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Part 1 of this study sequence developed a human factors/ergonomics (HF/E) based classification system
(termed HFACS-MA) for safety audit findings and proved its measurement reliability. In Part 2, we used
the human error categories of HFACS-MA as predictors of future safety performance. Audit records and
monthly safety incident reports from two airlines submitted to their regulatory authority were available

Keywords: for analysis, covering over 6.5 years. Two participants derived consensus results of HF/E errors from the
::/‘:éas“]&‘;or audit reports using HFACS-MA. We adopted Neural Network and Poisson regression methods to establish

nonlinear and linear prediction models respectively. These models were tested for the validity of pre-
diction of the safety data, and only Neural Network method resulted in substantially significant pre-
dictive ability for each airline. Alternative predictions from counting of audit findings and from time
sequence of safety data produced some significant results, but of much smaller magnitude than HFACS-
MA. The use of HF/E analysis of audit findings provided proactive predictors of future safety performance
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in the aviation maintenance field.
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1. Introduction

In our lifetime, we have seen the change from basing safety on
accident investigation to using more proactive safety measures
such as recurrent audits. These proactive ways are carefully
designed to focus attention on what their designers expect: to be
the measurable precursors of accidents or incidents. It is assumed
that the correct precursors are being measured, and the results are
interpreted correctly as visible threats to system safety. However, in
many ways, no quantifiable or data-driven efforts are undertaken to
improve these audit findings before conditions are right for the
same failures or critical events to occur. The phenomenon that
threats often lie dormant is not because responsible managers
didn’t recognize the existence of these threats, but is for they have
only limited resources to solve numerous problems or don’t
appreciate the necessity or urgency of correction. In other words,
a more reasonable clue is required to convince managers to decide
which threats are most eminent/serious.

To help improving this common occurrence among safety
management in industry, we consider clarifying how these iden-
tifying failures in daily audits could possibly (probability) corrode

* Corresponding author.
E-mail address: yhsiao@cycu.edu.tw (Y.-L. Hsiao).

the system safety in magnitude (severity) and result in economic
loss (such as the cost of incidents). This idea is based on the risk
management concept. We aim to investigate the topic from a more
quantitative and objective standpoint. The first step is to quanti-
tatively prove the causal relationship between audit findings as
precursors and safety measures.

Do audit findings really predict the future safety performance of
an organization? This question has not been answered for any
system where audits are in use. What we could perceive is that
audits are treated as indicators of systematic safety status in
a qualitative way. This article, Part 2 of our study, shows how we
tested the assumption about audits’ predictive capability, using
monthly data on safety performance regarding the maintenance
activities of two different airlines.

In Part 1 (Hsiao et al., 2013), we developed a rationale for
quantifying audit reports, using human factors/ergonomics (HF/E)
analysis, rather than merely counting audit findings which had
proven ineffective. Based on aviation safety research (Shappell and
Wiegmann, 2003), on general system safety (Reason, 1990) and on
management theories, e.g. Robbins and Coulter (2005), a classi-
fication system for human errors was developed and tested for
reliability. We named our modified taxonomy the HFACS-
Maintenance Audit (HFACS-MA, see Fig. 1) and found its reli-
ability to be satisfactory. HFACS-MA used audit reports collected by
the regulatory authority in the country where the airlines are

0003-6870/$ — see front matter © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

http://dx.doi.org/10.1016/j.apergo.2013.01.003


Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_given name
Delta:1_given name
Delta:1_surname
mailto:yhsiao@cycu.edu.tw
www.sciencedirect.com/science/journal/00036870
http://www.elsevier.com/locate/apergo
http://dx.doi.org/10.1016/j.apergo.2013.01.003
http://dx.doi.org/10.1016/j.apergo.2013.01.003
http://dx.doi.org/10.1016/j.apergo.2013.01.003

660 Y.-L. Hsiao et al. / Applied Ergonomics 44 (2013) 659—666

Organizational
Influences

Organizational
Functionality

\
\ \ \

Organizational
Safety Climate
\

\ \ \

Operations . Resource Safet: .
P Execution o Policies Culture
Procedure Management Oversight
Unsafe
Supervision
Supervision Supervision
Dysfunction Disobedience
Planning Leading Controlling . .
anming cing e Routine Exceptional
Organizing Coordinating Correcting
Preconditions
For
Unsafe Acts
Conditions of Conditions of
Operators Task / Environment
Adverse Lo Task Physical Hardware
Limitations Teamwork .
States Demands Environment Software

——

Disobedience

——

77777 Skill-based Decision
Errors Errors

Routine Exceptional

Fig. 1. The complete framework of HFACS-MA.

registered. In Part 2, we tested HFACS-MA against safety perfor-
mance data collected by the same regulatory authority using
a system independent of the audit data collection.

