
Innovations Syst Softw Eng (2007) 3:117–128
DOI 10.1007/s11334-007-0021-4

ORIGINAL PAPER

An intelligent system for automatic layout routing
in aerospace design

Christian Van der Velden · Cees Bil · Xinghuo Yu ·
Adrian Smith

Received: 30 May 2006 / Accepted: 1 February 2007 / Published online: 8 May 2007
© Springer-Verlag London Limited 2007

Abstract This paper discusses the development of an
intelligent routing system for automating design of electrical
wiring harnesses and pipes in aircraft. The system employs
knowledge based engineering (KBE) methods and technol-
ogies for capturing and implementing rules and engineering
knowledge relating to the routing process. The system reads
a mesh of three dimensional structure and obstacles falling
within a given search space and connects source and target
terminals satisfying a knowledge base of design rules and best
practices. Routed paths are output as computer aided design
(CAD) readable geometry, and a finite element (FE) mesh
consisting of geometry, routed paths and a knowledge layer
providing detail of the rules and knowledge implemented in
the process. Use of this intelligent routing system provides
structure to the routing design process and has potential to
deliver significant savings in time and cost.

C. Van der Velden (B) · C. Bil
School of Aerospace Mechanical and Manufacturing Engineering,
RMIT University, Melbourne, VIC, Australia
e-mail: S2108846@student.rmit.edu.au
URL: http://www.rmit.edu.au

C. Bil
e-mail: cees.bil@rmit.edu.au
URL: http://www.rmit.edu.au

X. Yu
School of Electrical and Computer Engineering, RMIT University,
Melbourne, VIC, Australia
e-mail: x.yu@rmit.edu.au
URL: http://www.eng.rmit.edu.au/∼xinghuo

A. Smith
GKN Aerospace Engineering Services Pty Ltd,
Melbourne, VIC, Australia
e-mail: adrian.smith@au.gknaerospace.com
URL: http://www.ukes.aerospace.gknplc.com/aesinternet/
australia.html

Keywords Intelligent systems · Knowledge based
engineering · Routing · Computer aided design (CAD) ·
Design automation

1 Introduction

The aerospace engineering environment is becoming increas-
ingly connected with new technologies enabling concurrent
engineering to be common practice within engineering com-
panies around the world. Complex programs are often con-
ducted 24 h a day, spanning multiple sites and time zones with
models and data passed on several times a day. Design, analy-
sis and manufacturing technologies including CAD software
for generating geometry, computer aided engineering (CAE)
software for analysis, and computer aided manufacturing
(CAM) software for automated manufacturing are evolving
with advances in computer hardware and software. These
technological improvements have shifted the distribution of
workload between design and analysis engineers in the aero-
space engineering environment from about 4:1 in the 1980s,
to about 1:2 in today [26]. However, despite the technologies
enabling these practices, limited communication between
teams working in different locations can lead to difficulties
in understanding the rationale behind particular design deci-
sions made by engineers working offsite. New challenges are
also faced in effectively managing ever increasing volumes
of data and engineering knowledge.

Knowledge based engineering (KBE) is a branch of engi-
neering concerned with capturing rules and knowledge relat-
ing to processes in the engineering of a product or system,
and implementing the knowledge in software systems called
knowledge based systems (KBSs) that emulate human deci-
sion making and automate processes. Use of KBE method-
ologies and technologies provides a structured approach to

123

118 C. Van der Velden et al.

design [4]. Output applications from KBE processes facili-
tate design automation, verification, and integration.

Traditionally, KBE has been closely coupled with geomet-
ric modelling in CAD environments, allowing geometry to
be rapidly created using sets of rules describing steps in the
process. However, competitive advantage can be gained by
extending KBS capability to reflect the current environment
by linking and integrating design and analysis processes by
building links between the tools used to carry out the work.

This paper outlines the current progress in a research pro-
ject involving development of an intelligent routing system
which will be used for automating design of electrical wiring
harnesses and hydraulic and pneumatic piping among other
routing applications. The software outputs a CAD model and
finite element (FE) mesh of a path connecting source and
target points through three dimensional structure and other
obstacles, while satisfying design rules and best practices.
The routing system integrates two common engineering soft-
ware tools: CAD for drawing three dimensional models and
CAE for analysis, together with a computer aided problem
solver constructed for the routing problem.

2 Problem background

The placement of electrical wiring harnesses in aircraft is
governed by numerous regulatory and functional design rules
which must be satisfied for certification. Electrical wiring
looms can be comprised of thousands of cables and are gener-
ally manually routed by engineers using personal knowledge
and experience to determine path placement. CAD software
tools are used to assist the engineer in adding detail to a
path, but the actual route taken by a harness is determined
manually. This process is highly repetitive and is difficult to
find optimum solutions. In addition, electrical wiring design
often proceeds in parallel with principle structural design and
is subject to changes in structure that occur with subsequent
design iterations, requiring time consuming rework for any
harnesses affected. In a similar way, hydraulic and pneu-
matic pipes in aircraft are manually routed and are governed
by different set of design rules. The repetitive, rule-governed
nature of the routing process makes it a prime candidate for
application to a KBS.

