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The Flight Operations Risk Assessment System (FORAS) is a risk modeling methodology which represents
risk factors and their interrelationships as a fuzzy expert system. A FORAS risk model provides a quanti-
tative relative risk index representing an estimate of the cumulative effects of potential hazards on a sin-
gle flight operation. FORAS systematizes the process of eliciting human expertise, provides for a natural
representation of the knowledge in an expert system, and automates the process of risk assessment. The
FORAS tool is valuable to airline safety departments for examining risk trends, to pilots and dispatchers
for assessing risks associated with each flight, and to airline management for quantifying the effects of
making safety-related changes. The quantitative relative risk index generated by FORAS allows compar-
isons between flights, and facilitates the communication of safety issues throughout the organization.

Published by Elsevier Ltd.
1. Introduction

Quantitative assessment of risk is particularly challenging in
domains where undesired events are extremely rare, and the cau-
sal factors are difficult to quantify and non-linearly related. One
such domain is aviation safety. Of major concern to the commercial
aviation community is Approach and Landing accident risk. A sig-
nificant portion of hull-loss accidents occur during this phase of
flight. Accidents which may occur at this phase include collisions
with terrain, and runway undershoot, overrun, or excursion (Flight
Safety Foundation, 2001). In current practice, the primary method
of proactively assessing aviation risk, in an operational setting and
on a per-flight basis, is by the use of checklists, which itemize a
small set of weighted risk factors, and are completed by the flight
crew before departure (Flight Safety Foundation, 2003).

In this article, the Flight Operations Risk Assessment System
(FORAS), a fuzzy expert system for proactive risk assessment, will
be presented. FORAS is a risk management tool that will assess var-
ious mishap risks associated with flight operations. It is a method-
ology for producing aviation risk models for air carriers, and
includes software for the representation and application of those
models. FORAS can be used by an airline to develop models for
most types of risks, if there is a sufficient knowledge base and
understanding of the risk within the organization. Such risks may
include Approach and Landing accidents, turbulence-induced inju-
ries, runway incursion, etc. We refer to these as risk categories or
risk types.

Hundreds of combined years of safety experience and knowl-
edge are embodied in the personnel of an aviation organization.
Ltd.

il.
The FORAS methodology systematizes the elicitation and encapsu-
lation of human expertise in a risk model, provides for a natural
representation of that knowledge in an expert system, and auto-
mates the proactive risk assessment process.

A FORAS risk model for any category is uniquely developed for
each airline, as each airline is unique in its operations and under-
standing of risk. Such a model is an encoding of the human knowl-
edge within the airline about a specific type of risk. It is designed to
give safety managers and other users a quantitative, relative,
assessment of a specific risk for an operation, which can be exam-
ined either by individual flight, or as a variety of subgroups, e.g., by
fleet, region, or route. The assessment is performed using a math-
ematical model, expressed as a fuzzy expert system (Kandel, 1992;
Zadeh, 1965) which synthesizes a variety of inputs associated with
a particular flight, including information on crew, weather, man-
agement policy and procedures, airports, traffic flow, aircraft, and
dispatch operations. Output per-flight is a single relative risk index
inferred by the application of a complex set of rules to the input
data. The system can also provide an indication of factors which
contribute to greater than expected index values.

A FORAS risk model output is thus a measurement system that
can determine the relative risk of a mishap. However, FORAS is not
a go/no-go tool. It is a decision aid and a means of identifying flights
with greater than typical risk level, by quantifying the complex
interaction of factors which influence risk.

Whereas an absolute risk index might be interpreted as a prob-
ability of mishap, and can be considered in isolation from other
flights, a relative risk index is an indicator useful only in compari-
son, and hence relative, to other indicators generated by the same
risk model, for the same flight operator. The assessment is relative,
because the system output is not an absolute measure of accident
risk, but rather it is a number which increases and decreases as the
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risk of a mishap increases and decreases. While all flights have a
very low risk of serious mishap, flights can be compared to identify
those flights where mishap risk is greater. With this analysis avail-
able, flight dispatchers can increase crew awareness and, given an
indication of contributing factors, initiate mitigative actions. Oper-
ator management can implement strategies to manage risk to an
acceptable level.