There have been attempts to validate human factors audit pro-
grams in the past but never against future safety performance.
Drury (2006) noted that such validity can be assessed by content
validity, concurrent validity, or construct validity. A later revision of
the Drury’s (2006) chapter (Drury and Dempsey, 2012) quotes
a health and safety audit evaluated against safety standards
(Robson et al., 2010) as an example of content validity, and a com-
parison between audit findings and expert findings in airline
maintenance (Koli et al., 1995) as one of concurrent validity. Those
reviews also noted that construct validity has not been prominent
in the testing of audit systems. Overall, out of 17 audit systems or
checklists for human factors issues, only 6 had been validated, and
none of them had been validated against safety outcome data. Thus
the results of the current study should be of interest beyond the
aviation maintenance domain, although that is our primary
concern.

Along with quantifying the threats of human errors in main-
tenance systems from audit reports, this research provides an op-
portunity to examine the relationship between human failures and
overall safety performance at a more detailed level. Assuming that
the safety performance of an organization reflects the external
manifestation of their internal error environment, we postulate
that a causal link should exist between overall safety performance
and characteristics of the human failures. This answers the obvious
question: “is safety performance predictable based on the analysis
of human error from audit records?” and also potentially provides
guidance on which HF/E failures to address.

2. Data collection and quantification

In this study, there are two major data sources: historical audit
records as predictors and incident reports as outcome measures.
We transformed them into weighted human error rates and inci-
dent rates respectively to represent the status of human failures
and the safety performance of maintenance systems. The weighted
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human error rates were extracted from audit reports using the
error categories of HFACS-MA, and the incident rates were directly
counted from incident reports which were related to maintenance
issues. The audit records and incident reports are independent data
sources, and are obtained from different systems within the civil
aviation authority which has requested confidentiality. There are
total 1245 audit records covering a 6.5 years period from two air-
lines (called here airlines A and B). Airline A had 73 incidents, and
airline B had 192 incidents during this specified time period.

The weighted human error rates and the incident rates were
quantitatively measured within monthly periods, rather than
weekly, quarterly or annually. This decision was made to balance
the intrinsic characteristic (for weekly rate) and the statistical po-
wer (for quarterly and annual rate) of the raw data. Monthly period
gives sufficient data points while avoids counting excessive num-
bers of days or weeks where no audits were taken. Although both
the audit records and incident reports contained the accurate time
at which the event happened, which made a transition to any time
period possible, the number of flight departures were reported to
the aviation authority at a monthly basis. Therefore, monthly rate
was the natural choice.

2.1. Dependent variable — safety indicator

A quantitative safety indicator is needed to represent the future
safety performance. As defined by the National Transportation
Safety Board (NTSB) and Federal Aviation Administration (FAA) in
the United States, an accident is “an occurrence associated with the
operation of an aircraft which takes place between the time any
person boards the aircraft with the intention of flight and all such
persons have disembarked, and in which any person suffers death or
serious injury, or in which the aircraft receives substantial damage”.
And incident is defined as “an occurrence, other than an accident,
associated with the operation of an aircraft, which affects or could
affect the safety of operations” (NTSB, 1988) (p. 1). Accident rate has
been commonly accepted by the aviation industry as the universal
safety performance indicator to depict a general safety picture of an
airline, a country, or a geographic region such as Asia, Europe, or
North America. However, because flight accidents rarely happen
(usually less than one accident per airline per year), accident rate is
not sensitive enough to be used as a safety indicator in our study:
accident rates could remain constant or zero in whole year for an
airline (Ding and Ru, 2008; Liou et al., 2008). Thus, incident rate is
more typically used as it is based on far more data in specific time
period, and incidents are seen as necessary precursors to accidents.