Figure 1 shows an example of a complicated loom con-
sisting of electrical harnesses and hydraulic and pneumatic
piping in an internal payload storage area of the F-35 Joint
Strike Fighter (JSF).

3 Related work

This section provides a brief background of relevant work
in the areas of intelligent system development and routing
technologies and methodologies.

Fig. 1 Example electrical wiring and pipe loom in weapons bay of
F-35 JSF [5]

3.1 Intelligent systems

Artificially intelligent systems such as knowledge based,
expert and fuzzy systems are used across a wide range of
problem domains and industries to deliver design automation
and validation, control of industrial processes and numerous
other tasks. These systems vary in complexity from simple
procedural systems that automate well defined engineering
tasks, to higher level systems which use reasoning and seman-
tics to emulate human thought and problem solving pro-
cesses. The major activities of the KBS development cycle
include the following:

3.1.1 Knowledge acquisition (KA)

In order for outputs of a KBS to be relevant and useful, it must
take into account all applicable knowledge involved in per-
forming the task manually. This requires collecting problem
domain knowledge and remains one of the significant chal-
lenges in the successful implementation of KBSs. Domain
knowledge may be explicit or tacit in nature. Explicit knowl-
edge is often procedural and is relatively straightforward to
collect, interpret and represent in a software system. The
main challenge lies in collecting tacit knowledge which is
generally not well defined and most often lies in the minds
of experienced engineers. A large amount of literature has

123

An intelligent system for automatic layout routing in aerospace design 119

been published on the subject of KA. A quick search on the
internet will yield hundreds of papers, a small selection of
which is given in the references section [7–9,20,30].

3.1.2 Knowledge modelling (KM)

Following the KA phase, collected knowledge must be mod-
elled and represented in the system. KM is a discipline itself
with numerous methodologies described including
CommonKADS [26] and object-modelling technique (OMT)
(Rambaugh et al., 1991). These methods use Universal Mod-
elling Language (UML) and object-oriented (OO) techniques
including class, activity and state diagrams, and principles of
inheritance, association and abstraction. In these methodol-
ogies, knowledge is treated as a set of objects sorted into cat-
egories, each with various properties and interrelationships
describing the problem domain. Rules are then formulated
based on this knowledge and implemented as “IF {condi-
tion}, THEN {statement}” rules. Resources and courses in
KM can be found freely available on the internet.

3.1.3 KBS development

The desired scope of a KBS must be clearly defined at the
beginning of application development. The detail and com-
plexity delivered by KBSs can vary widely and can be divided
into four categories [3]:

• Automation of narrow tasks. Includes automating rudi-
mentary tasks such as drawing tools used for building
digital models (e.g., lines, circles, etc.).

• Automation of model and data abstraction. Provides
higher level operations which can be performed on the
former which add detail, or knowledge, to the product
[e.g., geometry operations such as mid-surface extrac-
tion and defeaturing tools, and programming tools such
as application programming interfaces (API‘s)].

• Automation of a documented design process. Automates
a complete engineering task consisting of a number of
lower level tasks covered by either of the first two lev-
els into a single process where the user specifies critical
parameters.

• Discovering solutions to unique problems. Applies rea-
soning, or semantics, from a library of multidisciplin-
ary knowledge and experience of varying types to solve
new problems situations occurring within the domain of
knowledge.

3.1.4 KBS integration, test and evaluation and ongoing
support

Following the development of KBS, the application must be
integrated into the organisational working environment and

thoroughly tested. Software systems also need to be main-
tained in terms of knowledge content and compatibility with
various operating system platforms.

The intelligent-CAD (ICAD) system, developed by
Knowledge Technologies International (KTI) (now owned by
Dassault Systemes), was a popular software environment for
building KBS applications from the late 1980s to early 2000s.
The ICAD system was based on the LISP programming lan-
guage and enabled development of systems for automation of
design and manufacturing data. Numerous engineering com-
panies including BAe Systems, Boeing, Airbus, and Jaguar,
among many others, have utilized the system for rapid proto-
typing, concept evaluation, and component design and man-
ufacture [4]. Applications developed using this technology
typically aim to minimise design decisions, often through
the specification of handful of input parameters necessary to
generate a complete design. Over recent years, support for
the ICAD system by the parent company has gradually been
withdrawn and its use in industry has diminished.

MOKA is another framework for developing knowledge
based systems. It consists of a suite of tools and methods
which provide structure to the development process, cov-
ering all stages of the KBS development process [2]. The
MOKA Website gives good information on this system and
has links to other frameworks and projects in the area of KBE
(http://www.kbe.coventry.ac.uk/moka/).

Other technologies such as Dassault Systemes’ Knowl-
edgeware, which is built into the CATIA design system,
assist designers in capturing and reapplying knowledge for
automating design of similar products, and linking product
knowledge such that changes in one component are reflected
in affected parts (Dassault Systemes Website, 2006).