A FORAS risk assessment model is a fuzzy expert system, cre-
ated by knowledge elicitation from the subject matter experts
within the airline organization. The model represents risk as a hier-
archical decomposition of contributing factors, whose interrela-
tionships are represented by a fuzzy rule set. The decomposition
of risk can help to identify those elements that contribute most sig-
nificantly to the calculated risk.

The FORAS project was initiated by the Icarus Committee, affil-
iated with the Flight Safety Foundation, Washington, DC. The foun-
dation’s mission is to serve as an aviation safety ‘‘think tank” and to
stimulate improvements in safety by influencing those in industry
who can effect change. The committee is composed of individuals
who have distinguished themselves in their particular fields of
expertise and represents various segments of industry and regions
of the world. The Icarus Committee formed a ‘‘Safety Index Work-
ing Group” whose purpose was to develop a working model of a
safety metric with which an airline or other aircraft operator might
manage, monitor and measure operational safety performance. The
FORAS project, initiated in 1997, is the result of that initiative. Its
goal is to develop a quantitative index for proactively assessing
aviation risk, addressing a maximal number of features and moving
the emphasis of risk reduction away from the measurement of
accident rates, and focusing instead on the recognition of the risk
factors involved in the aviation process. FORAS has been in devel-
opment for several years, and has recently been used to implement
a risk assessment model for the Approach and Landing phase of
flight for EVA Airways (Hadjimichael & McCarthy, 2005, 2006).

The FORAS methodology described here is being applied to avi-
ation risk, but in fact it is applicable to any domain where there is
little probabilistic information available, but there is a great deal of
human expertise and experience available. Such settings might in-
clude, for example, chemical and nuclear facilities.

The paper is organized as follows: in Section 2, relevant back-
ground material on aviation risk and aviation risk assessment is
presented. Section 3 presents brief foundations of FORAS, followed
by an in-depth description of the methodology and model develop-
ment process. Section 4 concludes the paper and describes the
continuing research track.
Table 1
World-wide, major commercial aviation accidents, 2005–2007 (Burin, 2007)

Year Major
accidents

Occurred during Approach and
Landing

2005 16 10
2006 11 6
2007 (through

October)
13 9
2. Background

2.1. Aviation risk

Flight operations are extremely complex, involving many com-
ponents: human, mechanical, technological, and environmental.
Consequently, the risks associated with flight operations are
equally complex and diverse. Extensive research has been devoted
to the analysis and management of these risks (Reason, 1997;
Wells & Rodrigues, 2004; Wood, 2003). In the first application of
this methodology, research will focus on modeling the risk associ-
ated with operations during the Approach and Landing phase of
flight which includes three phases: approach, final approach, and
landing. This phase is considered here to begin as the aircraft des-
cends below 10,000 feet, and end when the aircraft comes to a stop
on the runway. The most common types of incidents which occur
during this phase are controlled flight into terrain (CFIT), loss of
control, landing overrun, runway excursion, and unstabilized ap-
proach (Flight Safety Foundation, 2001). Approach and Landing
accidents comprise a significant portion of world-wide commercial
jet major accidents, as seen in Table 1 (Burin, 2007).

