show that for a
single unit of a good the tâtonnement can produce close to Pareto-efficient prices, and that the
process has strong convergence properties. Bronfman et al. (1996) consider the multi-unit case
and find that the efficiency properties of the adjustment process depend substantially on how this
process is defined. Eaves and Williams (2007) analyze Walrasian tâtonnement auctions at the
Tokyo Grain Exchange run in 1997/98 and find that price formation is similar to the normative
predictions in continuous double auctions.

We note that it is also possible to consider quantity adjustments instead of price adjustments
(Marshall, 1920). The resulting quantity-adjustment dynamics are sometimes referred to as
Marshallian dynamics (in contrast to the Walrasian dynamics for price adjustments).

4.2 Information Transmission in Markets

It is an economic reality that different market participants are likely to have different information
about the assets that are up for trade. Thus, in a market for used cars, sellers may have more
information than buyers. For simplicity, let us consider such a market, where cars are either of
value 0 or of value 1, but it is impossible for buyers to tell which one is which until after the
transaction has taken place. Let φ ∈ (0, 1) be the fraction of sellers who sell “lemons” (i.e., cars
of zero value) and let c ∈ (0, 1) be the opportunity cost of a seller who sells a high-value car.
Then, if 1− φ < c, there is no price p at which buyers would want to buy and high-value sellers

26A Walrasian equilibrium price is locally asymptotically stable if, when starting in a neighborhood of this
price, Walrasian tâtonnement yields price trajectories that converge toward the equilibrium price. A suffi-
cient condition for local asymptotic stability (i.e., convergence) is that the linearized system ṗ = A (p− p̂)
corresponding to the right-hand side of Eq. (18) around the Walrasian equilibrium price p̂ is such that the
linear system matrix A has only eigenvalues with negative real parts. In the example, we have that A =

3α

[
−ακ1/(1− α) κ1

κ2 −ακ2/(1− α)

]
, the eigenvalues of which have negative real parts for all κ1, κ2 > 0 and

all α ∈ (0, 1). For more details on the analysis of dynamic systems, see, e.g., Weber (2011).
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Figure 5: Walrasian price adjustment process with asymptotic convergence of prices.

would want to sell. Indeed, high-value sellers sell only if p ≥ c. Lemons sellers simply imitate
high-value sellers and also charge p for their cars (they would be willing to sell at any nonnegative
price). As a consequence, the buyers stand to obtain the negative expected value (1−φ)−p from
buying a car in this market, which implies that they do not buy. Hence, the market for used
cars fails, in the sense that only lemons can be traded, if there are too many lemons compared
to high-value cars (Akerlof 1970). This self-inflicted disappearance of high-value items from the
market is called “adverse selection.”

In the context of Walrasian markets in the absence of nonrational (“noise”) traders, and as
long as the way in which traders acquire private information about traded assets is common
knowledge, Milgrom and Stokey (1982) show that none of the traders is in a position to profit
from the private information, as any attempt to trade will lead to a correct anticipation of
market prices. This implies that private information cannot yield a positive return. Since this
theoretical no-trade theorem is in sharp contrast to the reality found in most financial markets,
where superior information tends to yield positive (though sometimes illegal) returns, the missing
ingredient are irrational “noise traders,” willing to trade without concerns about the private
information available to other traders (e.g., for institutional reasons).

What information can be communicated in a market? Hayek (1945, p. 526) points out that
one should in fact consider the “price system” in a market as “a mechanism for communicating
information.” The price system is useful under uncertainty, since (as we have seen in Section 3)
markets generally exist not only for the purpose of allocating resources, but also to provide traders
with the possibility of mutual insurance (Hurwicz 1960). To understand the informational role
of prices under uncertainty, let us consider a market as in Section 3.4, where N strategic traders
(“investors”) and a number of nonstrategic traders (“noise traders”) trade financial securities that
have state-contingent payoffs. Each investor i may possess information about the future payoff
of these securities in the form of a private signal z̃i, which, conditional on the true state of the
world, is independent of any other investor j’s private signal z̃j. In the classical model discussed
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thus far, at any given market price vector p for the available securities, agent i has the Walrasian
demand xi(p, ωi; zi), which – in addition to his endowment ωi – also depends on the realization zi

of his private signal. However, an investor i who conditions his demand only on the realized price
and his private information would ignore the process by which the other agents arrive at their
demands, which help establish the market price, which in equilibrium must depend on the full
information vector z = (z1, . . . , zN). For example, if investor i’s private information leads him
to be very optimistic about the market outlook, then at any given price p his demand will be
high. Yet, if a very low market price p is observed, investor i obtains the valuable insight that all
other investors’ signal realizations must have been rather dim, which means that his information
is likely to be an extreme value from a statistical point of view. Grossman and Stiglitz (1980)
therefore conclude that in a rational-expectations equilibrium each investor i’s demand must
be of the form xi(p, ωi; zi, p(z)), i.e., it will depend on the way in which the equilibrium price
incorporates the available information.27 While in an economy where private information is freely
available this may result in the price to fully reveal the entire information available in the market
(because, for example, it depends only on an average of the investors’ information; Leland and
Pyle 1976), this does not hold when information is costly. Grossman and Stiglitz show that
in the presence of a (possibly even small) cost of acquiring private information, prices fail to
aggregate all the information in the market, so that a rational expectations equilibrium cannot
be ‘informationally efficient.’28

The question naturally arises of how to use private information in an effective way, especially
if one can do so over time.29 Kyle (1985) develops a seminal model of insider trading where one
informed investor uses his inside information in a measured way over a finite time horizon so
as to not be imitated by other rational investors. Another option an informed investor has for
using private information is to sell it to other investors. Admati and Pfleiderer (1986) show that
it may be best for the informed investor to degrade this information (by adding noise) before
selling it, in order to protect his own trading interests.

Remark 5 Arrow (1963) realized that there are fundamental difficulties when trying to sell
information from an informed party to an uninformed party, perhaps foreshadowing the no-trade
theorem discussed earlier. Indeed, if the seller of information just claims to have the information,
then a buyer may have no reason to believe the seller.30 The seller therefore may have to ‘prove’
that the information is really available, e.g., by acting on it in a market (taking large positions

27In an actual financial market (such as the New York Stock Exchange), investors can submit their offer curves
in terms of ‘limit orders,’ which specify the number of shares of each given asset that the investor is willing to
buy at a given price.

28In the absence of randomness a rational expectations equilibrium may even fail to exist. Indeed, if no investor
expends the cost to become informed, then the equilibrium price reveals nothing about the true value of the asset,
which produces an incentive for investors to become informed (provided the cost is small enough). On the other
hand, if all other investors become informed, then, due to the nonstochastic nature of the underlying values, an
uninformed investor could infer the true value of any security from the price, which in turn negates the incentive
for the costly information acquisition.

29It is important to realize that while private information tends to be desirable in most cases (for exceptions,
see Section 7.4), this may not be true for public (or “social”) information. Hirshleifer (1971) shows that social
information that is provided to all investors in a market might have a negative value because it can destroy the
market for mutual insurance. To see this, consider two farmers, one with a crop that grows well in a dry season
and the other with a crop that grows well in a wet season. If both farmers are risk-averse, then given, say,
ex-ante equal chances of either type of season to occur, they have an incentive to write an insurance contract
that guarantees part of the proceeds of the farmer with the favorable outcome to the other farmer. Both of these
farmers would ex ante be strictly worse off if a messenger disclosed the type of season (dry or wet) to them (while,
clearly, each farmer retains an incentive to obtain such information privately).

30More recently, ‘zero-knowledge proof’ techniques have been developed for (at least approximately) conveying
the fact that information is known without conveying the information itself; see, e.g., Goldreich et al. (1991).
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in a certain stock), to convince potential buyers. This may dissipate a part or all of the value
of the available information. On the other hand, if the seller of information transmits the
information to a prospective buyer for a ‘free inspection,’ then it may be difficult to prevent that
potential buyer from using it, even when the latter later decides not to purchase the information.
Arrow (1973) therefore highlights a fundamental “inappropriability” of information.31 Clearly,
information itself can be securitized, as illustrated by the recent developments in prediction
markets (Wolfers and Zitzewitz, 2004). Segal (2006) provides a general discussion about the
informational requirements for an economic mechanism (such as a market) if its purpose is to
implement Pareto-efficient outcomes but where agents possess private knowledge about their
preferences (and not the goods). �

5 Externalities and Nonmarket Goods

Sometimes transactions take place outside of markets. For example, one agent’s action may
have an effect on another agent’s utility without any monetary transfer between these agents. In
Section 5.1, we see that the absence of a market for such “externalities” between agents can cause
markets for other goods to fail. Similarly, the markets for certain goods, such as human organs,
public parks, or clean air, may simply not exist. The value of “nonmarket goods,” which can
be assessed using the welfare measures of “compensating variation” and “equivalent variation,”
is discussed in Section 5.2.

5.1 Externalities

In Section 3 we saw that markets can produce Pareto-efficient outcomes, even though exchange
and productive activity is not centrally managed and is pursued entirely by self-interested parties.
One key assumption there was that each agent i’s utility function ui depends only on his own
consumption bundle xi. However, this may not be appropriate in some situations. For example,
if Joe listens to loud music while Melanie tries to study for an upcoming exam, then Joe’s
consumption choice has a direct impact on Melanie’s well-being. We say that his action exerts a
(direct) negative externality on her. Positive externalities also exist, for example when Melanie
decides to do her cooking and Joe loves the resulting smell from the kitchen, her action has a
direct positive impact on his well-being.32

There are many important practical examples of externalities in the economy, including en-
vironmental pollution, technological standards, telecommunication devices, or public goods. For
concreteness, let us consider two firms, 1 and 2. Assume that firm 1’s production output q (e.g.,
a certain chemical) – due to unavoidable pollution emissions – makes firm 2’s production (e.g.,
catching fish) more difficult at the margin by requiring a costly pollution-abatement action z
(e.g., water sanitation) by firm 2. Suppose that firm 1’s profit π1(q) is concave in q and such
that π1(0) = π1(q̄) = 0 for some q̄ > 0. Firm 2’s profit π2(q, z) is decreasing in q, concave in z,
and has (strictly) increasing differences in (q, z) (i.e., ∂2π2/∂q∂z > 0), reflecting the fact that
its marginal profit ∂π2/∂z for the abatement action is increasing in the pollution level. Note

31For “information goods” such as software, techniques to augment appropriability (involving the partial trans-
mission of information) have been refined. For example, it is possible to provide potential buyers of a software
package with a free version (“cripple ware”) that lacks essential features (such as the capability to save a file) but
that effectively demonstrates the basic functionality of the product, without compromising its commercial value.