3.2 Routing

The routing problem is commonly encountered in numerous
fields ranging from electronics, navigation systems, artifi-
cial intelligence (AI), and data flow in computer networks.
Examples include design of printed circuit boards (PCBs),
very large scale integrated (VLSI) circuits, global position-
ing system (GPS) navigation, computer games, and robot AI.

Methods and tools used for VLSI routing automation pro-
vide a good starting point for addressing electrical loom and
pipe design problems in aerospace vehicles. Computer pro-
cessors consist of millions of logic components intercon-
nected using very fine wires within a very small space. Early
algorithms for circuit design were based on a multi-layered
two dimensional approach with one of the objectives to min-
imise the number of layers due to limitations in component
manufacturing. Improvements in technologies and manufac-
turing process for electrical components have increased the
number of layers that can be used, leading to a reduction in

123

120 C. Van der Velden et al.

chip size. However, VLSI routing automation is still not a
completely three dimensional problem.

In general, once physical component layout is defined and
routing requirements given, usually in the form of a netlist
of pins to be connected, the routing process consists of four
main steps [10]:

• Region definition: problem is divided into smaller routing
problems.

• Global routing: planning phase which assesses and pri-
oritises nets to maximize completion rate (proportion of
solvable nets), and minimize total path length, especially
for critical nets.

• Region ordering: determines order in which regions are
routed to avoid congestion.

• Detailed routing: determines the exact path taken by wires
including layers and connecting contacts.

Many algorithms have been developed for the VLSI routing
task for both global and detailed routing. One of the earliest
works in this area is Lee’s breadth-first maze algorithm [18].
This algorithm uses a grid based representation of the search
area with walls, paths, and source and target terminals. The
search proceeds by propagating a wave from source and/or
target terminals, and assigns values to each node depend-
ing on distance from the source or target. A backtracking
phase then determines the shortest path between the two ter-
minals. Fig. 2 shows a simple two dimensional maze with a
source and target terminal (denoted S and T , respectively)
the numbers in each node of the maze represent the shortest
rectangular distance to the target. This algorithm is popu-
lar due to its simplicity and ability to guarantee the shortest
path for a single net. However, several limitations make it
unsuitable for use in real world problems, including its low
efficiency (O(d2) for two dimensions and O(d3) for three
dimensions), and sensitivity to net ordering, making optimal
solutions very difficult or impossible to find. Also, due to the
breadth-first search technique employed, the search proceeds
equally in all directions until the target is found, leading to
high memory requirements and long run times. These limita-
tions and the complexity of the VLSI routing problem make

Fig. 2 Maze routing algorithm

Lee’s maze algorithm unsuitable for most realistic routing
problems. Instead, powerful heuristics are employed which
can find near optimal solutions for problems with a large
number of nets.

Numerous algorithms have been developed which extend
Lee’s basic principles employing intelligent searching tech-
niques including depth-first, best first and greedy search-
ing. Examples include Soukup’s algorithm which attempts
to route multiple connections at once [28], and Hadlock’s
algorithm with adds penalties for deviations away from the
ideal (no obstacle) path from source to target [10]. Other
examples include channel and switchbox routers which place
horizontal segments on one layer and vertical segments on
an adjacent layer connected by contacts called vias [12,36],
line routers such as Hightower’s algorithm [13], as well as
gridless techniques [6]. Much literature has been published
on these subjects and can be found in the references.

The A* (A Star) algorithm is an example of a grid based
path finder which extends Lee’s maze algorithm. It is used
extensively in computer game navigation and is of interest
when considering a rule based routing system. A* employs
best-first search techniques, leading to a more direct search.
In A* the following cost function is evaluated for each node
searched:

f (n) = g(n) + h(n) (1)

where f (n) is the estimated node cost, g(n) is distance from
the source and h(n) is the estimated cost to the goal using
a heuristic. The algorithm favours nodes with a lower f (n)

score. The algorithm is optimal and complete provided that
the function which calculates h(n) is an “admissible” heuris-
tic, meaning that it does not over-estimate the distance to the
target [24]. Fig. 3 shows the F , G, and H terms evaluated
at each node of simple maze, and a shaded path connecting
source and target terminals S and T .

Intelligent system approaches to the routing problem have
also been developed. Previous works in the area of intel-
ligent path finding have been predominantly in the area of

Fig. 3 A* algorithm

123

An intelligent system for automatic layout routing in aerospace design 121

automated electronic component design including integrated
circuits and printed circuit boards. One example is an expert
system for the VLSI channel routing problem described
above [32]. This system identifies several metrics for measur-
ing routing performance and has an “expert” module contain-
ing the applicable knowledge and rules for addressing each,
located around a central problem space termed a “black-
board”. As the solution progresses, the various experts are
consulted. A second example is a knowledge-based rout-
ing system for VLSI channel and switchbox problems called
WEAVER [14], which has a similar system architecture to the
previous example. Because the number of nets to be routed in
a VLSI problem is so large, any manual design work is very
time consuming. Thus one of the key metrics for evaluating
results is the completion rate, or proportion of nets solved.