Briefly, the overall incident rate of the accessed time period (6.5
years) was 0.90 for airline A and 1.42 for airline B (per 1000 de-
partures). And the accident rate of the two airlines over the same
period was 0.012 and 0.015 respectively. It is noted that the acci-
dent/incident ratio was comparable for the two airlines at 0.013 for
airline A, and 0.010 for airline B.

In this study, future incident rate served as the safety indicator
(dependent variable), defined as:

>~ Incident

Incident Rate =
Departure

x 1,000 (1)

>~ Incident: The number of incidents per month
Departure: The number of flight departure per month

In order to examine the predictive ability of the model over
different time periods, i.e. to find out the best time range of fore-
casting, the safety indicator (incident rate) was tested for one-, two-
and three-month following the time point of each analysis. For
instance, the weighted human error rates in January rates were

used to predict the future incident rate in either the next month
(February), the next two months (February and March), or the next
three months (February, March and April).

2.2. Independent variables

The independent variables of the prediction model comprise the
weighted human error rates derived from audit findings via HFACS-
MA, and both past and current incident rates. Incident rates were
included to test whether future safety performance was simply
predictable from past safety performance, i.e. whether or not the
HF/E analysis using HFAC-MA add any value to the prediction. We
recruited two raters to generate the weighted human error rates
from qualitative text descriptions in the audit reports to quantita-
tive data. The two raters read through each audit record to find
existing failures, and diagnosed any flaws they found into specific
human error categories in HFACS-MA. After their independent
analysis, the raters recorded their results separately. If the results
were different, the raters were to discuss the case to reach a con-
sensus conclusion on each audit report.

Because the analysis process involved non-English documents
and many human error concepts and definitions, two graduate
students, who already possess both the native language and a hu-
man factors background, were recruited. HFACS-MA is the diag-
nostic framework of human error comprising four major human
error tiers: Unsafe Act, Precondition of Unsafe Act, Unsafe Super-
vision, and Organizational Influence.

Since some specific errors in HFACS-MA were rare to find out in
the historical audit reports, the appearance frequencies of these
unusual failures were mostly zero while transformed to weighted
human error rates in monthly period. This phenomenon would
certainly increase the investigating difficulty of predictive vali-
dation in this study if the input values of these specific variables
were mostly zero. Under this inherent constraint, we tried to alle-
viate it by integrating similar errors in the classification framework.
In HFACS-MA, we set up “Class P” factors as the ‘parent’ category of
its ‘subordinate’ errors, “Class S” (see Fig. 1 and Table 1 for details).
These integrated “Class P” factors would accumulate the amount of
its subsidiary errors in “Class S” to increase the quantities of non-
zero monthly frequencies. In brief, there are eight “Class P” fac-
tors, e.g. Error, Condition of Operators, Supervision Dysfunction and

Table 1
Details of “Class P” and “Class S” factors of HFACS-MA.
“Class P” “Class S”
Unsafe act Error Skill-based error
Decision error
Noncompliance Routine
Exceptional
Precondition for Condition of operators Adverse state
unsafe act Limitation
Teamwork

Task demand

Physical environment
Hardware/software
Planning/organizing
Leading/coordinating
Controlling/correcting

Condition of task/environment

Unsafe supervision  Supervision dysfunction

Supervision noncompliance Routine
Exceptional
Organizational Organizational functionality Operation procedure
influence Execution

Resource management
Safety oversight
Safety policy

Safety culture

Safety climate




662 Y.-L. Hsiao et al. / Applied Ergonomics 44 (2013) 659—666

Organizational Functionality. The measurement reliability of “Class
P” factors was examined in Part 1 (Hsiao et al., 2013).

Take the quantitative transformation of airline A as an example:
there were 78 unsatisfactory audit reports for airline A in 2002;
they were analyzed via HFACS-MA and then computed to the 12
monthly rates of eight “Class P” factors per year. The human error
rates were weighted using the severity criteria developed by the
regulatory authority in Equation (2). Every audit result was cate-
gorized by its responsible inspector to address its severity. From
negligible to serious problems, the degrees of severity were clas-
sified as ‘Information’, ‘Recommendation’, ‘Concern’, and ‘Finding’.
We adopted the corresponding weights of the above degrees into
the calculation of human error rates to emphasize the importance
of severity (see Table 2). The weights are quoted from the aviation
authority; they are derived via the Analytic Hierarchy Process (AHP)
method, which has been generally applied in a variety of decision
situations (Forman and Gass, 2001; Saaty, 2001). Twelve inspectors
from the authority performed a paired comparison task for each
pair of degrees of severity, with respect to their impact on safety.
These weights have already been adopted in the daily analysis
system of the aviation authority.