32In contrast to the direct externalities where the payoff of one agent depends on another agent’s action or
choice, so-called “pecuniary externalities” act through prices. For example, in a standard exchange economy the
fact that one agent demands a lot of good 1 means that the price of that good will increase, exerting a negative
pecuniary externality on those agents.
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that while firm 2’s payoff depends on firm 1’s action, firm 1 is unconcerned about what firm 2
does. Thus, without any outside intervention, firm 1 chooses an output q∗ ∈ argmaxq≥0 π

1(q)
that maximizes its profit. Firm 2, on the other hand, takes q∗ as given and finds its optimal
abatement response, z∗ ∈ argmaxz≥0 π

2(q∗, z). In contrast to this, the socially optimal actions, q̂
and ẑ, are such that they maximize joint payoffs (corresponding to ‘social welfare’ in this simple
model), i.e.,

(q̂, ẑ) ∈ arg max
(q,z)≥0

{
π1(q) + π2(q, z)

}
.

It is easy to show that the socially optimal actions q̂ and ẑ are at strictly lower levels than
the privately optimal actions q∗ and t∗: because firm 1 does not perceive the social cost of its
actions, the world is over-polluted in this economy; a market for the direct negative externality
from firm 1 on firm 2 is missing.

A regulator can intervene and restore efficiency, e.g., by imposing a tax on firm 1’s output q
which internalizes the social cost of its externality. To accomplish this, first consider the “harm”
of firm 1’s action, defined as

h(q) = π2(q, z∗(0))− π2(q, z∗(q)),

where z∗(q) is firm 2’s best abatement action in response to firm 1’s choosing an output of q.
Then if firm 1 maximizes its profit minus the harm h(q) it causes to firm 1, we obtain an efficient
outcome, since

q̂ ∈ argmax
q≥0

{
π1(q)− h(q)

}
= argmax

q≥0

{
π1(q) + max

z≥0
π2(q, z)

}
.

Hence, by imposing a per-unit excise tax of τ = h′(q̂) (equal to the marginal harm at the
socially optimal output q̂) on firm 1, a regulator can implement a Pareto-efficient outcome.33

Alternatively, firm 1 could simply be required (if necessary through litigation) to pay the total
amount h(q) in damages when producing an output of q, following a “Polluter Pays Principle.”34

The following seminal result by Coase (1960) states that even without direct government
intervention an efficient outcome may result from bargaining between parties, which includes the
use of transfer payments.

Theorem 3 (Coase Theorem) If property rights are assigned and there are no informational
asymmetries, costless bargaining between agents leads to a Pareto-efficient outcome.

The intuition for this result becomes clear within the context of our previous example. Assume
that firm 1 is assigned the right to produce, regardless of the effect this might have on firm 2.
Then firm 2 may offer firm 1 an amount of money, A, to reduce its production (and thus its
negative externality). Firm 1 agrees if

π1(q̂) + A ≥ π1(q∗),

and firm 2 has an incentive to do so if

π2(q̂, ẑ)− A ≥ π2(q∗, z∗).

Any amount A between π1(q∗)− π1(q̂) and π2(q̂, ẑ)− π2(q∗, z∗), i.e., when

A = λ
(
π1(q̂) + π2(q̂, ẑ)− π1(q∗)− π2(q∗, z∗)

)
+
(
π1(q∗)− π1(q̂)

)
, λ ∈ [0, 1],

33This method is commonly referred to as Pigouvian taxation (Pigou, 1920).
34This principle is also called Extended Polluter Responsibility (EPR) (Lindhqvist, 1992).
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is acceptable to both parties. Conversely, if firm 2 is assigned the right to a pollution-free
environment, then firm 1 can offer firm 2 an amount

B = µ
(
π1(q̂) + π2(q̂, ẑ)− π1(0)− π2(0, z∗(0))

)
+
(
π2(0, z∗(0))− π2(q̂, ẑ)

)
, µ ∈ [0, 1],

to produce at the efficient level q̂. The choice of the constant λ (or µ) determines which party
ends up with the gains from trade and is therefore subject to negotiation.

Instead of assigning the property rights for pollution (or lack thereof) to one of the two parties,
the government may issue marketable pollution permits which confer the right to pollute. If these
permits can be traded freely between firm 1 and firm 2, then, provided that there are at least q̂
permits issued, the resulting Walrasian equilibrium (cf. Section 3.1) yields a price equal to the
marginal harm h′(q̂) at the socially optimal output. Hence, efficiency is restored through the
creation of a market for the externality.

The preceding discussion shows that without government intervention Adam Smith’s “invis-
ible hand” might in fact be absent when there are externalities. Stiglitz (2006) points out that
“the reason that the invisible hand often seems invisible is that it is often not there.” Indeed,
in the presence of externalities the Pareto-efficiency property of Walrasian equilibria generally
breaks down. An example is when a good which can be produced at a cost (such as national
security or a community radio program) can be consumed by all agents in the economy because
they cannot be prevented from doing so. Thus, due to the problem with appropriating rents
from this “public” good, the incentive for it is very low, a phenomenon that is often referred
to as the “tragedy of the commons” (Hardin, 1968). More precisely, a public good (originally
termed “collective consumption good” by Samuelson (1954)) is a good that is nonrival (in the
sense that it can be consumed by one agent and is still available for consumption by another
agent) and nonexcludable (in the sense that it is not possible, at any reasonable effort, to prevent
others from using it). Examples include radio waves or a public park. On the other hand, a
private good is a good that is rival and excludable. All other goods are called semi-public (or
semi-private). In particular, if a semi-public good is nonrival and excludable, it is called a club
good (e.g., an electronic newspaper subscription or membership in an organization), and if it is
rival and nonexcludable it is referred to as a common good (e.g., fish or freshwater). Table 1
provides an overview.

Good Excludable Nonexcludable

Rival Private Common
Nonrival Club Public

Table 1: Classification of Goods.

It is possible to extend the notion of Walrasian equilibrium to take into account the exter-
nalities generated by the presence of public goods in the economy. Consider N agents and M
firms in a private-ownership economy as in Section 3.2, with the only difference that, in addition
to L private goods, there are LG public goods that are privately produced. Each agent i chooses
a bundle ξ of the available public goods, and a bundle xi of the private goods on the market.
Each firm m can produce a vector ymG of public goods and a vector ym of private goods, which
are feasible if (ymG , y

m) is in this firm’s production set Y m. Lindahl (1919) suggested the follow-
ing generalization of the Walrasian equilibrium (cf. Definition 4), which for our setting can be
formulated as follows.

Definition 6 A Lindahl equilibrium (p̂G, p̂, ξ̂, x̂, ŷ) in a private-ownership economy, with per-
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sonalized prices p̂G = (p̂1G, . . . , p̂
N
G ) for the public good, is such that all agents maximize utility,

(ξ̂, x̂i) ∈ arg max
(ξ,xi)∈B((p̂iG,p̂),ŵi)

ui(ξ, xi), i ∈ {1, . . . , N},

where ŵi = p̂ · ωi +
∑M

m=1 ϑ
i
m(
∑N

i=1 p̂
i
G · ŷmG + p̂ · ŷm), all firms maximize profits,

ŷm ∈ arg max
(ymG ,ym)∈Y m

{
N∑
i=1

p̂iG · ymG + p̂ · ym
}
, m ∈ {1, . . . ,M},

and the resulting allocation is feasible,

ξ̂ =
M∑
i=1

ŷmG and
N∑
i=1

(
x̂i − ωi

)
=

M∑
m=1

ŷm.

It can be shown that the Lindahl equilibrium exists (Foley, 1970; Roberts, 1973) and that it
restores the efficiency properties of the Walrasian equilibrium in terms of the two fundamental
welfare theorems (Foley, 1970).35 Because of personal arbitrage, as well as the difficulty of
distinguishing different agents and/or of price discriminating between them, it may be impossible
to implement personalized prices, which tends to limit the practical implications of the Lindahl
equilibrium.

Remark 6 Another approach for dealing with implementing efficient outcomes in the presence
of externalities comes from game theory rather than general equilibrium theory. Building on
insights on menu auctions by Bernheim and Whinston (1986), Prat and Rustichini (2003) exam-
ine a setting where each one of M buyers (“principals”) noncooperatively proposes a nonlinear
payment schedule to each one of N sellers (“agents”). After these offers are known, each seller i
then chooses to offer a bundle (“action”) xj

i ∈ RL
+ for buyer j. Given that buyers’ utility func-

tions can have full externalities, Prat and Rustichini show that there exists an equilibrium which
implements an efficient outcome. Weber and Xiong (2007) generalize this finding under minimal
assumptions to the fully general setting where both buyers and sellers care about every action
taken in the economy. In this situation, prices become nonlinear functions of the quantities,
effectively extending the traditionally ‘linear’ notion of price (where twice as much of an item
typically costs twice as much) in a full-information setting.36 Jackson and Wilkie (2005) con-
sider another generalization of Prat and Rustichini’s results, allowing for side payments between
different market participants. �

Remark 7 We briefly mention the possibility of central planning as an alternative to resource
allocation through markets. While the ‘Chicago School’ in economics with proponents such
as Ronald Coase, Frank Knight, Friedrich von Hayek, George Stigler, Gary Becker or Milton
Friedman, tends to favor the use of markets for the allocation of resources, the above-mentioned
possibility of market failure due to the lack of an invisible hand in the presence of externalities
might call for a compromise between markets and government intervention. The main draw-
back of centrally managed economies stems from the difficulty of collecting and aggregating
information at a center (Hayek 1945). Shafarevich (1980) and Stiglitz (1994) provide additional
interesting perspectives. �

35We omit the technical assumptions required for a precise statement of these theorems.
36In Section 7, we see that in the presence of information asymmetries nonlinear price schedules arise naturally.
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Remark 8 Related to the last remark, when a social planner has full authority, desirable allo-
cations may be implemented using either permits or quotas.37 The question of what allocations
may be desirable invokes the problem of fairness, which may be addressed by what maximizes
the sum of all agents’ utilities (utiliarian solution; Mill 1863), what is best for the economically
weakest agents (egalitarian solution; Rawls 1971), a robust intermediate allocation (relatively fair
solution; Goel et al. 2009), or by what ensures that no agent would want to swap his allocation
with another agent (envy-free solution; Foley 1967). �

5.2 Nonmarket Goods

For many goods, such as public parks, clean air, the Nobel memorial prize, human organs, or
public offices, there are no well-defined markets. Yet, these goods may be of considerable value
to some, so that the question begs of how one should determine the value of a nonmarket good
to a given individual. In contrast to market goods, it is not possible to find an “objective” value
by looking up the good’s price. The good has no a priori price and its value, as we shall see
below, depends on the individual with whom a transaction is to take place and possibly also on
the direction of the transaction.38

A general way of thinking about a nonmarket good is in terms of a ‘change of state’ be-
tween s = 0 and s = 1. In state 1 the good is present, whereas in state 0 it is absent. If x
denotes a typical consumption bundle of market goods, then Joe’s utility of x in state s ∈ {0, 1}
is us(x). Thus, given a wealth of w > 0 and a price vector p for the bundle of conventional
market goods, by Eq. (8) Joe’s indirect utility is

vs(p, w) = max
x∈B(p,w)

us(x), s ∈ {0, 1}.

