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Abstract 
Exploitation of pamllelism in massively pamllel 

systems is intuitively appealing and is a promising 
avenue for achieving temflop performance. How- 
ever, parallelism is not free; apart from overheads 
in communication and synchronisation, having too 
much progmm parallelism can also mise serious re- 
soume management problems during progmm execu- 
tion. The problem of fesource management is partic- 
ularly complicated by the distributed nature of mas- 
sively pamllel systems. 

In this paper, we address the issue of manag- 
ing pamllelism in a massively pamllel system. This 
is an extension of our previous work on hardware 
throttle for pamllel systems. We propose two paml- 
lelism throttle schemes, and a scheme for monitoring 
and measurement of system workload. Processes in 
the system are initiated when runtime loading lev- 
els in the system permit. The aim is to match dy- 
namic program parallelism to static machine par- 
allelism. Experimental study as conducted using a 
simulated Multi-cluster Dataflow Machine as testbed. 
Our study shows the eztent that control over runaway 
progmm pamllelism is necessary, and that it is pos- 
sible to have good distributed control of resource use 
in a massively pamllel system. 

1 Introduction 
Most of today's massively parallel computers are 

based on the data parallel model of computation by 
which the principal data structures of a problem are 
partitioned and assigned to the processors of the 
machine. Large-scale parallel computation where 
hundreds of processors execute distinct parts of a 
problem exploiting functional parallelism is becom- 
ing common. There appears to be widespread con- 
sensus that general purpose parallel computer of the 
future will be massively parallel architecture consist- 
ing of many processing nodes connected via a high 
speed and regular interconnection network. Mas- 
sively parallel architectures are confronted with two 
main widely discussed fundamental problems: mem- 
ory latency problem and synchronisation problem [4]. 
Current processing node design in general employs 
multithreaded parallelism to overlap communication 
and synchronisation latencies with computation to 
achieve better processor and network utilisation. Be- 
sides these issues, there are resource management 
related issues such as thread management, memory 
management, traffic management, load distribution 

and balancing, parallelism (or concurrency) manage- 
ment, etc. 

A major source of parallelism in programs is algo- 
rithmic parallelism introduced by the programmer. 
The potential problem of too little program paral- 
lelism i s  clear. If there is too much parallelism, we 
are in danger of filling the entire memory of the ma- 
chine with half-finished computations, none of which 
can proceed due to lack of space. Control of paral- 
lelism in parallel systems has been widely studied. 
Control can be introduced at different levels in a 
parallel system such as program annotations at  the 
language level, strict execution of function and loop 
iteration can be enforced by the com iler, dynamic 
control can be exercised using LIFO FIFO queues, 
priorities, etc. at  the hardware level P 81. In the MIT 
Dataflow Machine, a hybrid method of control called 
the K-bounded loop [3] is used. Analysis of the re- 
source required to support loop execution is done 
at compile-time and based on runtime workload, K- 
loops are unravelled for parallel execution. 

Research so far has focused on strategies for par- 
allel machines with limited machine parallelism. To 
the best of our knowledge, recent massively paral- 
lel architectures such as Alewife [l], Tera [ 2 ,  *T 

allelism management. The effectiveness and scala- 
bility of parallelism throttle are important issues re- 
quiring attention in massively parallel systems. This 
paper addresses the parallelism management prob- 
lem in massively parallel systems. The rest of this 
paper is organised as follows. In section 2, we discuss 
two schemes for dynamic control of program paral- 
lelism in a massively parallel system. The schemes 
are implemented on a Multi-cluster Dataflow Ma- 
chine that exploits massive spatial and tempoml par- 
allelism. The performance of these two schemes are 
analysed in section 3. Section 4 describes the limita- 
tions in our approach. In conclusion, we summarise 
the main results and assess the importance of mem- 
ory resource management in future massively paral- 
lel systems. 

[7] and MASA [6] do not address the issue o I par- 

2 Strategies for Dynamic Parallelism 
Control 

The basic strategy for controlling inter-process 
parallelism is to delay the execution of new pro- 
cesses unless machine resource permits. There are 
two main aspects in designing a throttle. Firstly, a 



workload monitoring and measurement scheme is re- 
quired to determine the activity level of the system. 
Secondly, a strategy is required to handle process 
activation request and to determine the appropriate 
process to start up. We define pamllelism throttling 
as the task of matching dynamic progmm pmllelism 
to machine pamllelismat runtime. Static parallelism 
control schemes are discussed in [8]. Our throttle de- 
sign is guided by two objectives: keep all processors 

overheads. 

the GRM allocates processes to various clusters for 
execution. 
2.1.1 Cluster Local Workload Measure- 