In Equation (2), the numbers of each human error category were
accumulated according to the inspection date for each month, and
multiplied by these weights to calculate the weighted human error
rates. These quantitative rates were then treated as the indicators of
human failures of aviation maintenance systems, and served as
independent variables to predict the subsequent safety perfor-
mance. Note: for concision purpose, we abbreviated the “weighted
human error rate” to “error rate” from here on.

> (wi*ny)

H _ 1
Weighted Human Error Rate = W

(2)
W: The highest weight of severity degree (W = 11, the des-
ignated weight of Finding)

w;: The weight of the severity degree, i = {I, R, C, F}

n: The sum of the human failures with all severity degree per
month

n;: The sum of the human failures with specific severity degree,
i={LR CF}

In brief, there are ten independent variables of the prediction
model, i.e. eight from the error rates of the eight “Class P” factors
and two from the past and current incident rates. The next step is to
establish a safety prediction model using both Neural Network and
Poisson Regression methods and measure their predictive
capability.

3. Method

3.1. Neural network

An Artificial Neural Network (NN) involves nonlinear functions
to handle complex problems and is superior to other nonlinear
techniques in its generality and practical ease of implementation
(Azoff, 1994). Because the NN method is capable of coping with the
challenges of non-normality, nonlinearity, and collinearity in

Table 2

Weights of the severity degree of audit reports.
Severity Information (I) Recommendation (R) Concern (C) Finding (F)
Weight 1 5 8 11

forecasting area (Kappert and Omta, 1997; Jensen et al., 1999;
Ranaweera et al., 2002; Wang et al., 2010), we utilized it in this
study to avoid any non-normality problems.

In this study, we adopted the Back-Propagation Network (BPN)
which is popular for performing difficult prediction problems
(Werbos, 1994). Our model comprises one input layer, one hidden
layer, and one output layer (see Fig. 2). Although more than one
hidden layer might be beneficial for some applications, literature
reviews showed that a single hidden layer is sufficient for a back-
propagation network to solve most function approximation or
input—output mapping problem for an arbitrary accuracy (Azoff,
1994; Fausett, 1994; Shyur et al., 1996; Ricotti and Zio, 1999; Nefti
and Oussalah, 2004; Ung et al., 2006).

The input layer includes ten input neurons (the independent
variables: eight error rates of the “Class P” factors, one past and one
current incident rate), and the output layer possesses only one
output neuron (the dependent variable: future incident rate)
(Fig. 2). Information processing occurs at each neuron and is passed
between neurons over connection links. Each link has an associated
weight, which, in a typical NN, multiplies the transmitted signal
values. A transfer function (or called activation function) would
then be applied to the hidden neurons’ net input (sum of weighted
input values) to determine their output values.

With too few or too many hidden neurons, the network might
either fail to model the underlying function or result in over-fitting
(Kim and Park, 2001). Currently there is no specific rule prescribing
how to decide the optimum number of hidden neurons. According
to the experience gained by NN practitioners, it is suggested that
the number of hidden neurons should vary as part of the inves-
tigation. Therefore, in this study, we used a trial and error process to
determine the most appropriate number of hidden neurons based
on balancing issues of simplicity and accuracy. On the other hand,
the choice of appropriate transfer function is dependent on the
numerical characteristics and ranges of the inputand output. Since
all variables of this study have been standardized, a tangent sig-
moid or log sigmoid function was appropriate considering the
constraints.