Hence, if Joe does not have the nonmarket good initially, he would be willing to pay any amount c
that leaves him at the reduced wealth w − c at least as well off as he was initially. Hence, the
maximum amount Joe is willing to pay, given his initial wealth w, is

CV(w) = sup{c ∈ R : v1(p, w − c) ≥ v0(p, w)}. (19)

The welfare measure CV is called Joe’s compensating variation or willingness to pay (WTP) for
the change from s = 0 to s = 1. Conversely, if Joe initially has the nonmarket good, then the
smallest amount he is willing to accept, given his initial wealth w, is

EV(w) = inf{e ∈ R : v0(p, w + e) ≥ v1(p, w)}. (20)

The welfare measure EV is termed equivalent variation or willingness to accept (WTA) for the
change from s = 1 to s = 0.

As an example, we consider as “the” classical application of these welfare measures, proposed
by Hicks (1939), the case where the change of state corresponds to a change in the market price
from p to p̂ (say, p̂ ≪ p in case of a price decrease). The equivalent variation measures how much
Joe would be willing to give up in wealth in return for a change in the price vector from p to p̂.
From Eq. (19) we obtain (dropping any subscripts) that

v(p̂, w − CV(w))︸ ︷︷ ︸
= v(p̂,e(p̂,U))

= v(p, w)︸ ︷︷ ︸
= v(p,e(p,U))

,

37In the presence of uncertainty this equivalence may disappear, as noted by Weitzman (1974).
38For a recent survey on nonmarket valuation see Champ et al. (2003).
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where e(p, U) = w is Joe’s expenditure on market goods necessary to attain the utility level U =
u(x(p, w)) (cf. Section 2.3). Hence, w − CV(w) = e(p, U)− CV(w) must be equal to e(p̂, U), so
that

CV(w) = e(p, U)− e(p̂, U). (21)

In a completely analogous manner one finds that

EV(w) = e(p, Û)− e(p̂, Û), (22)

where Û = u(x(p̂, w)) is the utility level at the new price p̂.39

There is a simple and exact relation between compensating and equivalent variation, provided
that both are finite (Weber, 2003; 2010), one being a shifted version of the other,

EV(w − CV(w)) = CV(w) and EV(w) = CV(w + EV(w)). (23)

Remark 9 Nonmarket goods are by definition traded using contracts rather than markets.
The expense of writing such contracts can be substantial, implying a nonnegligible “transaction
cost” (Coase 1937). Williamson (1975; 1985) points out that transaction costs are driven by
the specificity and uncertainty attached to the items to be transacted, as well as the bounded
rationality and opportunistic behavior of the contracting parties. Transaction cost economics also
recognizes the fact that contracts are necessarily ‘incomplete’ in the sense that not all possible
contingencies can be captured and therefore all ‘residual claims’ must be assigned to one party
(Hart 1988; Hart and Moore 1990). Transaction cost economics can be used to help explain the
boundary of the firm, which is determined by the decision of which goods and services are to be
procured from within the firm and which from outside. �

6 Strategic Pricing with Complete Information

So far, the price or value of a good has been determined in a nonstrategic way, either via an
equilibrium in a competitive market with price-taking agents (cf. Section 3.2), or, for nonmarket
goods, via indifference using Hicksian welfare measures (cf. Section 5.2). In general, the price can
be influenced strategically by agents who have “market power.” Section 6.1 deals with the case
where there is one such agent and Section 6.2 with the case where there are several. In Section 6.3,
we briefly discuss what a single strategic firm in a market can do to prevent competitors from
entering that market.

39It is interesting to note that the compensating and equivalent variations in Eqs. (21) and (22) depend only on
the initial price p and the final price p̂, not on the path from one to the other. This is in contrast to the change
in consumer surplus, ∆CS(w) =

∫ p

p̂
x(p(γ)) · dγ, which depends on the path γ taken. Taking classical mechanics

as an analogy, the variation in potential energy when moving a rigid body between two points in a (conservative)
gravitational field depends only on these two points. Similarly, the expenditure function can be viewed as a
‘potential function’ that measures the variation of welfare for a price change only in terms of the beginning and
ending prices. The underlying mathematical justification is that as a consequence of Roy’s identity (cf. Section 2.3)
the Hicksian demand is a gradient field (generated by the expenditure function), whereas Slutsky’s identity (10)
implies that (due to the wealth effect) Walrasian demand generally is not a gradient field, i.e., not integrable.
(Integrability is characterized by the Frobenius theorem, whose conditions, ∂xi(p, w)/∂pj = ∂xj(p, w)/∂pi for
all i, j, are generally not satisfied for a given Walrasian demand.) It is easy to see that ∆CS(w) always lies
between CV(w) and EV(w). Willig (1976) has shown that the difference between the two is likely to be small, so
that the variation of consumer surplus (along any path) can often be considered a reasonable approximation for
the welfare change. For more general state changes this observation becomes incorrect (see, e.g., Haneman 1991).

27



6.1 Monopoly Pricing

Consider a single firm that can set prices for its products and choose the best element of its pro-
duction set Y (introduced in Section 3.2). We assume that it is possible to split the components
of any feasible production vector y ∈ Y into inputs z and outputs (or products) q, so that

y = (−z, q),

where q, z ≥ 0 are appropriate vectors. Thus, in its production process the firm is able to
distinguish clearly between its inputs and its outputs. The problem of finding the firm’s optimal
price is typically solved in a partial equilibrium setting, where for any price vector p that the firm
might choose, it expects to sell to a demand q = D(p).40

Given a vector of input prices w, the firm’s cost for producing an output q of goods is

C(q;w, Y ) = min {w · z : (−z, q) ∈ Y } .

This cost corresponds to the minimum expenditure for producing a certain output q. It depends
on the market prices of the inputs as well as on the shape of the production set. For convenience,
it is customary to omit the parameters w and Y from the cost function C(q). The firm’s monopoly
pricing problem is to solve

max
p

{p ·D(p)− C(D(p))} . (24)

The first-order necessary optimality condition is

pD′(p) +D(p)− C ′(D(p))D′(p) = 0, (25)

so that in the case of a single product we obtain the (single-product) monopoly pricing rule41

p−MC

p
=

1

ε
, (26)

where MC(p) = C ′(D(p)) is the firm’s marginal cost, and ε = −pD′(p)/D(p) is the (own-price)
demand elasticity for the good in question. The value on the left-hand side is often referred to as
the Lerner index (Lerner, 1934). It represents the firm’s market power: the relative mark-up a
single-product monopolist can charge, i.e., the Lerner index, is equal to the multiplicative inverse
of demand elasticity. Note that the pricing rule (26) also implies that the firm chooses to price
in the elastic part of the demand curve, i.e., at a point p where the elasticity ε ≥ 1.

When there are multiple products, the first-order condition (25) yields amulti-product monopoly
pricing rule (Niehans formula; Niehans 1956) of the form

pl −MCl(p)

pl
=

1

εll

(
1−

∑
j ̸=i

εlj

(
pj −MCj(p)

pj

)(
pjDj(p)

plDl(p)

))
,

where εlj = −(pl/Dj(p))∂Dl(p)/∂pj is the elasticity of demand for good l with respect to a
change in the price of good j. ϵll is the own-price elasticity for good l, whereas ϵlj for l ̸= j is

40In contrast to the general equilibrium setting in Section 3 we neglect here the fact that in a closed economy
the agents working at the firm have a budget set that depends on the wages that the firm pays, which in turn
might stimulate these agents’ demand for the firm’s output. The latter is often referred to as the Ford effect, for
it is said that Henry Ford used to pay higher wages to his employees in order to stimulate the demand for Ford
automobiles (Bishop, 1966, p. 658).

41Equation (26) can also be written in the form p = MC ε/(ε − 1), which is sometimes referred to as the
Amoroso-Robinson relation. Note also that the elasticity ε depends on the price, so one needs in general to solve
a fixed-point problem to obtain the optimal monopoly price.
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called a cross-price elasticity. When the demand for good l increases with an increase of the
price for good j, so that εlj < 0, then good l and good j are complements and the markup for
good l tends to be below the single-product monopoly markup (but the firm expects to sell more
of both products). Conversely, if the demand for good l decreases with an increase in the price
of good j, so that εlj > 0, then the two goods are substitutes, which tends to decrease the price
of good l compared to what a single-product monopolist would charge.

An example of complementary goods are the different components of a drum set (e.g., a snare
drum and a snare-drum stand). Perfect complements are such that one cannot be used without
the other, such as a left shoe and a right shoe which are therefore usually sold together in pairs.

Price Discrimination. The practice of selling different units of the same good at different
prices to different consumers is called price discrimination. Consider, for example, Joe and
Melanie’s demand for movie tickets. If the seller could somehow know exactly how much each
individual would want to pay for a ticket for a given movie (at a given movie theater, at a
given time), perfect (or first-degree) price discrimination is possible and the seller is able to
extract all surplus from consumers by charging each consumer exactly his willingness to pay.
However, the willingness to pay for a good is in many cases private information of potential
buyers and therefore not known to a seller, who therefore has to restrict attention to observable
characteristics. For example, a movie theater may offer student tickets at a discounted price in
order to charge prices based on an observable characteristic (possession of a student ID card).42

This is called third-degree price discrimination. Lastly, if the seller cannot discriminate based
on observable characteristics, then a separation of consumers into different groups may still be
obtained through product bundling. For example, the movie theater may give quantity discounts
by selling larger numbers of movie tickets at a lower per-unit price. Alternately, it could offer
discounts on tickets for shows during the day or on weekdays. This lets consumers select the
product or bundle they like best. If Joe is a busy manager, then he might prefer the weekend show
at a higher price, whereas Melanie may prefer to see the same movie at the ‘Monday-afternoon
special discount price.’ The practice of offering different bundles of (similar) goods by varying a
suitable instrument (e.g., quantity, time of delivery) is called second-degree price discrimination
or nonlinear pricing (discussed in Section 7.1).

As an example for third-degree price discrimination, consider a firm which would like to sell
a certain good to two consumer groups. The marginal cost of providing the good to a consumer
of group i is equal to ci. At the price pi group i’s demand is given by Di(pi), so that the firm’s
pricing problem (24) becomes

max
p1,p2

{
2∑

i=1

(pi − ci)Di(pi)

}
.

Thus, the firm applies the monopoly pricing rule (26) to each group, so that

pi +
Di(pi)

D′
i(pi)︸ ︷︷ ︸

MRi(pi)

= ci︸︷︷︸
MCi

(27)

for all i ∈ {1, 2}. Eq. (27) says that a monopolist sets in each independent market a price so as
to equalize its marginal cost MCi and its marginal revenue MRi(pi) in that market.43

42In some jurisdictions it is illegal for sellers to price discriminate based on certain observable characteristics
such as age, gender, race, or certain other characteristics. For example, in the U.S. the Robinson-Patman Act
of 1936 (Anti-Justice League Discrimination Act, 15 U.S.C. §13) is a federal law that prohibits price discrimination
between equally situated distributors.

43In general, a firm’s marginal cost MCi depends on the firm’s output and thus also on its price, just as its
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6.2 Oligopoly Pricing

The presence of other firms tends to erode the market power of any given firm. The reason is
that this firm needs to anticipate the actions of all other firms.