Studies by the Flight Safety Foundation have identified numer-
ous direct and contributing risk factors (Flight Safety Foundation,
2001). Direct causes of Approach and Landing incidents include
excessive speed, vertical position, failure to follow Standard Oper-
ating Procedures, and failure to go around. Common causal factors
include: difficulties interacting with automation, disorientation/vi-
sual illusion, lack of training/experience/qualification, high/fast on
approach, ATC incorrect advice/service/instruction, low/slow on
approach, procedural violations, ‘‘press-on-itis,” improper flight
handling, lack of positional awareness, inadequate CRM (Crew Re-
source Management), procedural errors, and inadequate judgment/
airmanship. Contributing circumstantial factors include: runway
condition, inadequate ground aids, inadequate regulatory over-
sight, lack of safety equipment, inadequate regulation, inadequate
training, management failure, inadequate procedures, inadequate
CRM, and poor visibility. Most of these factors can be categorized
broadly using terms such as ‘‘fatigue,” ‘‘experience,” ‘‘airport
issues,” and ‘‘weather.” Many risk factors in aviation have been tied
to human factors issues, and are studied and classified, although
not always well-understood (Wiegmann & Shappell, 2003).

The goal of a risk assessment system is to identify these factors,
weigh their relative influence, and provide enough information to
raise awareness and prompt mitigative action.

2.2. Commonly used risk assessment in aviation

In aviation, much understanding of risk arises from accident
analysis, as well as flight and operations modeling and simulation.
Accident analysis may yield a great deal of knowledge about causal
factors, but it is reactive, and potentially at great human and/or
financial cost. Risk modeling approaches are typically aggregations
of the collected knowledge resulting from accident and incident
analysis, theoretical and empirical studies (e.g., effects of fatigue
on human performance), and human experience.

A major challenge in aviation risk assessment is to be proactive,
timely, and comprehensive. Most aviation risk assessment meth-
ods generally fall into three main categories:

1. Checklists used in the cockpit.
2. Probabilistic approaches which currently are providing more

theoretical analyses, and
3. Digital flight data recorder data analysis which may indicate

aircraft operation beyond accepted performance thresholds.

The most well-known risk assessment checklist is the Flight
Safety Foundations CFIT Checklist (Flight Safety Foundation,
2003). This consists of weighted yes/no questions, the sum of which
yields an index. Although relatively simple to complete, checklists
are relatively unsophisticated: limited in scope and representative
power, restricted to information immediately available to the pilot,
and representing a linear model of risk. More in-depth reviews of
risk assessment techniques for flight operations and aviation safety
can be found in Place (xxxx), GAIN (2003).
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The most well-known probabilistic approach considers the
probability and severity of a set of outcomes. Risk is defined as
the product of likelihood and severity. Deficiencies in these methods
include the difficulty of determining both the probabilities of rare
events (such as CFIT), and their severity. Further, the probabilities
may be dynamic, and vary with a variety of factors which are not
known in advance. Another probabilistic approach uses a Bayesian
network of causal factors to related input factors to possible out-
comes (Pearl, 1988). Such causal networks are dependent on the
estimation or derivation of conditional probabilities. This approach
and similar ones are well described in Luxhoj (2003).

Digital flight data recorder data is generally monitored by a
Flight Operational Quality Assurance (FOQA) program. This data,
generated by the aircraft during routine flight operations, is ana-
lyzed in order to reveal situations that may require corrective ac-
tion, to enable early intervention to correct adverse safety trends
before they can lead to accidents, and to provide an objective
means of following-up on corrective action to determine whether
it has been effective (Flight Safety Digest, 1998).
2.3. The FORAS approach

In contrast, a FORAS risk model is knowledge-driven and non-
probabilistic. FORAS risk models do not depend directly on statis-
tical probabilities. They are primarily based on the knowledge de-
rived through extensive discussions (knowledge elicitation
sessions) with subject matter experts. Furthermore, the emphasis
is on representing the process of the flight operation (in terms of
risks factors), rather than the outcome. A FORAS risk model repre-
sents risk as a hierarchical decomposition of risk factors. This rep-
resentation is intuitive, easy to interpret, and facilitates the
identification of primary causal factors.