We divided the variables (ten inputs and one output) into two
groups: one training set and one testing set. Such a split-sample
technique has been successfully adopted in safety related

Future Incident Rate

RUUE 1, 2 or 3 months
Hidden Number of Neurons

46,8 16

Input

« Error « Disobedience

= Operators * Task/Environment

» Supervision Dysfunction  + Supervision Disobedience
« Organization Functionality + Safety Climate

= Past Incident Rate « Current Incident Rate

Fig. 2. The architecture of the neural network model.
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research (Hashemi et al., 1995; Ung et al., 2006). In NN prediction
studies, researchers would consider use more data set for training
to assure its training performance and leave reasonable samples for
test or validation (Zhang et al., 1999; Khosravi et al., 2011). Because
the shortage of training data could seriously affect the learning
performance of NN model, we decided to use reasonable sample
size (i.e. two years, n = 24) for testing, and leave all other samples
(n = 53) for training. The training set was presented in a random
order to provide a stochastic weight update scheme.

3.2. Poisson regression

Because the response variable of our study, future incident rate,
is discrete random ratio data and fits with Poisson distribution
rather normality, we have chosen Poisson regression method as the
generalized linear model (GLM) for modeling safety performance
using the set of error rates. The same ten independent variables and
one dependent variable as used NN model were added to the GLM.
We aimed to explore the influential effects of the human error
categories on the future incident rate and to compare the predictive
capability of GLM with the performance of nonlinear NN method.
The sample size of Poisson regression model has the same
arrangement as the previous NN model: 53 to establishing the GLM
model and 24 for predictive validation.

4. Analysis
4.1. Neural network results

The NN toolbox of Matlab® was used to establish the safety
prediction model. After utilizing trial and error method to explore
the best time period to obtain the highest performance of predic-
tion, we found that the future incident rate with a one-month
period had the best training and predictive performance com-
pared to the two- and three-month ranges. The resultant correla-
tion coefficients of both two- and three-month’s incident rates
were around 0.4, which are hardly sufficient to effectively support
the prediction of the safety indicator.

Both airlines attained a strong level of overall correlation of the
training sets (r > 0.6). The testing set was then used to predict the
corresponding future incident rate. The predictive results of NN
model were compared with the actual incident rate (target or
desired output) to examine the predictive performance of the net.
For the testing sets, the correlation coefficients both reached a sig-
nificant level (ra = 0.61, rg = 0.57), which were also similar to the
overall results of training set (ra = 0.61, rg = 0.60), giving R? values
0.38 for airline A, and 0.32 for airline B. The coefficient of deter-
mination, R?, is usually used as a measure of the proportion of
variability in a data set that is accounted for in prediction models.
Therefore, R? value of 0.38 or 0.33 implies that about 30% of the
variance is accounted for.

The tangent sigmoid transfer function used in the model had
better and more significant predictive performance than the log
sigmoid. However, it produced an unexpected artifact: negative
incident rates, which were illogical. Therefore, we exponentiated
the original prediction result transforming the values from negative
to positive. Even though exponentiation would raise the concern of
mathematical manipulation, we have presented the transformed
results with the original ones as a comparison. The fitted line plots
of the original and exponential prediction results are represented
with 95% prediction interval for both airlines in Fig. 3a and b. Most
of the prediction results were fitted within the prediction interval.
We used three measures: correlation, standard error and R? to
evaluate the predictive performance of the NN model and sum-
marize in Table 3.

It should be noted that exponentiation transformation does not
improve the predictive performance in general. Although the
exponentiated result of airline A had better performance than the
original prediction (ra = 0.77, standard error = 1.09, R?> = 0.59), the
exponentiated result for airline B showed a decreased performance
instead (rg = 0.50, standard error = 1.05, R* = 0.25).

Any NN model requires the choice of several parameters, such as
the transfer function, in what is essentially an empirical procedure
with guidelines. Although there are several manipulations between
the raw audit reports and the final prediction model, their numbers
are not excessive as some values of the parameters have to be
chosen. What we have done is to explore these parameters around
the typical values, rather than in a random manner. We selected the
parameters with the strongest predictive capability, but some
others came close in their predictions, as shown in Table 3 for
example.