In general, we can think of each firm i as having a set Ai of possible actions (or strategies)
available. The vector a = (a1, . . . , aN) ∈ A = A1 × · · · × AN , which represents the vector of
actions of all N firms, is called a strategy profile. Each firm i’s profit, πi(a), depends on its own
action ai and the vector a−i = (a1, . . . , ai−1, ai+1, . . . , aN) of all other firms’ actions.

Definition 7 A (pure-strategy) Nash equilibrium of the simultaneous-move game44 is a strategy
profile â = (â1, . . . , âN) ∈ A such that

âi ∈ arg max
ai∈Ai

πi(ai, â−i), i ∈ {1, . . . , N}. (28)

Depending on if the firms set prices or quantities in their strategic interactions, the game is
referred to either as Bertrand pricing game or as Cournot quantity-setting game (Bertrand 1883;
Cournot 1838). For simplicity, we restrict attention to the special case in which each firm is
producing a single homogeneous product.

Bertrand Competition. Consider the situation in which there is a unit demand and only
two firms which compete on price, so that the firm with the lower price obtains all of the sales.
Firm i ∈ {1, 2} therefore faces the demand

Di(pi, pj) =


1, if pi < min{pj, r},
1/2, if pi = pj ≤ r,
0, otherwise,

as a function of its own price pi and the other firm’s price pj (where j ∈ {1, 2} \ {i}). Firm i’s
profit is πi(pi, pj) = (pi−c)Di(pi, pj). If firm j charges a price pj greater than the firms’ common
marginal cost c, it is always best for firm i to slightly undercut firm j. If pj = c, then by also
charging marginal cost firm i cannot earn a positive profit, so that it becomes indifferent between
charging pi = c or any price that is higher than the other firm’s price (and which therefore results
in zero sales). The unique Nash equilibrium strategy profile is described by p̂i = p̂j = c: both
firms sell at marginal cost and make no profits at all. The firms are “trapped” in their strategic
interaction: they cannot take advantage of technological innovation, i.e., cutting c in half has no
effect on their profits (Cabral and Villas-Boas, 2005). In particular, both firms charge marginal
cost and dissipate all of their profits. None of the firms can make any money. It is interesting to
note that the zero-profit outcome persists when we add firms with identical marginal costs, and
even if the marginal costs decrease for all firms from c to ĉ < c. This pessimistic outlook changes
somewhat when the marginal costs are different across firms. In that case, there is generally a
continuum of Nash equilibria that allow for prices between the most efficient firm’s marginal cost
and the second-most efficient firm’s marginal cost (minus epsilon).

marginal revenue does. The marginal revenue is defined as the additional revenue the firm obtains when adding an
infinitesimal unit of output. That is, MRi = ∂(piDi)/∂Di = pi+(Di/D

′
i), using the product rule of differentiation

and the inverse function theorem. We quietly assumed that the firm’s marginal revenue is increasing in price
(i.e., decreasing in quantity for all but Giffen goods). This assumption is not always satisfied, neither in theory
nor even empirically (Beckman and Smith 1993), but it ensures a convex optimization problem (with concave
objective function). We refer to it as the “regular case,” and return to this case in Section 7.3 to avoid technical
complications.

44A game is a collection of a set of players, a set of strategy profiles, and a set of payoff functions (one for
each player, that maps any strategy profile to a real number). A simultaneous-move game is a game in which all
players select their strategies at the same time. More information on game theory and its applications can be
found in Kopalle and Shumsky (this volume).
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The extreme price competition in a Bertrand oligopoly is softened when firms are selling
differentiated products. Hotelling (1929) introduced a by now classical model where two differ-
ent sellers of the same good are located at two points on a line segment while consumers are
distributed on a line segment. Each consumer faces a “transportation cost” to go to one of the
two sellers, which allows them to charge a price premium as long as their locations are different.
This “spatial” model of product differentiation is “horizontal,” since different consumers may
have quite different preferences for what is essentially the same good (once it is purchased and
brought back home). Shaked and Sutton (1982) allow for vertical product differentiation, which
also softens price discrimination.45 Another reason why Betrand oligopolists may obtain positive
markups in equilibrium is that firms may have capacity constraints (Osborne and Pitchik, 1986),
so that the demand needs to be rationed, which can lead to positive rents.

Cournot Competition. If instead of price firm i chooses its production quantity qi, and
at the aggregate quantity Q(q) = q1 + · · ·+ qN the (inverse) market demand is p(Q) = D−1(Q),
then its profit is

πi(qi, q−i) = (p(Q(qi, q−i))− ci)qi.

Each firm i can then determine its optimal quantity (also referred to as its “best response”) as
a function of the vector q−i of the other firms’ actions. For example, when the inverse demand
curve is linear, i.e., when p(Q) = a − bQ for some a, b > 0, then the N conditions in Eq. (28)
yield firm i’s Nash equilibrium quantity,

q̂i =
a− ci +

∑N
j=1 (c

j − ci)

(N + 1)b
,

provided that all firms produce a positive quantity in equilibrium.46 The aggregate industry
output becomes

Q̂ =
N(a− c̄)

(N + 1)b
,

where c̄ is the average marginal cost of active firms in the industry. As the number of firms in
the industry increases, the equilibrium price p̂ = p(Q̂) tends toward the average marginal cost,47

p̂ =
(a/N) + c̄

1 + (1/N)
→ c̄ (as N → ∞).

As in Section 6.1, each firm’s market power can be measured in terms of the relative markup
it is able to achieve. The more firms in the industry, the closer the market price will approxi-
mate the industry’s lowest (constant) cost, forcing companies with higher marginal costs to exit.
Eventually, the relative markup will therefore approach zero.

A practical measure of the competitiveness (or concentration) of an industry is the Herfindahl-
Hirschman index (HHI); it measures industry concentration as the sum of the squares of the firms’

45Beath and Katsoulacos (1991) give a survey of the economics of product differentiation in a locational setting.
Anderson et al. (1992) give a survey in an alternative, random discrete-choice setting.

46Firms that prefer not to produce anything will be the ones with the highest marginal costs. Thus, after
labelling all firms such that c1 ≤ c2 ≤ · · · ≤ cN we obtain that q̂i = (a − ci)/b − (1/(1 + |I|))

∑
j∈I(a − cj)/b,

where I = {i ∈ {1, . . . , N} : (1 + i)(a− ci) >
∑i

j=1(a− cj)} is the set of participating firms.
47In the symmetric case, when all the firms’ marginal costs are the same, i.e., when c1 = · · · = cN , the

equilibrium market price therefore tends toward marginal cost as the number of firms et increases.
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market shares σi = q̂i/Q̂ (Herfindahl, 1950; Hirschman, 1964),48

HHI =
N∑
i=1

(σi)2 ∈ [0, 1].

Remark 10 From an empirical point of view (see, e.g., Baker and Bresnahan, 1988; 1992) it
is useful to identify the relative markup in an industry and compare it to the extreme cases of
perfect competition (zero relative markup) on one side, and the monopoly pricing rule in Eq. (26)
on the other side. For example, the pricing rule in a symmetric N -firm oligopoly is

p− c

p
=

θ

ε
,

where θ = HHI = 1/N and ε is the demand elasticity (cf. Section 6.1). In a monopoly θ = 1,
and under perfect competition θ = 0. Thus, an empirical identification of θ allows for a full
“conjectural variation,” as a priori it can take on any value between zero and one. �

Remark 11 In a Cournot oligopoly firms might be “trapped” in their competitive interaction
just as in the Bertrand oligopoly: it may be to all firms’ detriment when costs decrease. This
was pointed out by Seade (1985), who showed that an increases of excise taxes may increase all
firms’ profits in a Cournot oligopoly. The intuition for this surprising result is that a higher cost
may shift firms’ output into a less elastic region of the consumers’ demand curve, so that the
firms’ resulting price increase overcompensates them for their increased cost.49 In this (somewhat
pathological) situation, the consumers therefore bear more than the change in total firm profits,
in terms of their welfare losses. �

6.3 Entry Deterrence and Limit Pricing

In general it is unrealistic to assume that strategic actions in an industry are taken simultaneously.
An incumbent firm in an industry can try to protect its monopoly position by discouraging entry
by other firms, for example by pricing below the long-run average cost, a practice which is called
limit pricing.50 If some fixed cost is required to enter the industry, a potential entrant may
therefore be discouraged. The flip side of this is of course that the mere existence of potential
entrants tends to limit the pricing power of an incumbent monopolist firm as a function of the
required upfront investment. If the latter is close to zero, the markup a monopolist can charge
also tends to zero.

Sometimes there are other activities that a monopolist can pursue to keep out competitors,
such as advertising and/or building a loyal consumer base. These so-called rent seeking activities
(Tullock, 1980) are generally costly. In principle, the monopolist is willing to spend all of its extra
profit (of being a monopolist instead of an oligopolist) pursuing wasteful rent-seeking activities
to obtain the extra profit (Posner, 1975). Naturally, if one includes the intermediaries providing
rent-seeking services, such as search advertising, into the system, then these activities may (even
though not fully efficient) not be completely wasteful (Weber and Zheng, 2007).

48The HHI is used by the antitrust division of the U.S. Department of Justice. Markets where HHI ≤ 10%
are generally considered as competitive (or unconcentrated). A market for which HHI ≥ 18% is considered
uncompetitive (or highly concentrated). Mergers or acquisitions which stand to change the HHI of an industry
by more than 1% tend to raise antitrust concerns.

49As an example, one can set N = 2, c1 = c2 = c, and p(Q) = 100Q−3/2 in our model, and then consider the
increase in marginal cost from c = 10 to c = 20, which proves to be beneficial for the firms.

50It is possible to consider limit pricing also in an oligopolistic setting (Bagwell and Ramey, 1981).
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Sometimes the incumbent may resort to threats that if a competitor should enter, then a
price war would be started that would have detrimental effects on the entrant, as they would not
be able to recoup any upfront cost (which is already sunk for the incumbent). However, at times
such threats may not be credible. For example, if a large incumbent in telecommunications is
faced with a small capacity-constrained entrant, it may be better for the monopolist to ignore the
entrant, allowing it to obtain a small market share at discount prices while it still retains a lion’s
share of the market at monopoly prices. The accommodated entrant can then work on building
its consumer base and increasing its capacity, and gradually become a more serious threat to the
incumbent (Gelman and Salop 1983).

Remark 12 It is not always in an incumbent firm’s best interest to discourage entry by other
firms. For example, when other firms’ products are complements, their presence would in effect
exert a positive externality on the incumbent which may prompt the latter to encourage the
entry of such ‘complementors’ (Economides 1996). For example, a firm that wishes to sell a
certain computer operating system may want to encourage the entry of software companies in
the market that directly compete with certain of its own products (e.g., browser software) but
at the same time render the operating system more valuable to consumers. �

7 Strategic Pricing with Incomplete Information

The optimal pricing problem becomes more delicate if there are informational asymmetries be-
tween a seller and potential buyers. For example, the buyer’s utility function may be unknown to
the seller, rendering it impossible to extract all surplus. In the resulting screening problem, the
seller tries to optimally construct a menu of options for the buyer, so that the buyer through his
selection of an option reveals his private information. Or, it may be that the seller has private
information about the quality of the good that is being sold, and the resulting signaling problem
is to convey that information in a credible manner to a potential buyer. When there are several
different potential buyers with private information, the seller may be able to solve a mechanism
design problem so as to extract surplus from the buyers or to implement an efficient allocation of
the goods. Lastly, information asymmetries play a role when there are several sellers who may
or may not have an incentive to share some of their private information.