Workload is monitored and measured at  the clus- 
ter level similar to the scheme proposed in [8, 91. 
Each PE's token queue (TQ) keep tracks Of 
its own T Q  size and maintains its own logical 

ary is exceeded, it sends a high/low messa e token 

ment 

as busy as possible and introduce minimal throttle 

We p r o p m  two control strategies: centralised or 
distributed control. In the former case a global re- 
source manager is responsible for selecting and dis- 

ter case no single resource manager makes global 

bandS/hYSteresis. When a token queue band bound- 

to its LRM. A high message token (TQHigf) 
ments a counter, TCount, while a low message to- 
ken ( TQLow) decrements this counter. TCount is 

ter. The is shown in figure 2. When the patching processes to idle In the lat- used as a measure of the activity level in a clus- 

decisions for insisting new proc&es, but the pro- 
cessors themselves are responsible for determining 
which process to  execute next. Using a Multi-cluster 
Dataflow Machine as testbed, the architecture of the 
two control schemes are discussed in the sections be- 
low. The architecture of a cluster is similar in config- 
uration to the Multi-ring Manchester Dataflow Ma- 
chine 51, and consists of a number of processing ele- 
ment [PE) rings and structure store (SS) rings inter- 
connected by a multi-stage switch. A Multi-cluster 
Dataflow Machine in turn consists of many clusters 
interconnected by another multi-stage switch called 
the global communication switch. The processing el- 
ement and structure store have similar architecture 
to the Manchester Dataflow Wachine [5]. 

2.1 Centralised Parallelism Throttle 

The architecture of a massively parallel system 
with centralised throttle control is shown in figure 1. 
A global resource manager (GRM) connected to the 
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Figure 1: Massively Parallel System with Cen- 
tralised Throttle Control 

global switch keeps track of process execution. The 
tasks of workload monitoring, data structure man- 
agement are performed by a local resource manager 
(LRM) in each cluster. Before a process can execute, 
a startup process request is sent to the GRM and 
suspended in a global process tree (GPT) data struc- 
ture. Based on runtime cluster activity measures, 

Token-Queue Unit: 
current-band = 1 
if T Q  length > (current-band * bandsize + hysteresis) then 

send TQHigh to Local-Resourcemanager 
current-band = current-band + 1 

send T Q L w  to Local-Resourcemanager 
current-band = current-band - 1 

if T Q  length < ((current-band - 1) * bandsize - hysteresis) then 

LocaLResourcemanager: 
case mcssage-token of 

TQHigh : TCount = TCount + 1 
T Q L w  : TCount = TCount - 1 

TDelay = L(k * ( e  TCount/p - I))/p] 
if (suspend-process > 0) and 

(last-release-time + TDelay + 2 

send TClusAvail to Global-Resourcemanager 

switchdelay) 
<= current-time) then 

Figure 2: Parallelism Throttle - Centralised 

LRM deems the cluster free enough through peri- 
odic sampling of TCount and calculation of TDelay, 
a TCIusAvail token is sent to  GRM. TDelay is a 
heuristic function that estimates the amount of time 
the cluster takes to complete execution of allocated 
processes. Variable k is a constant, and p denotes 
the number of processing elements in a cluster. At 
the global level (see figure l), the GRM maintains 
a table (FreeClusTab) indicating which clusters are 
free to accept additional tasks. Upon the release of a 
task to a cluster, the corresponding flag would be set 
to indicate that the cluster is busy. This flag will be 
cleared subsequently when a TClusAvail is received 
from that cluster's LRM. 
2.1.2 Operation 

Initially, all clusters are free and requests for pro- 
cess startup are serviced immediately. Within each 
cluster, token queue lengths are initialised to zero 
and as such, the LRM will swiftly send TClusAvail 
tokens to the GRM to initiate new processes. This 
achieves our aim of rapidly starting new tasks to 
exploit the processing capacity of all nodes. The la- 
tency between startup request and actual startup at  
this stage is at a minimum equal to the travel time 
of the message tokens from LRM to GRM and back. 
Therefore, in estimating the optimal moment to ini- 
tiate a new process in its cluster (figure 2), the LRM 
factors in the time of 2 * switchdelay to compensate 
for this latency. 
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The GRM on receiving the TClusAvail token - 
lects the leftmost-deepest process from the GPT for 
execution on the requesting cluster. This strategy of 
releasing processes gives priority to child proceases 
belonging to processes that have already started exe- 
cution. The aim is to reduce the lifetime of a process 
which in turn has the effect of reducing the amount 
of memory required. 