The FORAS approach is similar to the work of Kangari & Riggs
(1989) in its use of fuzzy methods for the expression of risk in
the construction industry, although that work computes risk using
probability and severity, and is not intended for low probability,
high severity events. It is also similar to the work of Carreno & Jani
(1993) in its use of hierarchical combinations of risk factors in a
fuzzy expert system for insurance risk assessment. In that work,
the risk model is much simpler, and limited to a uniform two-level
hierarchy for all input variables. Fuzzy logic has also been applied
to human factors and human reliability analysis in three-level hier-
archies (Marseguerra, Zio, & Librizzi, 2007).
3. Flight operations risk assessment system

3.1. Foundations

A knowledge-based expert system is a collection of facts repre-
senting the knowledge of subject matter experts (Dym & Levitt,
1991; Kandel, 1992). Their knowledge is expressed as a set of infer-
ence rules in the form

if antecedent then consequent.

The antecedent clause is a test, and may take the form of an
expression formed of logical conjunctions and disjunctions of (var-
iable, value) pairs, or other logical expressions which evaluate to
True or False. Typically, antecedent clauses are written as conjunc-
tive expressions. A rule whose antecedent is in any other form can
be re-written as a set of rules with only conjunctive form anteced-
ent clauses (Andrews, 1986). If the antecedent clause evaluates to
True, then we say that the clause is satisfied and the rule ‘‘fires,” or
is activated. As a forward-chaining process, facts asserted by the
rule consequent may trigger additional rules to fire.
In a fuzzy expert system, the variables in the antecedent and
consequent may be linguistic. That is, their values are expressed
in natural language terms which easily represent the knowledge
of the subject matter experts (Kandel, 1992; Zadeh, 1965). Fuzzy
set theory specifies a method for the mathematical specification
and interpretation of such values, and for performing logical infer-
ence using these values.

A fuzzy expert system is an ideal method for the representation
and application of knowledge in a domain such as aviation safety,
in which knowledge may be highly subjective and empirical,
resulting from years of experience, accident investigations, psycho-
logical studies, simulations, and modeling. Subject matter experts
prefer to describe their knowledge using terms such as ‘‘high” to
describe the linguistic variable experience, or ‘‘severe” to describe
the variable work amount, or ‘‘low” to describe visibility. Such
terms are easily represented by fuzzy set membership functions,
over universes of discourse such as years flying, hours flown, or
miles visibility.
3.2. Overview

The FORAS methodology has two components: model develop-
ment, and risk inference. In the development process, a risk model
is created using domain knowledge, and is based on variables
available in the organization’s databases. The risk inference process
then inputs individual flight operational data from those databases
into a software representation of the model, and computes a risk
index for each flight.

The FORAS methodology is based on five principles:

1. The focus of a FORAS risk model is prevention, taking a proac-
tive approach which identifies mishap precursors. By focusing
on process and precursors, a FORAS risk index reflects those
variables which lead to an unsafe situation. Identifying these
variables in advance leads to a raised level of awareness of risk,
and the potential for mitigative actions.

2. The risk models are based on human expertise. They are created
from the collective, unified knowledge and expertise of an orga-
nization’s subject matter experts and their understanding of the
underlying processes which may lead to accidents or incidents.
This expertise may be in the specific operations and procedures
of the organization, as well as general knowledge of arising
from theoretical or empirical research (such as fatigue effects
on human performance).

3. Risk analyses generated by the model must be rapid, consistent,
and independent of individual program user bias. A FORAS risk
model computes an index from a great variety of variables rep-
resenting risk precursors, as identified by subject matter
experts. If the data for an individual flight is available in
‘‘real-time,” then the risk index for that flight will be available
as quickly. Furthermore, a FORAS model is consistent. An anal-
ysis of the same flight data will always yield the same risk
index, unlike the varying opinions of subjective human opera-
tors involved in the flight operation (dispatchers and crew)
who have varying degrees of skill and experience.

4. Risk assessments must be quantitative, for ease of comparison
and communication. A risk model outputs an index number
for each analyzed flight representing the relative risk for a spe-
cific risk category. The index is expressed on a scale of 1–10,
with higher numbers indicating greater relative risk. This num-
ber represents an estimate of the specific risk by considering all
quantifiable contributing and mitigating factors. It is not a prob-
ability, but rather it is considered relative to a baseline value or
the assessment of another flight or group of flights. Thus, a
greater value indicates a greater likelihood of mishap. Such a
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quantitative relative index allows comparisons among flights,
and facilitates the communication of safety issues throughout
the organization.