7.1 Screening

Consider a seller who would like to sell a bundle of L products x = (x1, . . . , xL) (or, equivalently,
a single product with L attributes; Lancaster, 1966). If the seller charges a price p for this
bundle, then the consumer’s net utility is

u(x, θ)− p,

where θ ∈ Θ = [θ
¯
, θ̄] ⊂ R represents the consumer’s private information (e.g., the marginal

utility) and u : RL
+ × Θ → R is his utility function. The problem the seller has is that each

consumer type θ may have different preferences, so that it is generally impossible for him to
extract all of a given consumer’s surplus, since that surplus is by hypothesis unknown. In order
to extract information from the buyer, the seller needs to offer a menu of bundles including a
price p(x) for each item on this menu.

The seller’s problem is to design an economic mechanism M = (Θ̂, ρ) that consists of a
‘message space’ Θ̂ and an ‘allocation function’ ρ = (ξ, τ) that maps each element θ̂ of this
message space to a product bundle ξ(θ̂) ∈ RL

+ and a price (monetary transfer) τ(θ̂) ∈ R. Given
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such a mechanism M, the sequence of events is as follows. The seller proposes (Θ̂, ρ) to the
buyer, meaning that she explains to the buyer that all product choices are coded by elements in
the message space (e.g., using tags on items displayed in a store). By sending a message θ̂ ∈ Θ̂
the buyer effectively points to the item he wants (including the almost always feasible choice of
“no item,” reflecting the buyer’s voluntary participation in the mechanism), and has to pay the
transfer τ(θ̂) to the seller.

The problem of finding an optimal mechanism seems daunting, since there are in principle
many equivalent ways to select a message and at least as many ways of defining an allocation
function. The following trivial result, generally attributed to Gibbard (1973) and Myerson (1979),
considerably simplifies the search for an optimal mechanism.

Theorem 4 (Revelation Principle) For any mechanism M = (Θ̂, ρ) there exists a ‘direct
revelation mechanism’ Md = (Θ, ρd) such that if an agent of type θ finds it optimal to send
a message θ̂ under mechanism M, he finds it optimal to send the fully revealing message θ
under Md and consequently obtains the identical allocation ρd(θ) = ρ(θ̂).

It is very easy and instructive to see why this result must hold. Under the mechanism M
agent θ solves

θ̂∗(θ) ∈ argmax
ϑ∈Θ̂

{u(ξ(ϑ), θ)− τ(ϑ)} . (29)

Thus, by setting ρd(θ) = (ξ(θ̂∗(θ)), τ(θ̂∗(θ)) the revelation principle follows immediately. The
intuition is that the mechanism designer can simulate the buyer’s decision problem and change
his mechanism to a direct revelation mechanism accordingly.

By using the revelation principle, the seller can – without any loss in generality – consider
only direct revelation mechanisms, for which Θ̂ = Θ and θ̂∗(θ) = θ. To simplify the solution of
the screening problem, we assume that u(x, θ) is increasing in θ, and that the Spence-Mirrlees
“sorting condition” 51

uxθ(x, θ) ≥ 0 (30)

is satisfied for all (x, θ). The (direct) mechanism M = (Θ, ρ) with ρ = (ξ, τ) is implementable,
i.e., is a direct revelation mechanism, if θ̂∗(θ) = θ holds for all θ ∈ Θ. The first-order necessary
optimality condition for the corresponding ‘incentive-compatibility condition’ (29) is

ux(ξ(θ), θ) ξ
′(θ) = τ ′(θ), θ

¯
≤ θ ≤ θ̄, (31)

and the second-order necessary optimality condition is

uxθ(ξ(θ), θ) ξ
′(θ) ≥ 0, θ

¯
≤ θ ≤ θ̄. (32)

The seller’s payoff from selling the bundle x = ξ(θ) to a consumer of type θ at the price p(x) =
τ(θ) under the implementable mechanism M is

π(x, θ) + p(x).

Again, we assume that the seller’s payoff satisfies a Spence-Mirrlees sorting condition, so that

πxθ(x, θ) ≥ 0

51Subscripts denote partial derivatives. For example, uxθ = ∂2u/∂x∂θ.
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for all (x, θ). Given some beliefs about distribution of the (from her perspective random) con-
sumer type θ̃ ∈ Θ with the cdf F (θ) = P (θ̃ ≤ θ), the seller’s expected payoff is52

π̄(ξ, τ) =

∫ θ̄

θ
¯

(π(ξ(θ), θ) + τ(θ)) dF (θ)

=

∫ θ̄

θ
¯

(π(ξ(θ), θ) + u(ξ(θ), θ)︸ ︷︷ ︸
Total Surplus

− 1− F (θ)

F ′(θ)
uθ(ξ(θ), θ)︸ ︷︷ ︸

Information Rent

)

︸ ︷︷ ︸
Virtual Surplus (≡ S(ξ(θ), θ))

dF (θ). (33)

The previous relation shows that for each type θ the seller would like to maximize a so-called
‘virtual surplus’ S(ξ(θ), θ) which consists of the total surplus W (ξ(θ), θ) = π(ξ(θ), θ)+u(ξ(θ), θ)
minus a nonnegative ‘information rent.’ The latter describes the discount that a consumer of
type θ obtains compared to perfect price discrimination which the seller could implement under
complete information (cf. Section 6.1).

Using basic insights from monotone comparative statics (cf. Section 2.3), it is possible to ob-
tain a characterization of solutions to the seller’s expected-profit maximization problem. Indeed,
if we assume that π and u are supermodular, the hazard rate h = F ′/(1− F ) is nondecreasing,
and uθ is submodular, then the virtual surplus S(x, θ) is supermodular in (x, θ), so that the
pointwise optimal solution ξ(θ) is nondecreasing in θ, and the second-order condition (32) is au-
tomatically satisfied. The first-order condition (31) was used to write the seller’s expected profit
in terms of virtual surplus (cf. Footnote 52) and is therefore also satisfied. Hence, the optimal
solution ξ(θ) to the seller’s screening problem satisfies

Sx(ξ(θ), θ) = πx(ξ(θ), θ) + ux(ξ(θ), θ)− (uxθ(ξ(θ), θ)/h(θ)) = 0 (34)

for all θ ∈ Θ for which x(θ) > 0. Realizing that τ(θ
¯
) = 0, we obtain from Eq. (31) that

τ(θ) =

∫ θ

θ
¯

ux(ξ(ϑ), ϑ) ξ
′(ϑ)dϑ. (35)

Once (ξ, τ) have been obtained, the seller can use the so-called ‘taxation principle’ (see, e.g.,
Rochet (1985)) to determine the optimal nonlinear pricing scheme p(x) for the different bun-
dles x ∈ ξ(Θ):

p(x) =

{
τ(θ), if ∃ θ ∈ Θ s.t. ξ(θ) = x,
∞, otherwise.

(36)

52This identity is obtained, using Eq. (31) and performing twice an integration by parts, as follows:∫ θ̄

θ
¯

τ(θ)dF (θ) =

∫ θ̄

θ
¯

(∫ θ

θ
¯

τ ′(s)ds

)
dF (θ) =

∫ θ̄

θ
¯

(∫ θ

θ
¯

ux(ξ(s), s)ξ
′(s)ds

)
dF (θ)

=

(∫ θ

θ
¯

ux(ξ(s), s)ξ
′(s)ds

)
F (θ)

∣∣∣∣∣
θ̄

θ
¯

−
∫ θ̄

θ
¯

ux(x(θ), θ)ξ
′(θ)F (θ)dθ

=

∫ θ̄

θ
¯

(1− F (θ))

(
du(ξ(θ), θ)

dθ
− uθ(ξ(θ), θ)

)
dθ

= (1− F (θ))u(ξ(θ), θ)|θ̄
θ
¯
+

∫ θ̄

θ
¯

(
u(ξ(θ), θ)− 1− F (θ)

F ′(θ)
uθ(ξ(θ), θ)

)
dF (θ),

where the firm naturally sets ξ(θ
¯
) such that u(ξ(θ

¯
), θ
¯
) vanishes.
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To understand the properties of the solution to the screening problem, we consider the example
where π(x, θ) = −cx2/2 for some c > 0, u(x, θ) = θx, and F (θ) = θ on Θ = [0, 1], satisfying all
of the above assumptions. The virtual surplus is S(x, θ) = −cx2/2 + θx− (1− θ)x, so that the
optimality condition (34),

Sx(x, θ) = −cx+ θ − (1− θ) = 0,

is satisfied for x = ξ(θ) ≡ (2θ − 1)+/c. From Eq. (35) we therefore obtain

τ(θ) =
2

c

∫ θ

0

1{ϑ≥1/2}ϑdϑ =
(4θ2 − 1)+

4c
.

The taxation principle (36) eliminates the type θ from the expressions for ξ(θ) and τ(θ), returning
the optimal nonlinear price,

p(x) =

{
(2 + cx)(x/4), if x ∈ [0, 3/(4c)],
∞, otherwise.

In this example, we observe a number of regularities that remain valid for other parameterizations.
First, the highest consumer type θ = θ̄ obtains a product bundle x̄ = ξ(θ̄) that is efficient, in the
sense that x̄ maximizes π(x, θ̄)+u(x, θ̄), i.e., the sum of the consumer’s and the seller’s payoff. In
other words, there is ‘no distortion at the top.’ In general this is true because S(x, θ̄) is precisely
the social surplus. Second, the lowest type θ = θ

¯
obtains zero surplus. In the example this is

true for all θ ∈ [0, 1/2]. In general, we have ‘full rent extraction at the bottom,’ because uθ ≥ 0
would otherwise imply that one could increase the price for all consumers without losing any
participation. In the terminology of Section 5.1 the low types through their presence exert a
positive externality on the high types. Hence, a (first-order stochastically dominant) shift in
the type distribution that increases the relative likelihood of high types vs. low types tends to
decrease the information rent they can obtain.