2.2 Distributed Parallelism Throttle 

As more clusters are added, the GRM in the cen- 
tralised control scheme becomes a bottleneck. We 
discard the idea of having a central body with all the 
load and process execution information in favour of a 
distributed approach to resource management. This 
will alleviate the GRM bottleneck but our problem 
becomes one of how to let each cluster, with only 
local information, make effective process scheduling 
decisions. The architecture of a machine with dis- 
tributed throttle control is shown in figure 3. A 
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Figure 3: Massively Parallel System with Di s  
tributed Throttle Control 

distributed resource manager (DRM) in each cluster 
performs control of parallelism within the cluster. 
The global process tree (GPT) is distributed among 
the DRMs. Each DRM maintains a subtree of the 
GPT call distributed process tree (OPT). The work- 
load monitoring scheme used in the centralised throt- 
tle case is adopted. 

Process startup requests are sent to the DRM 
instead of the GRM. Process distribution amongst 
the clusters is performed in an asynchronous round- 
robin manner as discussed in section 2.2.1. The 
DRM in the originating cluster determines the tar- 
get cluster to execute new process. Hence, every 
cluster will parcel out work (process) to every other 
cluster in turn, including itself. Process startup re- 
quests received from other clusters are suspended at  
the DPT. Processes are released when cluster activ- 
ity level permits using the same heuristic as in the 
centralised case. Processes are released within ev- 
ery cluster independent of each other. This allows 
concurrent process release scheduling. 

2.2.1 Distributed Process Scheduling 
The process distribution scheme used in dis- 

tributed throttle control is illustrated using a task 
graph in figure 4. The graph shows the schedule of 
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Figure 4: Brick-laying Process Distribution 

assignment of new processes in a four cluster sys- 
tem from the viewpoint of cluster one (referred to 
as the reference cluster). Each block represents a 
new process allocated by the reference cluster. The 
round-robin process distribution has a “brick-laying 
effect” that distributes processes very quickly to ev- 
ery cluster. The task graphs in figure 5 show the 
process distribution in the system from the perspec- 
tive of each cluster in turn. Each cluster spawns 
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Figure 5: Process Distribution in a Four Cluster Sys- 
tem 

seven processes and brick-layers them from the adja- 
cent cluster onwards. Starting process in a reference 
cluster is denoted by “d‘. 

We make two observations when determining the 
worst load imbalance. The first is that each refer- 
ence cluster will be fair in its allocation to within 
one process. This is obvious from the “brick-laying” 
principle. The second observation is that the most 
imbalance occurs when all reference clusters penalise 
the same cluster in allocating their processes. This 
happens if all clusters give an additional process to 
the same cluster, then that cluster will be the busiest 
by n-f processes. The converse is true if all clusters 
short change the same cluster and make it the freest 
by n-f processes. These two worst case imbalanced 
distributions are shown in figure 6. The difference 
in the number of processes allocated to a cluster is 
never greater than the total number of clusters. We 
can also generalise that worst case distribution is al- 
ways skewed diagonally with the first cluster, having 
one more process than the r e t .  

3 Simulation Results and Discussion 
The two throttling schemes discussed were imple- 

mented on a simulated Multi-cluster Dataflow Ma- 
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Figure 6: General Worst Case Load Imbalances 
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chine. The simulator is time-driven, each operation 
performed during a run is time-stamped. To gauge 
the amount of memory used, the sum of tokens in all 
token queues and matching stores are sampled. The 
average utilisation of processors denoted by %Pi7 is 
also captured. The number of additional tokens used 
for throttling divided by the total number of tokens 
used during a run is used to calculate the overhead 
of throttling (denoted by %ou). This would include 
the TQHigh and TQLow tokens. 

To measure the scalability of the throttles, simu- 
lations were performed using BINTEG, a recursive 
area subdivision program written in SISAL which 
produces 2" processes given the parameter n. By 
adjustin n, we could present a constant amount of 
worklod per cluster whilst the number of clusters 
in the machine is varied. As figure 7 shows, on a 
two-cluster machine with 4 PES and 4 SSs per clus- 
ter running BINTEG(n=ll), the centralised throt- 
tlin scheme reduced memory usage by more than 
902.  Under similar conditions, using a distributed 
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I .  c The percentage utilisation and throttle overhead 

lBINTEGl 
with 1K processes/cluster 

* -  - - - -  - * \  

e 

throttling scheme, a reduction of more than 60% 
was achieved. When the number of clusters was in- 
creased, keeping the workload per cluster constant, 
the percentage memory reduction achieved with cen- 
tralised throttling dropped to zero while the dis- 
tributed system stays at a near constant level of 
around 60%. Table 1 ives a more detailed break- 
down of the amount ofmemory used (measured in 
terms of number of tokens in various queues dur- 
ing runs of BINTEG(n=13). Together with in 1 orma- 

no. of 

20548 27327 
20251 28479 

24 20489 30704 
32 21016 34884 

Table 1: BINTEG(n=13) - Total Memory Usage 

tion gathered on switch occupancy and input queue 
lengths at  each module, it is clear that the cen- 
tralised throttle is not responsive enough to keep a 
large system fully occupied. Restriction of memory 
use by the bottleneck at  the GRM is ironically ex- 
tremely effective, so much so that throttling becomes 
inconsequential. 