An expert system for automation of pipe routing design in
ships has also been described [17]. Main aims of the system
are to minimise user decisions, provide a user friendly envi-
ronment, and provide simple methods for editing the knowl-
edge base. The system consists of a standard expert system
shell with knowledge modelled using the OMT method men-
tioned above, a CAD software package, and a solving appli-
cation, which interfaces using API functions built into to the
software components.

4 Project details

This project is a collaborative research and development
effort between RMIT University and GKN Aerospace Engi-
neering Services Pty. Ltd., both based in Melbourne,
Australia. Funding for a three year PhD scholarship was pro-
vided by the Australian Research Council. The project began
in Early 2005 and will conclude at the end of 2007.

The main objective of the project was to build up a capabil-
ity for knowledge based system development by creating an
intelligent system for routing automation. More specifically,
the project aimed to develop engineering tools and methods
that partially or fully automate the design of system runs
through existing structure. Ideally the output would be CAD
geometry describing the system path. Wherever possible the
system was to implement well established technology exist-
ing in other industries including intelligent algorithms from
VLSI and computer game path finding applications, CAD
interfacing techniques, and knowledge based and expert sys-
tem architectures.

5 System structure

This section describes the current configuration of a KBS
for three dimensional routing in aerospace vehicles. Appli-
cations of the system include electrical wiring and hydraulic/

pneumatic piping design. The system reads model data
together with source and target terminal locations and solves
the routing problem, satisfying constraints. Wire/pipe geom-
etry and other information required to describe the system
path is output as CAD geometry and an FE model. The rout-
ing system is comprised of five layers, which are classified
as either human interface or system layers (Fig. 4).

The interface layers include an input and editor layer. The
input layer interfaces with users of the system and is used
for defining specific cases of a routing problem, including
terminals to be connected and a set of rules to be followed
(e.g., electrical, hydraulic, pneumatic, etc.). The user passes a
CAD model of existing structure and obstacles such as equip-
ment and subsystems to the system, which in turn is meshed
using FE pre-processor software (e.g., HyperMesh). The edi-
tor layer interfaces with the domain expert and knowledge
engineer who interpret design rules and best practices in the
form of “IF {condition}, THEN {statement}” rules. These
are stored in external libraries and are accessed by system
layers.

The system layers consist of a data layer, problem solving
layer, and results layer. The data layer stores both case spe-
cific data (models and requirements), and rules sets divided
into libraries for different routing applications. This layer is
separate from the problem solving component of the sys-
tem to maximize flexibility and reduce rework in adding or
changing design rules. The problem solving layer consists
of an applet which interprets model and requirements data,
a solving algorithm, and an inference engine that accesses
the rule base as necessary to satisfy applicable design con-
straints. The output layer writes results in two formats, one
read directly into CAD software which can be used as a spine
for drawing tools to add detail, and the other is an FE model
which consists of several components describing geometry
and rules accessed and intent taken at each point along the
routed path. Each of the five layers will be described in detail
in the following sections.

Steps in the routing system design process are summar-
ised in the following flowchart in Fig. 5. Firstly, physical
structure is designed and modelled by structural engineers
using CAD software. Electrical or piping requirements are
defined in terms of start and finish locations and other rele-
vant characteristics such as diameter, category of load, etc.
The three-dimensional CAD model is exported using a neu-
tral file format. The CAD model is converted to a discrete
format suitable for applying a grid-based search algorithm.
The discrete data set is extracted and input into the maze
algorithm which determines paths for each set of source and
target terminals, adhering to constraints stored in the knowl-
edge library. The library module is interchangeable for differ-
ent routing applications, not necessarily limited to aircraft.
After completion of the path finding process, the output path
is converted to wireframe geometry, which is imported into a

123

122 C. Van der Velden et al.

Fig. 4 Knowledge based router
system structure

CAD package and detail added according to the knowledge
base consulted in the process.

6 Editor layer

The editor layer is the main interface for domain experts to
impart knowledge to the system. As mentioned previously,
design of electrical wiring systems for aircraft is a com-
plex task with hundreds of rules and best practices which
must be satisfied. Currently there is no section of the Federal
Airworthiness Requirements for transport category aircraft
(FAR-25) dedicated to wiring design practices. Instead, a
number of sections briefly touch on the subject including
25.1301/1309, 25.1529, 25.1353, 25.869, AC 43.13-1b, AC
25-16, AC 25-10, and policy memos [25]. Engineers must
then search though a large amount of data to single out rules
applicable to wiring and monitor amendments made by gov-
erning bodies. A different set of rules applies for military air-
craft, contained in MIL-W-5088L: Military Specification—
Wiring, Aerospace Vehicle. The following, obtained from

civil and military airworthiness requirements (FAR-25 and
MIL-W-5088L), lists just some areas of consideration when
designing electrical wiring systems:

• Electrical loads • Grounding and bonding
• Bend radii • Conduits and insulation
• Breaker/wire sizing • Connectors
• Clamping • Unused wiring/slack
• Separations and • Riding on structure/other

terminations wires
• Passing through • Documentation

lightening holes

The system contains some simple predefined rules, as well
as a rule editor which consists of a Windows form with sim-
ple controls for entering rule conditions and actions. Families
of rules can be exported in separate libraries. Rules currently
supported by the system include

• Path profile
• Bend radii
• Clamping rules

123

An intelligent system for automatic layout routing in aerospace design 123

Fig. 5 Routing procedure

• Attract and repel rules (discussed in section on routing
algorithm below). Includes EMS rules, conforming to
walls and other types of structure, conforming to routed
paths.

7 Input layer

The input layer is the main interface for users of the rout-
ing system. When the routing software is executed, the user
defines the required search space and import options such
as mesh size and element type, and imports the model for
solving. Source and target locations can be defined in the
model itself and interpreted by the solver, or by typing in the
coordinates of these points in x , y, z form. Applicable rules
are selected (e.g., electrical design, hydraulic pipe design,
fuel line design, etc.). Several export options are available
relating to output visualisation.

Properties for individual routing problems can be saved,
allowing these settings to be retained in the event that geom-
etry is altered. Multiple jobs can be built up into sessions,

allowing many runs through the structure to be made
without user input.

8 Data layer

The data layer stores both case data and rule libraries. Case
data consists of inputs from the user, including the model and
set of nodes to be connected, as well as a list of rules to be
applied. This data are stored in simple XML tree files and
can be saved/read by the system. Knowledge is represented
in the system using rule libraries and fuzzy rule sets. Whereas
many KBSs have rules hard-coded into the software, the rule
bases for the intelligent routing system are maintained sepa-
rately from the system core, allowing knowledge to be added
and amended without rebuilding the entire application. Rules
are implemented as “IF. . ., THEN. . .” statements which use
local search functions to determine structure and other obsta-
cles with which to interact.

Rule libraries are stored in a comma separated format and
are described by several attributes including: cell type which
is the subject of the rule, condition for rule to be applied and
action to be taken. The rule library can contain multiple rules
and the solver loops through these where applicable.

9 Problem solving layer

9.1 Reading model data

A grid-based algorithm was selected to perform the path find-
ing task, requiring the continuous three dimensional model
of surrounding structure and obstacles to be converted to a
discrete form. A FE modelling approach is used for this pro-
cess which is common practice in the engineering process for
analysing the response of structures to loading. This method
takes advantage of existing knowledge and tools. A solid
mesh of structure and obstacles is generated using automatic
meshing tools in a FE pre-processor software package. The
meshes of various components which fall within the search
space can either be exported as a single model or as separate
components, allowing rules to be applied to each component
independently. Mesh coarseness can be varied depending on
accuracy required.

The routing software reads and arranges the FE mesh into
a three dimensional maze object consisting of a regular grid
with each cell described by an x, y, z integer address and cell
type (e.g., empty space, wall, start location, finish location,
routed path, excluded zone, etc.). The format of the maze
object makes it easily navigated by the solving algorithm
described below. The main drawback of this method is the
high mesh fineness required to get a good representation of
the geometry without missing data.

123

124 C. Van der Velden et al.

Given that aircraft typically undergo numerous design
upgrades throughout their service life, the system can rec-
ognise previously routed wire harness or pipe paths and rep-
resent them accordingly in the maze. This allows additional
cables or pipes to interact with existing routed systems.

9.2 Routing algorithm

The algorithm used by the routing system extends the A*
algorithm described above to three dimensions, whereas most
VLSI routing algorithms are based on a multilayered two
dimensional approach. The algorithm also extends the score
function, adding extra terms for rules implemented from the
knowledge base:

f (n) = g(n) + h(n) + i(n) + j(n) + · · · (2)

These extra terms act to increase or decrease the total path
score for nodes falling within rule areas of influence, thus
shifting the path direction. For example, a rule i(n) might
specify that if there is a routed path in the search space,
to follow that as closely as possible to reduce the amount of
clamping required for the new path. Such a rule will typically
be described by a weighting to apply to the cost function, a
radius of influence, and a decay rate such that nodes closer to
path nodes will have higher influence on the i(n) term. The
function to calculate i(n) is given in Eq. (3), where W is rule
weighting, T is distance of rule target cell, and D is decay
rate. A node which is two nodes away from a path node will
have a lower i(n) value than one immediately adjacent due
to the decay rate:

i(n) = W × (1 − (T − 1) × D) (3)

Thus nodes closer to the previously routed path will, have
a lower f (n) score due to the influence of the i(n) term,
causing the algorithm to head in that direction. Similar rules
could be made for particular nets with electro-magnetic sen-
sitivities (EMS) whereby particular category wires must not
lie within a given radius of another wire type. In this case the
additional terms in the algorithm would increase the f (n)

value, causing the algorithm to search away from the repel-
ling wire.