Remark 13 The screening problem (first examined as such by Stiglitz (1975)) has many applica-
tions, such as optimal taxation (Mirrlees 1971), the regulation of a monopolist with an unknown
cost parameter (Baron and Myerson 1982), or nonlinear pricing (Mussa and Rosen 1978). The
solution to the screening problem without the somewhat restrictive assumptions that guaran-
teed monotone comparative statics of the solution to Eq. (34) needs the use of optimal control
theory (Hamiltonian approach; Guesnerie and Laffont 1984). For L = 1, when the solution to
Eq. (34) would be decreasing, one needs to implement Mussa and Rosen’s ‘ironing’ procedure,
which requires that ξ(θ) becomes constant over some interval, thus serving those consumer types
with identical product bundles (typically referred to as ‘bunching’). For L > 1, the second-order
condition (32) imposes only an average restriction on the slope, which allows avoiding inefficient
bunching more easily. An extension of the model to multi-dimensional types θ is nontrivial, as
it becomes more difficult to characterize the set of all direct revelation mechanisms over which
the seller has to search for an optimal one (Rochet and Stole 2003). �

7.2 Signaling

In the screening problem, the mechanism operator (referred to as principal), who is uninformed,
has the initiative and designs the mechanism. If the party with the private information has
the initiative, then it faces a signaling problem. For example, if Joe tries to sell his car, then
it is reasonable to assume that he has important private information about the state of the
car. However, if all he can do is “speak” to the prospective buyer, then (in the absence of any
additional guarantees) the latter has no reason to believe what Joe says and can dismiss his sales
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pitch merely as “cheap talk” (Crawford and Sobel, 1982; Farrell and Rabin, 1996). However,
the seller may be able to convey information when using a costly signal (Spence, 1973). More
precisely, the cost of the signal has to vary with the private information of its sender, for it to
become informative. If each sender ‘type’ sends a different message in such a ‘signaling game,’
then the signaling equilibrium is said to be ‘separating.’ Otherwise it is called ‘pooling’ (or
‘semi-separating,’ if only a subset of types are separated).

Let us discuss a simple signaling game, adapted from Laffont (1989), to highlight the con-
nection between signaling and screening.53 More specifically, assume that a seller would like
to sell a unit of a product of quality θ known only to him. The seller can offer an observable
warranty level of e. Both buyer and seller know that the cost to a type-θ seller of offering the
warranty level e is c(e, θ), which is increasing in e. Suppose further that the cost satisfies the
Spence-Mirrlees condition

ceθ ≤ 0.

That is, the marginal cost ce of providing a warranty decreases with the quality of the good. Let
us now examine the seller’s incentives to report the true quality value θ to the buyer, given that
the buyer believes his message.54

If in a truth-telling (i.e., separating) equilibrium the buyer buys a unit amount ξ(θ) = 1 at
the price τ(θ), then the seller’s profit is

π(x, p, θ) = τ(θ)− c(e, θ).

The first-order condition for truth-telling is

cee
′ = τ ′, (37)

and the second-order condition
ceθe

′ ≤ 0. (38)

If the quality of the good θ represents the gross utility for the product, then in a separating
equilibrium the seller is able to charge a fair price τ(θ) = θ, extracting all of the buyer’s surplus.
Hence, Eq. (37) yields that

e′(θ) =
1

ce(e(θ), θ)
.

For example, let θ
¯
= 1, c(e, θ) = 1 − θe. Then ce = −θ, and therefore e′ = −1/θ, and e(θ) =

ln(θ̄/θ) + e(θ̄). The notion of a “reactive equilibrium” (Riley, 1979) implies that e(θ̄) = 0, and
thus e(θ) = ln(θ̄/θ). There may be many other separating equilibria; there may also be pooling
equilibria, in which the seller would offer any quality level at the same price.

Remark 14 In the signaling model presented here, the warranty offered has no effect on the
buyer’s utility whatsoever. The only important feature is that the marginal cost of providing
warranty depends monotonically on the types. This insight can be transferred to other application
domains such as advertising. The latter – while still just a “conspicuous expenditure” – can
become an informative signal about product quality if the firms’ costs satisfy some type of
relaxed Spence-Mirrlees condition (Kihlstrom and Riordan, 1984). With multiple time periods

53The classic setting, explored by Spence (1973), deals with signaling in a labor market. A full analysis of
signaling games is complicated by a generic equilibrium multiplicity, even in the simplest models. To reduce the
number of equilibria, in view of sharpening the model predictions, a number of ‘equilibrium refinements,’ such as
the ‘intuitive criterion’ by Cho and Kreps (1987), have been proposed, with mixed success.

54If the seller does not tell the truth under these circumstances, the buyer, of course, will not trust the seller
in equilibrium. We omit the details for the precise specification of the equilibrium.
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to consider, even product prices can become signals (Bagwell and Riordan, 1991), since a low-
quality firm with a high price would face a much larger drop in sales than a high-quality firm,
as the qualities become known to consumers. See Bagwell (2007) for an overview of the related
economics of advertising. Kaya and Özer (this volume) discuss signaling (and screening) in the
context of supply-chain contracting. �

7.3 Mechanism Design

In the screening problem an uninformed party can design an economic mechanism to extract in-
formation from an informed party and implement its payoff-maximizing allocation of resources.55

An economic mechanism can generally involve more than one agent, in addition to the mechanism
operator (principal). As a leading example, consider Vickrey’s (1961) celebrated second-price
auction. In that mechanism N bidders (agents) jointly submit their bids to the auctioneer (prin-
cipal), who awards a single object to the highest bidder at a price equal to the second-highest
submitted bid. It is easy to see that if every bidder i ∈ {1, . . . , N} has a private value θi ∈ Θ ⊂ R+

for the object, it is best for that bidder to submit his true value as bid bi. This leads to a unique
equilibrium “bidding function” β : Θ → R which describes each player i’s bid, bi = β(θi) ≡ θi,
as a function of his type θi, independent of the players’ beliefs.56

We illustrate the design of a mechanism57 with the example of an optimal auction (Myer-
son 1981) that, on the one hand, parallels third-degree price discrimination (cf. Section 6.1),
and, on the other hand, employs the same methods as our solution to the screening problem.
Consider a seller who would like to sell a single indivisible item to either Joe (= agent 1) or
Melanie (= agent 2) so as to maximize his expected revenues. As in the second-price auction, we
assume that both Joe’s and Melanie’s value for the item is private. Suppose that this seller thinks
that Joe’s valuation θ1 for the item is distributed with the cdf F1 on the support Θ1 = [θ

¯1
, θ̄1],

while Melanie’s valuation θ2 is distributed with the cdf F2 on the support Θ2 = [θ
¯2
, θ̄2]. Suppose

further that the seller’s opportunity cost for selling the item to agent i is ci ≥ 0.
Consider first the problem of how the seller would price to the two individuals so as to

maximize expected profit from either of them, just as in third-degree price discrimination. At a
price pi ∈ [0, 100i], the demand for the seller’s good by individual i is Di(pi) = 1−Fi(pi). Hence,
the monopoly pricing rule (27) in Section 6.1 yields that the seller’s optimal price ri to agent i
is such that marginal revenue equals marginal cost, i.e.,58

MRi(ri) = ri +
Di(ri)

D′
i(ri)

= ri −
1− F (ri)

F ′
i (ri)

= ci. (39)

Let us now consider a mechanism-design approach for the optimal pricing problem. The revela-
tion principle (Theorem 4) extends to the context of “Bayesian implementation,” i.e., situations

55This allocation is referred to as ‘second-best,’ because it is subject to information asymmetries and therefore
inferior in terms of the principal’s expected payoff under the ‘first-best’ allocation when information is symmetric.
The latter is the case if either the agent is ex-ante uninformed about his own type (so that the principal can
extract all his expected surplus by an upfront fixed fee) or both parties are informed about the agent’s type (so
that the principal can practice first-degree price discrimination; cf. Section 6.1).

56Indeed, if – provided that all other bidders use the equilibrium bidding function β – bidder i chooses a bid bi
that is strictly less than his value θi, then it may be possible that another bidder j bids β(θj) ∈ (bi, θi), so that
bidder i loses the object to a bidder with a lower valuation. If, on the other hand, bidder i places a bid bi > θi,
then there may be a bidder k such that bk ∈ (θi, bi) forcing bidder i to pay more than his private value θi for the
object. Hence, it is optimal for bidder i to set bi = β(θi) = θi.

57The design aspect of mechanisms for resource allocation was highlighted by Hurwicz (1973).
58As in Section 6.1 (cf. Footnote 43) we assume that we are in the “regular case,” i.e., that the marginal revenue

is increasing in price. If this assumption is not satisfied, an ironing procedure analogous to the one mentioned in
Remark 13 needs to be performed (Bulow and Roberts 1989).
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Figure 6: Allocations under the optimal selling mechanism.

with multiple agents, in the sense that it is possible for the principal to restrict attention to
‘direct revelation mechanisms’ of the form M = (Θ, ρ), where Θ = Θ1 × Θ2 is the type space,
and ρ = (ξ1, ξ2; τ1, τ2) the allocation function, with ξi : Θ → [0, 1] the probability that agent i
obtains the item and τi : Θ → R the transfer that this agent pays to the principal.

Given that agent j reports the true value θj, agent i finds it optimal to also tell the truth if

θi ∈ arg max
θ̂i∈[θ

¯i
,θ̄i]

E
[
θiξi(θ̂i, θ̃j)− τi(θ̂i, θ̃j)

∣∣∣ θ̂i, θi] = arg max
θ̂i∈[θ

¯i
,θ̄i]

{
θiξ̄i(θ̂i)− τ̄i(θ̂i)

}
,

for all (θ1, θ2) ∈ Θ, where ξ̄i(θ̂i) = E[ξi(θ̂i, θ̃j)|θ̂i] is agent i’s expected probability of obtaining the

item when sending the message θ̂i and τ̄i(θ̂i) = E[τi(θ̂i, θ̃j)|θ̂i] is the resulting expected payment
by that agent. Completely analogous to the implementability conditions (31) and (32) in the
screening problem, we obtain

θiξ̄
′
i(θi) = τ̄ ′i(θi), θi ∈ [θ

¯i
, θ̄i], i ∈ {1, . . . , N}, (40)

and
ξ̄′i(θi) ≥ 0, θi ∈ [θ

¯i
, θ̄i], i ∈ {1, . . . , N}, (41)

as implementability conditions for the principal’s direct revelation mechanism.59 The seller
maximizes his profits by solving

max
ξ,τ

2∑
i=1

∫ θ̄i

θ
¯i

(
τ̄i(θi)− ciξ̄i(θi)

)
dFi(θi) = max

ξ

2∑
i=1

∫ θ̄1

θ
¯1

∫ θ̄2

θ
¯2

(MRi(θi)− ci) ξi(θ1, θ2)dF1(θ1)dF2(θ2),

59Differentiating Eq. (40) with respect to θi we obtain ξ′i(θi) + θiξ̄
′′
i (θi) = τ̄ ′′i (θi). On the other hand, the

second-order optimality condition is θiξ̄
′′
i (θi)− τ̄ ′′i (θi) ≤ 0, so that (by combining the last two relations) we obtain

inequality (41).
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subject to 0 ≤ ξ1(θ1, θ2)+ ξ2(θ1, θ2) ≤ 1.60 The optimal solution can be found by simply ‘looking
hard’ at the last expression. For a given type realization (θi, θj), the principal finds it best to
place all probability mass on the agent with the largest difference between marginal revenue and
marginal cost, as long as that difference is nonnegative. If it is, then it is better not to sell the
item at all. Hence,

ξ∗i (θi, θj) =

{
1{MRi(θi)−ci>MRj(θj)−cj} + (1{MRi(θi)−ci=MRj(θj)−cj}/2), if MRi(θi) ≥ ci,
0, otherwise.