5. A FORAS analysis will be useful for the communication of risk to
all levels of the organization. A quantitative risk assessment
which is consistent and independent of user bias is easier to
communicate to all levels of the organization. Depending on
actual implementation, dispatchers may receive per-flight risk
assessments, while safety managers and higher level manage-
ment can receive monthly summaries and trends, consider the
effects of policy changes and equipment investments, etc.

In summary, the FORAS process systematizes the process of
eliciting human expertise, provides for a natural representation
of the knowledge in an expert system, and automates the process
of risk assessment. This model provides a quantitative relative risk
index representing an estimate of the exposure of a flight system to
a set of hazards. It is valuable tool to airline safety departments for
examining risk trends, to pilots and dispatchers for assessing risks
associated with each flight, and to airline management for quanti-
fying the effects of making safety-related changes.

3.3. Representing risk

A risk assessment model is an organized set of causal factors
which are all related to the risk being modeled. Some organiza-
tional schemes include checklists, causal influence diagrams and
fault trees (Luxhoj, 2003), and hierarchical decompositions (e.g.,
FORAS) (Hadjimichael & McCarthy, 2005, 2006; Kangari & Riggs,
1989; Marseguerra et al., 2007). Causal factors are usually quanti-
fiable variables and the organizational structure represents a com-
putational model for the estimation and quantification of risk.

3.3.1. Hierarchical decomposition
The FORAS system represents the risk structure as a conceptual

hierarchy of risk factors. In this representation, the decomposed
risk category, e.g. Approach and Landing Accident Risk, is at the
top (the root node) of the tree. High level concept terms, such as
crew functionality, appear near the top of the hierarchy, while
low-level data terms such as length of duty period are at the bottom,
most specific, part of the hierarchy. Fig. 1 shows the top levels of a
risk structure for Approach and Landing accident risk. Fig. 2 shows
a portion of the low-level risk structure.

The hierarchical risk structure shows how a particular risk
decomposes into its component parts. The hierarchy is represented
by the mathematical construct known as a tree, and we adopt tree
terminology when discussing the properties of the hierarchical
decomposition (Ore, 1963). In such a hierarchy, each factor is rep-
resented by a node, and the factors below each node and connected
to it denote that factor’s decomposition, or sub-factors. The decom-
position nodes are referred to as child nodes. Nodes with no chil-
dren are referred to as leaves. The node above any node is its
parent node. The node at the top of the decomposition tree, which
Approach & Landing
Accident Risk

Crew
Risk

Aircraft
Risk

Sector Flown
Risk

Fig. 1. High-level portion of a risk structure.
has no parent, is called the root node. Thus, the node representing
the risk category is root node of the tree. Given any node, X, in the
tree, the length of the path between the root and X is referred to as
the depth of node X.

A set of rules is associated with each node and its children.
These rules represent the relationships and relationship strengths
between risk factors. They indicate how the child factors influence
the parent factor, and thus how to compute the value of the parent
risk factor using the values of its decomposition sub-factors. Child
nodes represent the rule antecedent variables while the parent
node represents the consequent variable. We denote a set of rules
as a sequence of tables. For a rule set with two input variables, A1

(with m possible values v1,1, . . . ,v1,m), and A2 (with n possible val-
ues v2,1, . . . ,v2,n), the set of possible output values for output vari-
able R is represented by the m � n table, T. For rule A1 = v1,i and
A2 = v2,j, output R = Ti,j. A two-variable rule set is represented by
one m � n table. A three-variable rule set (where A3 has l possible
values) is represented by l tables of size m � n. This table notation
is easily understood by subject matter experts as they assign out-
put values for each input combination.