4.2. Poisson regression results

For airline A, the R? of Poisson regression was 0.12 with
F(1,23) =3.03, p = 0.096. Only the standardized coefficient, beta, of
Error, Noncompliance and Condition of Operators were significant
(p < 0.05) as 10.76, 16.08 and —13.40 respectively. The R? of airline B
was negligible as 0.04 with F(1, 23) = 0.97, p = 0.33 > 0.05. No beta
value was statistically significant in the regression analysis for air-
line B. Subsequently, the results of Poisson regression method were
inadequate to establish a safety performance prediction model for
our study. Although the intent of using Poisson regression method
to predict future incident rate was unsuccessful, it provided
a standpoint demonstrating the difficulty of using linear model to
predict safety performance while comparing with the nonlinear NN
model.

In conclusion, based on the comparison of the predictive per-
formance of the NN and Poisson regression models, we not only
confirmed that nonlinear methods such as NN could possess better
predictive capability than generalized linear model, but also pro-
vided solid evidence of the causality between human error and
safety performance from a social science and quantitative per-
spective. The prediction validation of the safety forecasting model
founded on a HFJE classification framework (i.e. HFACS-MA) is
confirmed in this study with acceptable performance criteria.

5. Discussion

The major contribution of this study is to develop a prediction
model of future safety performance from past audit data from a HF/
E standpoint. Generalization and validity of a safety prediction
model is rare to find similar literature in field study (Raouf and
Dhillon, 1993; Miyagi, 2005; Shyur, 2008). Current studies are
mostly based on analysis or evaluation of the individual attributes
and systematic conditions, such as policy, climate, attitude, and
training factors (Ding and Ru, 2008), or procedures, culture and
management maturity (OGP, 2009), or age and experience
(McFadden, 2003). No real-time prediction validity has been
quantitatively confirmed thorough utilization of human factors
concepts and safety audit data. Therefore this study is a timely
validation of proactive collection of data that purports a priori to be
safety-related.

The results obtained here are encouraging as a first develop-
ment and test of HFACS-MA model for deriving valid predictors
from on-going audits. Following Cohen (1988) where the value of
correlation coefficient between 0 and 0.09 as “none”, 0.1-0.3 as
“small”, 0.3—0.5 as “moderate”, and 0.5—1.0 as “large” correlation,
for the two airlines, their safety performance were largely corre-
lated with human failures (r = 0.62 and 0.57). This is not changed
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Airine A: Future Incident Rate = 0.8129 + 0.3321*(Predicted Incident Rate)
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Fig. 3. (). Fitted regression line with 95% prediction interval for airline A. The left figure illustrates the original predictive results, and the right figure shows the exponential ones.
(b). Fitted regression line with 95% prediction interval for airline B. The left figure illustrates the original predictive results, and the right figure shows the exponential ones.

robustly after exponentiating the original output to avoid negative
prediction artifacts (r = 0.77 and 0.50 for two airlines respectively).
While any study would prefer to find very large correlations, the
ones we did find (~0.6) are encouraging for an initial field study.
We used existing independent data sets (audit and incident re-
ports) rather than being able to develop our own data collection.
Proactive data collection, for example collecting data based directly
on HFACS or HFACS-MA rather than pre-existing audit checklist or
questions, would be expected to help any predictions. However, it
would be difficult to justify such a new study without the positive
results of this study.

Before continuing, it is important to test alternative explana-
tions for these significant results. In Part 1, we showed that merely
counting audit findings did not predict future safety performance,
leading to our development of a model based on HF/E concepts
(HFACS-MA). We repeated the same analysis on our current data
using both the unweighted and weighted audit records counts. The
best results were both for the weighted data: for airline A the re-
sults were statistical significant (p < 0.01) though small with

Table 3
Prediction performance of the neural network model.
Correlation ~ Standard R? F(1,23) pvalue
error
Airline A Original 0.62 1.33 038 13.69 0.001
Exponential  0.77 1.09 059 3220 0.000
Airline B Original 0.57 0.99 032 1061 0.004
Exponential 0.50 1.05 0.25 7.34 0.013

R? = 0.172. For airline B, both analysis was not significant (p > 0.2)
and showed negligible prediction performance (best R* = 0.06).
Compared with the data analyzed by HFACS-MA and NN model
(airline A: R* = 0.38 and airline B: R*> = 0.32) in this study, the
improved prediction performance of our study is evident.