The result of simulations using BINTEG(n=13) 
also showed good linearity in utilisation in relation to 
the number of clusters using the distributed scheme. 
This is shown in figure 8. 
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Figure 8: Average Processing Unit Utilisation 
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Table 2: Throttle Scalability - With Constant Work- 
load per Cluster 

no. of 
clusters 

1 
2 
4 
8 

modifying the eagerness with which we restrict re- 
source use. This can be accomplished by tuning the 
parameters within the throttles. 
3.1 Varying Machine Configurations 

NQUEENS are shown in figures 9 and 10. 
Simulation results for programs BINTEG and 

The 

centmlised distributed 
%PU t s  %ov ? ' 

U 
71.3 64183 0.51 
69.3 66029 0.55 69.4 65914 1.21 
61.3 74350 0.25 63.6 71700 1.13 
30.0 149100 0.0 62.4 73100 1.12 
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Figure 9: Parallelism Throttle: Speedup for BIN- 
TEG (n= 13) 

NQUEENS program works out the solution for plac- 
ing n queens on a n-by-n chess board in such a way 
that no queen checks any other queens. The search 
for solutions is performed using a parallel divide- 
and-conquer algorithm. The program problem size 
selected has sufficient program parallelism to fully 
saturate the machine. Distributed throttling shows 
good speedup in performance up to 32 cluster (128 
PE) sized machine. 

4 Limitations 
There are two related aspects of scheduling; par- 

allelism control and load balancing. The former has 
to do with the reduction of excessive runtime pro- 
gram parallelism while the latter is more concerned 
with ensuring that processes are started in clusters 
which are relatively free. We have focused our at- 
tention on the former since the latter is more of an 

// 
centralised 

0 4 8  16 32 

number of clusters ( 4 P h  & 4SSs per cluster) 

Figure 10: Parallelism Throttle: Speedup for 
NQUEENS(n=8) 

efficiency consideration. A significant shortcoming 
of distributed round-robin scheduling is that it does 
not explicitly handle the load balancing issue. Al- 
location of work to each cluster does not take into 
account the current load on that cluster. Thus at 
a particular moment when one cluster is free and 
another is busy, a new process may be queued for 
execution at  the busy cluster instead. We rely on 
the throttle at  the busy cluster to regulate resource 
use internally, but it would probably be more desir- 
able to send the activation request to  the free cluster. 
Fortunately, this problem becomes minimal when a 
sufficiently large number of processes are generated 
during a run, as is usually the case with large scale 
problems. Under such circumstances, having nearly 
the same overall number of processes run in each 
cluster (a fact assured by round-robin scheduling) 
guarantees, to  a certain extent, fairness in load d i s  
tribution. One can draw an analogy with selecting 
grains of sand (processes) and filling a number of 
sacks (clusters) one by one. It matters not that the 
size of each grain may differ considerably, the re- 
sulting sacks would be pretty much of the same size 
given a sufficiently large number of grains per sack. 

5 Conclusions 
Two throttling schemes implemented on a simu- 

lated massively parallel machine are discussed. We 
show that runaway program parallelism introduces 
unnecessary communication traffic and is detrimen- 
tal to system performance. It is observed that 
the distributed throttle scheme is more effective 
in restraining program parallelism than the cen- 
tralised scheme when program parallelism is greater 
than machine parallelism, and also vice-versa. Dis- 
tributed control enables each cluster to respond and 
to react to  fluctuations in dynamic program paral- 
lelism more readily. Centralisation of process control 
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increases the latency of initiatin process and intro- 
duces a serious traffic bottlenect at  the global re- 
source manager. Experimental results indicate that 
detailed measurement of machine loading level in 
massively parallel systems, which can be expensive, 
is not critical. The approximated load measuring 
scheme used is sufficient for effective parallelism con- 
trol. Simulation experiments varying the number of 
clusters from four to thirty-two show good speedup 
and demonstrate the scalability of the distributed 
throttle scheme. Memory utilisation reduction of 
more than 50%, and throttle overhead of leas than 
1.5% (measured in terms of additional tokens intro- 
duced divided by the total number of tokens) demon- 
strate the effectiveness of the parallelism throttle. 

Parallelism throttling is an important aspect of 
massively parallel system design if machine perfor- 
mance is to be maximised and system resources are 
to be effectively utilised. In a multiprogramming en- 
vironment, parallelism control can increase the num- 
ber of programs executed at the same time. How- 
ever, when the minimum amount of memory re- 
quired to execute a program exceeds available system 
memory, program execution cannot proceed. In this 
instance, parallelismcontrol is of no help and virtual 
memory is required [lo]. Virtual memory and paral- 
lelism throttle mechanisms are essential features of 
practical massively parallel systems of the future. 
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