Fig. 3 demonstrates a rule set with nine rules, where antecedent
variables Previous sectors in duty period and Duty hours combine to
form consequent variable Work amount Risk. The antecedent vari-
ables have possible values low, medium, and high. These values
have been selected by the experts as the most convenient for
describing their knowledge. For example, the value low of variable
Duty hours describes what a low number of hours flown is, in the
context of work amount risk. The consequent variable has a value
in the range 1–10 (10 represents the greatest amount of workload-
related risk). In the typical rule set shown in Fig. 3, the upper left
corner of this table (Previous Sectors = Low, Duty Hours = Low) indi-
cates the rule:

If Previous sectors is low and Duty Hours is low then Work
amount Risk is 1

Each decomposition is limited to at most three factors, in order
to limit the number of rules for that node, and hence the complex-
ity of the knowledge elicitation process. Assuming a maximum of
three values per factor variable, three factors will require three
Work
amount Previous sectors in duty period 

Low Medium High 

Low 1 3 8 

Medium 3 6 9 

Duty hours 

High 6 8 10 

Fig. 3. Sample rule set defining Work amount Risk.
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Fig. 7. Membership functions for fuzzy set values low, medium, and high of the
linguistic variable Work amount.
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3 � 3 rule tables (27 rules). A fourth factor could require nine such
tables (81 rules) which would be overly complex for knowledge
elicitation purposes. To minimize complexity, decomposition into
more than three nodes is restated by using an intermediate node,
as in Fig. 4. The intermediate node represents a semantically mean-
ingful variable which can be considered a ‘‘higher-level” concep-
tual parent of the two child nodes.

3.3.2. Representation by fuzzy expert system
Subject matter experts select the possible values for each of the

risk factor linguistic variables, and provide corresponding defini-
tions for the fuzzy values, such as low, medium, and high defined
on corresponding universe of discourse. The universe of discourse
of leaf node variables is determined by the semantic meaning of
the variable, and a reasonable range of possible inputs. For exam-
ple, a reasonable range of on-duty hours might be 0–24. Fig. 5
shows reasonable membership functions for the values of Duty
hours.

The output variable range of integers 1–10 is similarly selected
by the experts as being the most convenient language to discuss
the consequent variable of each rule set. Each of these numbers
is represented by a fuzzy set, a triangle membership function cen-
tered on the integer, as in Fig. 6 (Dubois & Prade, 1988). Thus, for
all non-leaf nodes, the universe of discourse for the represented
variables is the set of real numbers between 0.5 and 10.5. Of
course, subject matter experts are free to select any range of output
values for a rule consequent variable. Whatever the range selected,
two or three fuzzy sets are defined on that range for use in the for-
ward-chaining process, when the output variable value is used as
an input higher in the hierarchy.

For example, from Fig. 3, Work amount is the consequent vari-
able, and membership functions are defined to translate the calcu-
lated result of Work amount into various degrees of low, medium,
and high, for the further calculation of the parent node of Work
amount (Fig. 7).

Note that all non-leaf factors will be decomposed into at most
three sub-factors each, with at most three possible values each,
so at most 3 � 3 � 3 = 27 rules are included in any single rule set.
C
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Fig. 4. One possible transformation of decompositions, to maintain a maximum of
three child nodes per decomposition, by adding intermediate node F.
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Fig. 5. Membership functions for fuzzy set values low, medium, and high of the
linguistic variable for factor Duty hours.
3.3.3. Inference and risk analysis
Overall risk is calculated by applying all inference rules in a for-

ward-chaining process, where the order of evaluation is bottom–
up, following the order denoted by the risk hierarchy. Nodes are
evaluated in an order according to their depth in the tree. Thus,
all nodes at depth i are evaluated before evaluating any nodes at
depth i � 1. This assures that all the necessary inputs are available
for each node’s calculation. Nodes of equal depth may be evaluated
in arbitrary order. See the example of Fig. 8.