However, future safety performance could also be a mere
reflection of past performance. The prior and current monthly
safety performance levels were included in our regression model-
ing, but did not result in significant contributions to prediction. In
an attempt to determine whether there was any predictive validity
in past safety performance, we also examined the whole data
sequence for each airline. A standard method of time series analysis
used autocorrelation to determine whether the nth order autore-
gressive models apply. While first-order autoregressive models
have occasionally been used in HF/E (Drury and Corlett, 1975),
a more advanced technique known as Autoregressive Integrated
Moving Average (ARIMA) can be applied. This method uses moving
averages of the data sequence rather than raw data after differ-
encing to remove non-stationary in the data. Applying ARIMA to
each airline’s monthly safety performance data showed a first-
order autoregressive model (p = 0.01 for Airline A, p = 0.02 for
Airline B). The autoregressive equations were:

Xi,; = 029Xi+e
Xi; = 027 Xi+e

for airline A and B respectively, where X; is the current data and ¢ is
an error term. Clearly, with advanced techniques, it is possible to
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extract some predictive validity from the time sequence of safety
performance data, but the first-order autoregression coefficients
are not particularly large (0.29, 0.27) and the predictive power was
not large compared to HFACS-MA models. The conclusion from all
of these alternative analyses is that HFACS-MA model provided the
highest predictive validity. Merely using audit findings counts
(either unweighted or weighted), or time sequence properties of
the monthly safety performance data gives much less predictive
validity.

This study demonstrated that the incident rate recorded each
month could be predicted at a statistically significant, but not close
to perfect level from the independently-collected audit results.
Furthermore, that may not be the whole picture of airline safety.
Current researchers (Janic, 2000; Ding and Ru, 2008; Rose, 2008)
consider incident rate to represent only a partial view of overall
safety, one that should be integrated with other concerns. Accident
rate is another possible safety performance measure, although here
the data were (thankfully) too few to use this measure in our
analysis. Other enterprises may still have high accident rates and be
able to use accident rate. Note that here the accident/incident ratios
were similar between the two airlines despite the paucity of acci-
dent data, providing as least passing support to the traditional idea
of the “accident pyramid” concept (Heinrich, 1950; Bird, 1975).

Similarly, the audit system used in this research is only one of
many, even in aviation maintenance. Audit reports are already
available in aviation maintenance, and in other fields (Drury, 2006).
They are (or should be) based on sound error principles to find error
precursors. Although some audit systems have been developed
specifically for HF/E functions (Drury, 1990, 1999; Latorella and
Prabhu, 2000) or organizational issues, e.g. the Air Transportation
Oversight System (ATOS) of the FAA, most contemporary audit
systems still lack suitable human error taxonomies to further
investigate or analyze human failures. For aviation regulatory au-
thorities, the contribution of this study is to eliminate the ambi-
guity between human factors and audit systems and emphasize the
need for human error detection and diagnosis capability of audit
systems. Our methodology can be used to test the effectiveness of
current audit system, and improve their effectiveness. Inspectors
could potentially focus their attention and resources on precursors
of more serious problems and make appropriate alterations to their
audit schedule. As a result, it can not only assist the assignment of
limited inspection resources, but more importantly it can poten-
tially contribute to the prevention of those human errors that are
the leading factors in the lack of aviation safety.

In this study, because most of the independent variables did not
fit the assumption of the normal distribution, we used Poisson
regression as a comparison basis for the NN method. Generally,
Poisson regression modeling proved insufficient capability to
explain the causality between the error rates and the future inci-
dent rate. The NN model was expected to be better as it overcome
some challenges existed in linear methods. Here it did indeed
provide superior prediction performance to Poisson regression,
similar to other results in the aviation field (Shyur et al., 1996;
Miyagi, 2005; Shyur, 2006). We have carefully chosen the neural
network parameters based on past practice and initial testing.
The structure of our NN model is conventional (1 hidden layer
etc.) and is consistent with other studies solving the function
approximation problem (Azoff, 1994; Fausett, 1994; Shyur et al.,
1996; Ricotti and Zio, 1999; Nefti and Oussalah, 2004; Ung et al.,
2006).