The algorithm supports routing of multiple nets within
same search space, and routing of multi-terminal nets which
have more than one target location. In the later case, the sys-
tem finds the path between two terminals first and connects
additional terminals to the original path.

10 Output layer

Resultant paths from the routing process are output using a
neutral CAD format called IGES (initial graphics exchange
Specification). A wireframe representation of the path includ-
ing straight lines and curves is written by the router and can
be read directly by most modern CAD packages. The path is
imported into the existing assembly of structure and subsys-
tems. Actions are then performed on the wireframe geometry,
adding detail necessary for a complete digital representation
of the routed part (e.g., extruding a profile along the path).

As mentioned previously, difficulties in understanding the
rational behind design decisions made by others can occur
due to a lack of communication. For example, consider a
harness which must be routed past an obstacle which can
take one of two paths, an upper path or a lower path—both
with equal merit (Fig. 6, left). An engineer using their own
knowledge and experience selects the top path due to per-
sonal preference. This is acceptable since the two paths have
the same cost, however, the reasoning behind this decision
is not documented. Suppose an additional component is to
be placed on the upper side of the existing obstacle by an
engineer who has no knowledge of the routing process. The
engineer would face a conflict between the routed harness
and placement of the new part. In this case the conflict could
be easily resolved by moving the harness to the lower side of
the obstacle Fig. 6, right). However this may not be immedi-
ately clear to the designer, and would require time to resolve.
This and similar conflicts could be avoided through imple-
menting methods of communicating the knowledge used in
the process.

It is therefore important for intelligent systems to not only
implement knowledge in design automation, but communi-
cate the knowledge used allowing designers to understand

Fig. 6 Example of conflict resolution

123

An intelligent system for automatic layout routing in aerospace design 125

limitations of the process and room to alter the design as
necessary.

To this end, results from the routing process are also output
as an FE mesh containing physical geometry, routed paths
and a knowledge layer. Physical geometry includes walls
and other entities encountered in the search space and are
represented using three dimensional hexahedral elements.
Routed paths are displayed in wireframe and are defined by
one dimensional bar elements. The knowledge layer provides
details of the methods used in the routing process including
rules accessed and their influence on the routed path, as well
as a three dimensional map of the area searched by the algo-
rithm. Examples from both output methods are given in the
following section.

11 Results

This section describes the complete process for the auto-
mated design of routed paths using the intelligent routing
software. Five key stages in the design process are described
with accompanying screen captures of a test case. The test
case is an internal payload storage area of a modern fighter
aircraft similar to that shown in Fig. 1.

11.1 Step 1: Structural design

At this point the user will have a CAD model of structure to
be traversed and any equipment or obstacles that fall within
the search space (Fig. 7). Source and target terminal locations
are defined using point objects. In most cases the search area
consists of an assembly containing multiple parts such as
structure, subsystems, etc. Multiple parts can be imported
into the solver with each defined uniquely, allowing rules
to be applied independently to each. Geometry is exported

using a format readable by CAE software in as many sec-
tions as necessary to describe the model in terms of applying
rules which will result in a valid path. In this example these
sections include the following: principle structure, sample
payload and subsystems. Three paths are to be routed within
the search space with points for source and target terminals
defined.

11.2 Step 2: Discretising geometry

This second stage involves converting the continuous model
geometry to a discrete form, using FE meshing software.
Model sections output from CAD software are imported into
the CAE meshing software and are individually meshed using
automatic meshing tools (Fig. 8). Nodes are created at the
previously defined source and target terminal locations and
entity sets are created for each. In this example, principle
structure, payload and subsystems are meshed and exported
independently.

11.3 Step 3: Path finding

The third stage involves use of the intelligent routing soft-
ware. The software runs on Windows 2000 or higher plat-
forms with Microsoft .NET framework version 1.1. The
application itself uses a Windows form interface and is largely
mouse operated. A series of tab pages guide the user in setting
up the model for routing (Fig. 9). User inputs include:

• Search space—define dimensions of search area (length,
width, height), and coordinate system.

• Import options—specify FE mesh to import, element size
and type, and cell type to fill.

• Rule sets—select from set of standard rules, or use rule
editor to create custom rules.

Fig. 7 Step 1: generating
geometry

123

126 C. Van der Velden et al.

Fig. 8 Step 2: meshing geometry

• Solver options—define solver type, directions to search,
and multi-net or multi-terminal routing.

• Export options—select layers to be displayed in FE out-
put.

Property files containing all user inputs can be written, allow-
ing simulations to be repeated, in the case of changes in
geometry or similar routing jobs. Multiple property files can
be built into sessions, allowing multiple routing jobs to be
run without user input. When the routing job is solved, a
simplified preview of the resultant path can be viewed within
the routing software, to be used as a quick check for identi-
fying a satisfactory output. Results are exported as an IGES
model containing path geometry, and FE model containing
geometry, routed paths, and design knowledge.