Values for the leaf node risk factors of the hierarchy are as-
signed directly from the input database variables specified by
those risk factors. For the example of Fig. 2, crew roster data are re-
trieved from the database, and used to calculate the initial values
of nodes Number of previous sectors in duty period and Duty hours.
From these is calculated the membership function for the fuzzy va-
lue of parent node Work amount.

A fuzzy risk value is calculated for every non-leaf node by first
calculating the values of its child nodes and then evaluating the
rule set for that node. Child node values are generally crisp values
when the child node is a leaf node, or fuzzy membership functions
when the child node is non-leaf.

We use the typical definitions to determine fuzzy set member-
ship, logical operators, and rule inference (Cayrol, Farency, & Prade,
1982; Cox, 1994; Zadeh, 1965). For a child node which has crisp va-
lue v, then for each fuzzy value Fi (e.g., low, medium, or high) with
Depth
0

1

2

3

Evaluation Order
4

3

2

1

Fig. 8. Evaluation order is determined by node depth. Nodes of equal depth are
evaluated in arbitrary order.
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membership function lFi
ðxÞ in the rule antecedent, the member-

ship degree is simply lFi
ðmÞ. If the child node has a fuzzy value Fv,

then the resulting membership function is defined as
minðlFm

ðxÞ;lFi
ðxÞÞ The fuzzy logical and operator is defined by

min(x,y) (Zadeh, 1965). Define the activation degree, a, of the ante-
cedent of the rule by a ¼ lFi

ðmÞ in the case of crisp child node values,
and a ¼maxxðminðlFm

ðxÞ;lFi
ðxÞÞÞ otherwise. Then for rule conse-

quent C, the rule output value C0 is defined by
lC0 ðxÞ ¼minða;lFc

xÞ. The output membership functions for every
rule in a rule set are combined using the max function to yield a sin-
gle fuzzy value for the parent node.

In the example of Fig. 1, membership functions are first calcu-
lated for the fuzzy values of factors Crew Risk, Aircraft Risk, and Sec-
tor Risk. A rule set for Approach and Landing Risk specifies the
calculation of the final membership function indicating overall risk.

Defuzzification is used to convert that final fuzzy set value R of
the root node into a single risk index value. The center of mass
method is chosen for defuzzification, as it gives the best represen-
tation to all the contributing components of risk, rather than only
the greatest (as done by mean of maxima) (Zadeh, 1965). The center
of mass method locates the x-coordinate of the center of mass of
the area under lR(x):

x ¼
R

x2Uðx � lRðxÞÞdx
R

x2U lRðxÞdx
;

where x is the defuzzified output which best represents contribu-
tions from all fuzzy rules. The final model output risk index is equal
to x.

3.3.4. Critical parameters identification and mitigative actions
A valuable component of a risk assessment system is the ability

to identify ‘‘critical parameters” – those model parameters which
either singly or in combination, strongly and negatively influence
the risk assessment. This is the subject of continuing research,
but several observations may be made at this point.

Each model hierarchy component (subtree) evaluates to a fuzzy
membership function on the universe of discourse defined by the
interval [0.5,10.5] (see Fig. 6). Defuzzification of this membership
function will give a risk index for that particular component (a sub-
index). Using these intermediate indices, it is a simple matter to
descend the hierarchy from the root, following the branch with
the greatest subindex. Unfortunately, as each subindex is a defuzz-
ified intermediate value, and because defuzzification is an imper-
fect representation of a membership function, comparisons
between defuzzification values from different parts of the hierar-
chy, while useful, may lead to misleading results.

In general, in a particular risk assessment, critical parameters
are risk factors which are likely ‘‘highly causal” to the assessment.
Because any risk assessment is in fact a complex combination of
influencing factors, the concept of criticality is not well-defined.
An important ongoing effort is to develop a meaningful and useful
definition of critical parameters, such that their identification in a
risk assessment can lead to actions with the greatest possible mit-
igative effect. Possible definitions include ‘‘greatest contributors to
risk assessment,” ‘‘most sensitive input parameters,” and ‘‘most
deviating from baseline values.” Implementations under consider-
ation include:

1. Determination of parameters yielding a local risk minimum
within a single rule set, using a risk index gradient. The risk
index gradient is a gradient matrix indicating how risk changes
as each rule set input parameter changes.