To obtain a concrete result, let us consider the case where Joe’s value is uniformly distributed
on Θ1 = [0, 100] and Melanie’s value is uniformly distributed on Θ2 = [0, 200], so that Fi(θi) =
θi/(100i). Furthermore, let c1 = c2 = 20. One can see that condition (41) is satisfied and that,
in addition, condition (40) holds if we set61

τ ∗i (θi, θj) = 1{MRi(θi)≥ci}

∫ θi

θ
¯i

s
∂ξ∗i (s, θj)

∂s
ds = 1{MRi(θi)≥ci}

∫ θi

θ
¯i

sδ(s− θj − 50(i− j))ds

=

{
θj + 50(i− j), if θi ≥ max{(c/2) + 50i, θj + 50(i− j)},
0, otherwise,

where δ(·) is the Dirac impulse distribution, which appears naturally as the (generalized) deriva-
tive of the indicator function (cf. Footnote 15). In other words, the optimal selling mechanism
for the principal is an auction where the winner is the agent with the highest marginal profit
(MRi − ci), and the transfer is determined by the valuation of the loosing bidder and the dif-
ference in their bids. In this asymmetric second-price auction, the optimal reserve price ri
for agent i is chosen such that MRi(ri) = ci, i.e., ri = (ci/2) + 50i, as already computed
for the third-degree price discrimination in Eq. (39) above: r1 = (c1/2) + 50 = 60 and r2 =
(c2/2) + 100 = 110. Using the optimal auction mechanism, the firm obtains an expected profit
of E [max{0,MR1(θ1)− c1,MR2(θ2)− c2}] = 2E [max{0, θ1 − 60, θ2 − 110}] = 50.36̄. The rea-
son that the optimal auction seems to lead to a lower expected revenue than third-degree price
discrimination is that the latter allows for items to be simultaneously sold to high-value types of
both buyers (“markets”), whereas the former allocates one unit to either one of the two buyers
(“agents”). The allocations resulting from the (asymmetric) optimal auction, for any (θ1, θ2) ∈ Θ,
are shown in Figure 6.

Remark 15 The interpretation of the design of an optimal auction in terms of a third-degree
monopoly pricing problem stems from Bulow and Roberts (1989). While Vickrey’s second-price
auction leads to a Pareto-efficient allocation ex post (i.e., the item ends up with the individual

60The last identity is obtained, using Eq. (40) and performing twice an integration by parts, as follows:

∫ θ̄i

θ
¯i

τ̄i(θi)dFi(θi) =

∫ θ̄i

θ
¯i

(∫ θi

θ
¯i

sξ̄′i(s)ds

)
dFi(θi) =

(∫ θi

θ
¯i

sξ̄′(s)ds

)
Fi(θi)

∣∣∣∣∣
θ̄i

θ
¯i

−
∫ θ̄i

θ
¯i

θiξ̄
′
i(θi)Fi(θi)dθi

=

∫ θ̄i

θ
¯i

(1− Fi(θi))θiξ̄
′
i(θi)dθi = (1− Fi(θi))θiξ̄i(θi)

∣∣θ̄i
θ
¯i
−
∫ θ̄i

θ
¯i

(1− Fi(θi)− θiF
′
i (θi)) ξ̄i(θi)dθi

= −θ
¯i
ξ̄i(θ

¯i
) +

∫ θ̄i

θ
¯i

(
θi −

1− Fi(θi)

F ′
i (θi)

)
ξ̄i(θi)F

′
i (θi)dθi =

∫ θ̄i

θ
¯i

MRi(θi)ξ̄i(θi)dFi(θi),

where the firm naturally sets ξ̄i(θ
¯i
) = τ̄i(θ

¯i
) = 0. The derivations are analogous to the ones in Footnote 52.

61This is not the only way to satisfy Eq. (40). For more details on Bayesian implementation, see Palfrey and
Srivastava (1993) as well as Weber and Bapna (2008).
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that has the highest value for it), Myerson’s optimal auction may lead to an inefficient allocation,
since it is possible that no transaction takes place even though an agent values the item above the
seller’s marginal cost.62 This illustrates a fundamental conflict between efficient allocation and
surplus extraction when information is asymmetric. Note that the expected-revenue difference
between the Myerson and Vickrey auctions is small in the following sense: the expected revenues
from a Vickrey auction with N + 1 ex-ante symmetric bidders cannot be less than the expected
revenue for an optimal auction with N ex-ante symmetric bidders (Bulow and Klemperer 1996).
For additional details on auction theory see, e.g., Milgrom (2004). In many practical applications
the principal also has private information, which complicates the mechanism design problem
(Myerson 1983; Maskin and Tirole 1992). �

7.4 Oligopoly Pricing with Asymmetric Information

The most general strategic pricing problems arise when multiple sellers interact with multiple
buyers in the presence of asymmetric information. An interesting case is the situation where the
sellers observe different private signals about their demands and/or their own costs which they
can choose to exchange with other sellers or not. Raith (1996) provides a model of information
sharing when the sellers’ payoffs are quadratic in their action variables, which encompasses the
standard specifications of Cournot and Bertrand oligopolies with differentiated goods. A seller’s
incentive to reveal private information depends on the correlation of the signals (i.e., if seller i
observes a high cost or a high demand, how likely is it that seller j has a similar observation?)
and on the type of strategic interaction (i.e., does an increase in seller i’s action tend to increase
(‘strategic complements’) or decrease (‘strategic substitutes’) seller j’s action?). For example,
in a Cournot duopoly with substitute products, increasing firm i’s output tends to decrease
firm j’s output, so that their actions are strategic substitutes. The firms’ incentives to share
information then increase as the correlation in their signals decreases. With very correlated
signals, firm i does not expect to increase its payoffs by forcing its strategy to be even more
negatively correlated with firm j’s after information revelation than before. As signals are less
correlated and the firms’ products gain in complementarity, their strategic actions become more
positively correlated ex ante, so that information sharing can profitably increase the precision of
how the firms can take advantage of this implicit collusion against the consumers.

It is noteworthy that in an oligopoly setting it may be better for a seller to actually have less
precise information if that fact can be made reliably known to others (Gal-Or 1988). Indeed, if
in a Cournot oligopoly with substitute products a seller i does not know that uncertain market
demand (common to all sellers) is likely to be low, then that seller will produce a larger output
than sellers who are aware of the demand forecast, especially if those sellers know that seller i is
uninformed. Thus, not having demand information helps a seller to credibly act “crazy” and thus
to commit to an otherwise unreasonable action (an informed seller would never rationally opt to
produce such a large output). Thus, while in single-person decision problems it is always better
to have more information (with a partial information order induced by statistical sufficiency;
Blackwell 1951), in strategic settings the value of additional information may well be negative.63

62The multi-unit generalization of the second-price auction is the Vickrey-Clarke-Groves (VCG) mechanism
(Vickrey 1961; Clarke 1971; Groves 1973). Ausubel and Milgrom (2006) describe why the VCGmechanism, despite
its many attractive features (such as truthful bidding strategies which are incentive-compatible in dominant-
strategies, and ex-post efficient allocations) it is rarely used in practice.

63Weber and Croson (2004) show that this may be true even in a bilateral setting where an information seller
sells information to an agent with limited liability. The fact that too much information might induce the agent
to take overly risky actions, and thus perhaps be unable to pay the seller a pre-agreed ex-post fee, is enough
motivation for the seller to want to degrade the information before selling it, knowing well that its price decreases
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Another way for multiple buyers and sellers to interact is through intermediaries, who may
be able to alleviate some of the problems that arise from asymmetric information. One can argue
that most economic transactions are ‘intermediated,’ in the sense that a buyer who resells his
item effectively becomes an intermediary between the party that sold the item and the party
that finally obtains the item. Thus, retailers are intermediaries, wholesalers are intermediaries,
banks are intermediaries, and so on. A necessary condition for a buyer and a seller to prefer an
intermediated exchange to a direct exchange is that the fee charged by the intermediary does
not exceed the cost of direct exchange for either of the two transacting parties. Thus, for the
intermediary to have a viable business proposition it is necessary that the intermediation cost for
a given transaction is less than the expected transaction cost the parties face in a direct exchange.
As an example consider the market for used cars discussed at the beginning of Section 4.2. We
saw there that if a buyer’s expected value 1−φ (where φ is the proportion of zero-value lemons
in the market) is below the high-value seller’s opportunity cost c, i.e., if 1 − φ < c, then the
market fails, due to adverse selection. If an intermediary can observe and ‘certify’ the quality of
a seller’s car at the intermediation cost κ, then the intermediary can charge the buyer a ‘retail
price’ R ∈ {RL, RH} (with RL = 0 and RH = 1) and pass on to the seller a ‘wholesale price’
W ∈ {WL,WH} (with WL = 0 and WH = c), contingent on the observed value of the used car,
such that all buyers and sellers are happy to use the intermediary. The intermediary is viable if
and only if its expected revenues outweigh the intermediation cost, i.e., if and only if

P (Used Car is of High Value)(RH −WH) = (1− φ)(1− c) ≥ κ.

Spulber (1999) provides an extensive discussion of market intermediation and different ways in
which intermediaries can create value by effectively lowering the transaction cost in the market.
More recently, the theory of intermediation has evolved into a “theory of two-sided markets,”
which emphasizes the intermediary’s profit objective and the possibility of competition between
intermediaries or “platforms” (Rochet and Tirole 2003).64

It is also possible to explicitly consider the competition between different economic mechanism
designs as in Section 7.3 (Biais et al. 2000), with one of the main technical difficulties being that
the revelation principle (Theorem 4) ceases to hold in that environment. For example, in the
case of nonlinear pricing this leads to so-called “catalog games” (Monteiro and Page 2008).

Remark 16 The source of incomplete information in a product market is in many cases directly
related to a costly search process that limits the consumers’ ability to compare different products.
Weitzman (1979) points out that in an optimal sequential search a consumer should follow ‘Pan-
dora’s rule,’ trading off the cost of an incremental search effort against the expected benefit from
that extra search over the best alternative already available. A particularly striking consequence
of even the smallest search cost in a product market is the following paradox by Diamond (1971):
if N symmetric firms are Bertrand-competing on price in a market for a homogenous good and
consumers can visit one (random) firm for free and from then on have to incur a small search
cost ε > 0 to inspect the price charged by another firm, then instead of the Bertrand outcome
where all firms charge marginal cost that would obtain for ε = 0 (cf. Section 6.2), one finds that
all firms charge monopoly price. This rather surprising result will not obtain if consumers are
heterogeneous in terms of their search costs (tourists vs. natives) or their preferences (bankers

but that the increased likelihood of obtaining payment outweighs this loss.
64Rochet and Tirole (2005) point out that a “market is two-sided if the platform can affect the volume of

transactions by charging more to one side of the market and reducing the price paid by the other side by an equal
amount; in other words, the price structure matters, and platforms must design it so as to bring both sides on
board.”
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vs. cheap skates). Stiglitz (1989) provides a summary of the consequences of imperfect infor-
mation in the product market related to search. See also Vives (1999) for a survey of oligopoly
pricing under incomplete information. �

8 Dynamic Pricing

For a seller with market power, the ability to adjust his prices over time is both a blessing and
a curse.65 On the one hand, the flexibility of being able to adjust prices allows the seller at each
time t to incorporate all available information into his pricing decision. On the other hand, the
fact that a seller has the flexibility to change prices at any time in the future removes his ability
to commit to any particular price today. The following conjecture by Coase (1972) makes this
last point more precise.66

Theorem 5 (Coase Conjecture) Consider a monopolist who sells a durable (i.e., infinitely
lived) good to consumers with possibly heterogeneous valuations at times t ∈ {0,∆, 2∆, . . .} at
the marginal cost c ≥ 0. As ∆ → 0+ the monopolist’s optimal price p0(∆) at time t = 0 tends
to his marginal cost, i.e., lim∆→0+ p0(∆) = c.