The meshes of model sections are imported into the maze
object, with each defined by a different cell type. Principle
structure is defined as walls, sample payload as a no-go zone,
and subsystems as a different cell type. Rules can then be
applied to the different cell types. In this case a rule for con-
forming to walls, and a rule conforming to previously routed
paths are applied.

11.4 Step 4: Viewing results

The FE output is imported into the CAE meshing software for
viewing results. The output for the test case is shown below
(Fig. 10, left). The regular grid used in the maze object can
be seen, with three geometry sections (structure, payload and
subsystems) represented by cube elements. The three routed
paths are represented in wireframe by line elements. The
knowledge layer consists of cube elements which follow the
routed paths. These elements are colour coded depending on
the rules accessed to determine each path step. The output
also shows a map of nodes searched and the areas of structure
where the wall attract rule was used (Fig. 10, right).

11.5 Step 5: Adding Detail

The second output from the routing software is a wireframe
IGES model of the path. This is imported into the CAD
model and detail added. In this case a circular profile is
extruded along the length of the routed paths and is incor-
porated into the existing model of structure, payload and
subsystems (Fig. 11).

In its current configuration, the system successfully dem-
onstrates knowledge based and path finding concepts. The
quality of routed paths for a number of test cases has been
examined and was found to be very good, with several rules

Fig. 9 Step 3: Routing software

123

An intelligent system for automatic layout routing in aerospace design 127

Fig. 10 Step 4: FE output

Fig. 11 Step 4: IGES output

successfully implemented. At this stage in system develop-
ment, rule parameters are based on estimates rather than
domain specific data, making it difficult to compare results
directly with manually routed paths. Despite this, the behav-
iour of the path finding algorithm, demonstrated by the geom-
etry of routed paths, was found to be effective. In the above
example, two rules were implemented specifying that walls
and routed paths should be followed closely. Both rules were
validated, with the path not deviating from the structure by
more than the specified rule radius of effect, and follow-
ing routed paths until separation was necessary to reach the
target.

System performance in terms of run time for large models
(approx 3 million nodes) was in the order of 10 to 15 minutes,
running on a PC with average specifications.

The system will be developed further by improving the
knowledge base and rule inferencing process which will
enhance the output to a point where resultant paths are to
an acceptable standard for certification. The knowledge base
will be extended by modelling knowledge contained in

guidelines. Implementation of knowledge throughout the
solution process will be enhanced by integrating an expert
system shell to better manage rule inferencing.

12 Conclusion

Discussed in this paper was development of an intelligent
routing system which uses knowledge based techniques for
management of engineering knowledge including acquisi-
tion, modelling and implementation. The resulting system
successfully routes paths through a three dimensional maze
constructed from a FE mesh of obstacles within a set solution
space. The system architecture was described by its princi-
ple components including: input layer for system users, editor
layer for domain experts, data layer for knowledge modelling
and representation, problem solving layer, and output layer.
The system delivers a CAD-readable representation of path
geometry and a FE mesh containing geometry and knowl-
edge accessed during the routing process. An easily updated

123

128 C. Van der Velden et al.

knowledge base provides flexibility to implement new rout-
ing methods and rules, allowing the system to be applied to
new problem domains (e.g., air conditioner ducting). The sys-
tem performed well in routing a number of test cases, satisfy-
ing all design rules and constraints. Output quality of routed
paths in terms of relevance to particular problem domains
will be improved with addition of more detailed domain spe-
cific knowledge to the knowledge base, implementation of
new types of rules, and improvements to the intelligent rule
inferencing process. The ultimate, and achievable, aim of the
system is to output routed paths of similar quality to those
designed manually by a human expert, in a shorter time span.

References

1. Arnold MH, Scott WS (1988) An interactive maze router with
hints. Lawrence Liver-more National Laboratory, University of
California

2. Brimble R, Oldham K, Callot M, Murton A (1999) MOKA: a meth-
odology for developing KBE applications. In: Proceedings of the
8th European conference on product data technology, Norway

3. Brown DH, and Associates (2006) Knowledge-based engineering
systems: applying discipline and technology for competitive
advantage. Gardner Publications, USA. http://www.mmsonline.
com/articles/0600sup.html. Online May 2006

4. Cooper S, Fan I, Li G (2001) Achieving competitive advantage
through knowledge-based engineering. Department of Enterprise
Integration, Cranfield University

5. F-35 Joint Strike Fighter Official homepage. http://www.jsf.mil.
Online October 2006

6. Finch AC, Mackenzie KJ, Balsdon GJ, Symonds G (1985) A
method for gridless routing of printed circuit boards. In: Proceed-
ings of the 22nd Conference on Design Automation

7. Gil Y, Kim J (1999) Deriving expectations to guide knowledge base
creation. In: Proceedings of the sixteenth National Conference on
Artificial Intelligence