This study used existing audit data as a field study in a manner
more consistent with HF principles. It is not a laboratory or simu-
lation research that we could try to control variables to focus on the
only interested topic, e.g. Fitts’ Law, and expect to represent high
percentage of total variance. From a standpoint of field study, the

performance of the NN method reached an acceptable level
(r = 0.62 and 0.57), and the values of the performance criterion R
were in a reasonable range (R?> = 0.38 and 0.32). Though this is not
a great achievement yet, in social science, we do consider it as a fair
start point of this innovative subject. We understand that the
contradictory between negative incident rates and exponential
transformation is a dilemma of this study and will be looking for
ways to solve it in our future studies. To improve the prediction
capability, ways such as using different NN model, having more
safety data, e.g. near miss reports, in the analysis pool, or adopting
other multivariate analysis techniques to adjust the amounts and
values of the predictors will be taken into account.

On the other hand, although the result showed that future
incident rate with a one-month period had the best training and
predictive performance than the ranges of two- and three-month,
the reasons behind this phenomenon are still unknown. Because
of the novelty of this subject (Note: this is our first investigation
that used historical audit data to predict future safety perfor-
mance), there might be many unexplored limitations or uncon-
sidered factors affecting the prediction range and performance.
Further studies from other airlines and regulatory authorities are
required to examine the prediction characteristics of prediction
models in the aviation maintenance field. From a practical per-
spective, although a one-month predictive range might be lesser for
safety management in long term, it could at least function as an on
time warning to MROs, as a preceding caution to responsible
managers to evoke situation awareness of specific latent failures
and to adjust the resource allocation to correct targeted problems
immediately.

For the airline industry, this study showed that a link could be
made between human error and safety performance, and provided
a potential link to practice. The study used data already collected,
a reliable taxonomy, standard weighting factors and a NN meth-
odology with no unusual features. In current practice of aviation
maintenance, data is collected independently on audits and in-
cidents, and also in some instances on errors (Taylor, 2000; Reason
and Hobbs, 2003). Modern ideas on safety are now being imple-
mented in aviation, for example the move toward safety manage-
ment system (SMS) being advocated and indeed mandated by the
International Civil Aviation Organization (ICAO) in the Annex 6. It is
noted that currently the corresponding SMS regulations in North
America (FAA and Transport Canada) and Europe (EASA) are still in
the rulemaking process.

The idea behind an SMS is that data from various sources need to
be integrated to provide a comprehensive view of the safety of the
system, leading to actions based on more than mere response to the
latest audit or incident (ICAO, 2009). Here we have shown that
future safety can be predicted proactively, but only for two airlines,
only for maintenance activities and only using existing data from
a single regulatory authority. A negative result would have sug-
gested a change in research direction, but the positive result im-
plies that generality be deliberately extended to other authorities,
airlines and data collection instruments. Some of this extension is
quite straightforward, as much archival data exists, although not
always easily available to researchers. Other aspect of extension
may not be so obvious, for example testing the predictive power of
specific aspect of the HFACS-MA system, or providing better audit
systems that give sufficient details of the factors behind the “sharp
end” of the person carrying out a task being audited. Part 1 of this
study noted that better audit data was needed on supervisory and
management factors. Such data can presumably be obtained by
better audit instruments and training of auditors. Finally, exten-
sions of the findings to domains beyond aviation maintenance, and
indeed beyond aviation, are also appropriate as many industries
use audits as the basis for their proactive safety activities.
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Reason (1990) proposed that “accuracy of error prediction de-
pends very largely on the extent to which the factors giving rise to
the errors are understood”, and this was exactly what this study has
shown.

6. Conclusion

This is the first validation of audit reports against a widely
accepted outcome measure of safety, because most human factors
audits have either not been validated or validated against expert
opinion. HFACS-MA categorization is the basis for the prediction,
and is shown to produce superior prediction performance than
either counting audit findings or relying on past safety perfor-
mance. HFACS-MA model was tested for reliability in Part 1 of this
study and, based on adequate reliability, was proven valid for
predicting monthly safety performance for two airlines. This pre-
dictive ability was shown for existing data collected by a regulatory
authority, demonstrating that even current data collection methods
can be used. However, improved audit data collection could
potentially benefit future research and the integration of disparate
safety data into a Safety Management System.

The outcome of this study not only facilitates the application of
human factors concepts in aviation maintenance systems, but also
demonstrates the potential for audit validation in other safety
fields, e.g. chemical and nuclear power industries, which also
conduct internal and external safety audits.
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