When the length ∆ of the time period for which a monopolist can guarantee a constant price
decreases, the price it can charge drops. The intuition is that the monopolist at time t = 0 is
competing with a copy of its own product that is sold at time t = ∆. Clearly, when viewed from
the present, that copy is not quite as good as the product now. However, that ‘quality’ difference
vanishes when ∆ tends to zero. Thus, as ∆ → 0+ arbitrarily many copies of virtually the same
product will be available in any fixed time interval, so that the resulting perfect competition
must drive the monopolist’s price down to marginal cost.

The Coase problem, which arises from the lack of commitment power, can be ameliorated by
renting the product instead of selling it, or by making binding promises about future production
(e.g., by issuing a “limited edition”). Perishable products also increase the monopolist’s com-
mitment power (e.g., when selling fresh milk), as well as adjustment costs for price changes (e.g.,
due to the necessity of printing a new product catalogue). The ability to commit to a ‘price path’
from the present into the future is a valuable asset for a seller; the question of commitment as a
result of the consumers’ option of intertemporal arbitrage (i.e., they can choose between buying
now or later) must be at the center of any dynamic pricing strategy, at least in an environment
where information is fairly complete. We note that the Coase problem is not significant in situ-
ations when consumers are nonstrategic (i.e., not willing or able to wait) or when goods respond
to a current demand (e.g., for electricity). An intertemporal aspect is then introduced into a
firm’s pricing strategy mainly through its own cost structure, production technology, or changes
in boundary conditions.67

Under incomplete information, buyers and sellers need to learn about their economic envi-
ronment, which generally includes exogenous factors (such as technological possibilities, macro-
economic conditions, and consumer preferences) or persistent endogenous information (such as
past experience with products, reputations, and recent observable actions by market partici-
pants). All participants’ beliefs may change from one time period to the next, based on their

65For more details on dynamic pricing, see Aviv and Vulcano (this volume).
66The Coase conjecture was proved by Stokey (1981), Bulow (1982), and Gul et al. (1986) in varying degrees

of generality.
67For example, a firm may need to consider a production lead time, the replenishment of inventories, a limited-

capacity infrastructure (requiring ‘peak-load pricing’), or demand seasonality. Many of these issues have been
considered in the operations management and public pricing literature; they are beyond the scope of this survey.
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respective new information. At each time t, any agent trades off the value of additional costly
information (important for improving decisions in the next period) against the benefit of using
the available resources to directly augment current payoffs through non-informational actions.
The difficulties of finding an optimal balance between exploration (i.e., the acquisition of new
information) and exploitation (i.e., the accumulation of benefit) can be illustrated well with the
so-called multi-armed bandit problem. In the simplest version of this problem a single agent can
choose to pull one of several arms of a slot machine. Each arm pays a random reward with an
unknown, stationary probability distribution. The agent weighs the current benefit of pulling a
relatively well-known arm to gain a fairly certain reward against the possibility of experimenting
with a new arm that could pay even better rewards. Gittins and Jones (1974) provide a surpris-
ingly simple solution to what seems like a difficult dynamic optimization problem which for some
time had a reputation of being unsolvable from an analytic point of view. Their solution shows
that the problem can be decomposed so as to perform a separate computation of a Gittins index
for each arm based on the available information for that arm. The Gittins index corresponds
to the retirement reward (as a per-period payment in perpetuity) that would make the agent
indifferent between stopping the experimentation with that arm or obtaining the retirement per-
petuity instead. Given the vector of Gittins indices at time t, it is optimal for the agent to choose
the arm with the highest Gittins index.

The fact that the Gittins indices can be computed separately for each arm allows for a use of
this method in mechanism design, for example, in the construction of a mechanism that allocates
an object of unknown value in different rounds to different bidders (Bapna and Weber 2006;
Bergemann and Välimäki 2006). Based on their own observations, bidders can then submit bids
which are related to the computation of their own Gittins index, the latter representing in effect
the private types, the collection of which determines the socially optimal allocation at each point
in time.

9 Behavioral Anomalies

A discussion of price theory could not be complete without the ‘disclaimer’ that the self-interested
economic man (or homo economicus) that appeared in all of the rational models in this survey
is not exactly what is encountered in reality.68 Individuals are generally subject to decision
biases which may be psychological in nature or due to limited cognitive abilities (or both). The
resulting “bounded rationality” leads human decision makers to suboptimal decisions and to
what Simon (1956) terms “satisficing” (rather than optimizing) behavior, which means that
individuals tend to stop the search for better decision alternatives as soon as a decision has been
found that promises a payoff which satisfies a certain aspiration level.

The behavioral anomalies encountered in practice or often too significant to be ignored in
models, so that descriptive and normative models of bounded rationality increasingly influence
and shape the evolution of economic theory (Thaler, 1994; Rubinstein 1998; Kahneman and
Tversky 2000; Camerer 2006). As an example for how decision making can be biased by ‘mental
accounting’ (Thaler, 1999), consider the following experiment by Tversky and Kahneman (1981,
p. 457), in which individuals were asked the following.

Imagine that you are about to purchase a jacket for $125 (resp. $15) and a calculator
for $15 (resp. $125). The calculator salesman informs you that the calculator you

68The term “economic man” dates back to Ingram (1888) who criticizes the work of Mill (1836) which – in
Ingram’s words – “dealt not with real but with imaginary men – ‘economic men’ (...) conceived as simply ‘money-
making animals’ ” (p. 218); see also the discussion by Persky (1995). Behavioral issues in pricing are discussed
further by Özer and Zheng (this volume).
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wish to buy is on sale for $10 (resp. $120) at the other branch of the store, located
20 minutes drive away. Would you make the trip to the other store?

The empirical observation in this experiment suggests that when individuals stand to save $5
from an original amount of $15 they are willing to travel to another store, but not if the original
amount is $125. Thus, the same total amount of $5 tends to be aggregated into one mental
account, which contains the total expense. This explains the decreasing marginal utility for a $5
savings in the base price of the item. The latter is explained by the empirical regularity that real
individuals’ utility functions for money tend to be convex for losses (implying ‘loss aversion’) and
concave for gains (implying ‘risk aversion’; cf. Section 2.4) (Kahneman and Tversky 1979). An
individual with a utility function that, relative to the current wealth, exhibits both loss aversion
and risk aversion, tends to avoid actions (i.e., lotteries) that change his status quo.

Related literature on the so-called endowment effect points to an important caveat when
trying to identify a ‘behavioral anomaly’ which may require the adjustment of economic theory.
In a well-known experiment, Knetsch (1989) observes systematic differences between WTA and
WTP when the welfare change is induced by the transfer of a nonmarket good. These empirical
results, repeated in a variety of settings by other authors, suggest that a consumer’s WTA tends
to be larger than her WTP, a behavioral pattern that is generally referred to as the “endowment
effect” or “status-quo bias.” In Knetsch’s experiment, one group of randomly selected subjects
was given a coffee mug and another group of subjects a candy bar. No matter who was given the
mug, the individuals’ average WTAs tended to be much larger than their average WTPs, which
has been commonly viewed as supporting evidence for the presence of an endowment effect.
Yet, as the normative relation between WTA and WTP (i.e., the Hicksian welfare measures EV
and CV) in Eq. (23) shows, it is

WTA(w −WTP(w)) = WTP(w) and WTA(w) = WTP(w +WTA(w)),

so that an identity between WTA and WTP is not actually required, even from a normative
point of view, unless one makes sure that individuals are wealth-compensated as the previous
identities indicate. More recently, Plott and Zeiler (2005) note (without alluding to the wealth-
compensation issue) that the observed differences between WTA and WTP might disappear
altogether if one controls for all possible biases in experimental settings, so that – as these
authors point out – the endowment effect may be a mere artifact produced by observations
under imperfect laboratory conditions. The controversy surrounding the endowment effect is
symptomatic of the difficulties in separating implications of available normative models from
behavioral anomalies that would require an extension of these models.69

10 Open Issues

The discussion in this survey has shown that the strategic and nonstrategic pricing of resources is
complicated by the presence of externalities, asymmetric information, and behavioral anomalies.
The following three axes will be instrumental in the further development of price theory.

First, as the growth of networks around us increases the ‘connectedness’ of individuals, on the
one hand new markets are created, but on the other hand the potential for direct externalities
through actions taken by participants in these networks also increases. New economic theory is

69Weber (2010) shows that the endowment effect is unsurprising from a normative viewpoint, i.e., it is not
necessarily a behavioral anomaly. For example, a “normative endowment effect” arises automatically if the
welfare measures WTA and WTP are increasing in wealth. Weber (2012) provides a mechanism for eliciting the
difference between WTA and WTP for any given individual (as truthfully as desired).
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needed for the pricing and transfer of resources in networks which considers the informational,
transactional, and behavioral aspects specific to the relevant networks.

A second fundamental driver for a change in the way price theory continues to develop is given
by our transition to a ‘data-rich society,’ in the sense that firms (and individuals) are increasingly
able to tap a variety of data sources for informing their decisions about the buying, selling, and
pricing of resources. Consumers whose behavior can be tracked, firms whose products become
customizable by informational components, and intermediaries that increase market transparency
(up to a deliberate obfuscation point), imply reduced information rents. The countervailing trend
is that a data-rich society allows for experimentation on an unprecedented scale. The resulting
optimization of decisions increases the rents from information. It therefore becomes more critical
to connect economic models directly to data, blurring the boundaries of model identification and
solution.

Lastly, with the advent of a data-rich society there remains the issue of “long-tails,” i.e.,
the fundamental impossibility to have well-defined beliefs about all relevant aspects of economic
behavior. Low-probability, high-consequence events require decisions to be “robust,” i.e., valid
under a range of possible scenarios.70 One important aspect of robustness is an implementation
of satisficing (cf. Section 9), where a simple expected-payoff objective is replaced by a ‘robustness
criterion,’ such as a conservative worst-case value or a less stringent competitive-ratio criterion.
Sample-sparse estimation is likely to become an important part of data-driven economic decision
making under uncertainty (Chehrazi and Weber 2010).
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Économétrie, Colloques Internationaux du CNRS, XL, 41–48. [English translation: “The Role
of Securities in the Optimal Allocation of Risk,” Review of Economic Studies, 31(2): 91–96. The
paper was originally read at the Colloque sur les Fondements et Applications de la Théorie du
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