8. Gil Y, Paris C (1994) Towards method-independent knowledge
Acquisition. In: Knowledge acquisition special issue: the inte-
gration of machine learning and knowledge acquisition vol 6.
pp 163–178

9. Gil Y, Blythe J, Kim J, Ramachandran S (2001) An integrated envi-
ronment for knowledge acquisition. In: International conference on
intelligent user interfaces

10. Groeneveld P (2005) Electronic design automation, Part 1. Tech-
nische Universiteit Eindhoven, The Netherlands

11. Guruswamyl M, Wong DF (1991) A General Multi-layer Area
Router. Department of Electrical and Computer Engineering, The
University of Texas at Austin

12. Hamachi GT, Ousterhout JK (1984) A switchbox router with obsta-
cle avoidance. In: Proceedings of the 21st Conference on Design
Automation IEEE Press

13. Hightower DW (1969) A solution to line-routing problems on the
continuous Plane. In: Proceedings of the Sixth Annual Design
Automation Workshop

14. Joobbani R, Siewiorek DP (1985) WEAVER: A knowledge-based
routing expert. Department of Electrical and Computer Engineer-
ing, Carnegie-Mellon University

15. Junghanns A, Klein R, (2000) Using search in knowledge-based
engineering. In: Proceedings of ECAI-00, Germany

16. Kaas E The NGRAIN technology difference explained a whitepa-
per for technical evaluators of visualization and simulation tech-
nologies. NGRAIN Corporation. Vancouver, Canada

17. Kang S-S, Myung S, Han S-H (1999) A design expert system for
auto-routing of ship pipes. J Ship Product

18. Lee CY (1961) An algorithm for path connections and its applica-
tions. IRE Trans Electron Comput EC-10(2)

19. Lester P (2006) A* pathfinding for beginners. Almanac of policy
issues website. http://www.policyalmanac.org/games/aStarTutori-
al.htm. Online May 2006

20. Lieu YI (1990) Knowledge acquisition: issues, techniques, and
methodology. In: Proceedings of the 1990 ACM SIGBDP Confer-
ence on Trends and Directions in Expert Systems

21. Lunow RE (1988) A channelless, multilayer router. Lawrence
Livamore National Laboratory, California

22. MIL-W-5088L: Military specification—wiring, aerospace vehicle.
Department of Defense, United Stat. 10 May 1991

23. Moosa Z, Edwards D (1995) An investigation of iterative rout-
ing algorithms. Department of Computer Science, University of
Manchester

24. Russel R, Norvig P (2003) Artificial Intelligence a Modern
Approach, 2nd edn. Prentice Hall, Englewood Cliffs

25. Sadeghi M (2003) Electrical wiring practices. Federal Aviation
Administration. Aircraft Electronics Association Convention

26. Schreiber G, Wielinga B, de Hoog R, Akkermans H, Van de Velde
W (1994) CommonKADS: a comprehensive methodology for KBS
development, Expert, IEEE 9(6):28–37

27. Smith AL, Bardell NS (2005) A driving need for design automa-
tion within aerospace engineering. In: 11th Australian International
Aerospace Congress, Melbourne, Australia

28. Soukup J (1979) Global router. In: Annual ACM IEEE Design
Automation Conference, pp 481–484

29. Stevenson A (1996) Voxels and volumetric representation. The
University of British Columbia, Vancouver, Canada

30. Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering:
principles and methods. Data Knowled Eng 25(1–2):161–197

31. Tehranipoor M (2005) CAD Algorithms—routing. Department
of Computer Science and Electrical Engineering, University of
Maryland, Baltimore County

32. Vakil D, Zargham MR (1988) An expert system for channel rout-
ing. Computer Science Department, Southern Illinois University

33. Van der Velden C, Bil C, Yu X, Smith A (2006) Towards a knowl-
edge based cable router for aerospace vehicles. In: Information and
Knowledge Engineering Conference, Las Vegas, United States

34. Van der Velden C, Bil C, Yu X, Smith A (2005) Mathematical
techniques applied to knowledge based engineering design sys-
tems. In: Engineering Mathematics and Applications Conference,
Melbourne, Australia

35. Yap P (2002) Grid-based path-finding. Department of Computing
Science, University of Alberta, Edmonton, Canada

36. Yoshimura T, Kuh ES (1982) Efficient algorithms for channel rout-
ing. IEEE Trans Comput Aided Desi Integrat Circ Syste

123

	An intelligent system for automatic layout routingin aerospace design
	Abstract
	Introduction
	Problem background
	Related work
	Intelligent systems
	Knowledge acquisition (KA)
	Knowledge modelling (KM)
	KBS development
	KBS integration, test and evaluation and ongoing support
	Routing
	Project details
	System structure
	Editor layer
	Input layer
	Data layer
	Problem solving layer
	Reading model data
	Routing algorithm
	Output layer
	Results
	Step 1: Structural design
	Step 2: Discretising geometry
	Step 3: Path finding
	Step 4: Viewing results
	Step 5: Adding Detail
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