2. Determination of parameters yielding a global risk minimum
within a single rule set, using risk index gradient (identifying
the best possible combination of rule set input parameters).
3. Determination of parameters yielding a global risk minimum
within the entire model, using sensitivity testing on global
parameter set (re-evaluating a flight while changing individual
model input parameters).

Once a suitable method has been established, a second expert
system may be created to suggest mitigative actions whose pur-
pose is to reduce the risk index for a flight, based on its risk assess-
ment. For example, if high crew fatigue and crew inexperience are
identified as a critical issue for a flight, then suggested action might
be a change of crew.

3.4. Model development

3.4.1. Knowledge elicitation process
Hundreds of combined years of safety experience and knowl-

edge are embodied in the personnel of an aviation organization.
That experience is distributed throughout various departments,
such as Safety, Flight Operations, Crew Rostering, Maintenance,
Medical, Management, etc. The premise of the knowledge-based
FORAS system is that such experience may be elicited from these
aviation safety experts, combined into one unified risk model, rep-
resented mathematically in a software program, and used to eval-
uate the risk factors affecting current and upcoming flights. Thus, a
basic and central component of the FORAS methodology is the
knowledge elicitation process.

The FORAS knowledge elicitation process pulls together the dis-
tributed expertise into a single risk model by extensive interviews
of subject matter experts. FORAS knowledge elicitation is a semi-
structured interview process, generally proceeding in a top–down
manner, decomposing each risk factor hierarchically into its con-
tributing components, and in a bottom–up manner to classify
known risk factors into higher level categories. Each discussion
group explores general risk concepts and specific cases which high-
light those concepts in order to establish or refine a set of primary
risk factor categories such as Crew Factors, or Environmental Fac-
tors. Each primary risk factor discussed is decomposed into its con-
tributing components, recursively decomposing subcomponents
down to the quantifiable data variable level.

The decomposition is arranged hierarchically, as demonstrated
in the example of Figs. 1 and 2. This method of structuring is com-
fortable for the experts, and is easily modeled in the expert system.
The selection of risk factors represented in the model is con-
strained by the availability of data. Only those factors which will
be quantifiable using available data from the organization’s dat-
abases are retained in the model. Thus, once the risk structure is
well-defined, it is pruned and revised to remove variables which
are not accessible.

Rules are specified as demonstrated in the example of Fig. 3. As
the risk hierarchy and rules are developed, they are reviewed mul-
tiple times by the contributing experts. In the aviation domain, sig-
nificant contributions may be made by the instructor pilots, who
have the advantage of a great deal of experience, as well as a famil-
iarity with the issues of greatest concern to junior, less experienced
pilots.

Several groups of experts within the organization are inter-
viewed at least two times: an initial session, and a follow-up ses-
sion to review and confirm that the knowledge elicited has been
properly captured. The groups are drawn from various airline
departments (pilots, dispatchers, safety managers), depending on
the type of risk category being studied. Follow-up sessions con-
tinue as the model is continually enhanced and refined. Each
group’s membership is selected in order to interview experts in
similar positions at the same time. This allows all members of
the interview group to feel more comfortable by speaking in a
group of their peers.
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During interviews, differences of opinion may arise occasion-
ally. Typically, such differences may be resolved by continued dis-
cussion and a careful definition of terms as differences may reflect
different understandings of the issue in question. Differences may
also reflect a poorly chosen decomposition, and may indicate that
the higher level risk factor needs re-evaluation.

Once risk factors and the risk structure have been established,
the rules are specified (as in Fig. 3). This is done using an interview
process as before. Typically, a range of output values is selected
(e.g., 1–10), and the extreme cases in the rule set table are assigned
first. The remainder of the table is then completed. Each rule set is
systematically considered, and later reconsidered for validation.

3.4.2. Model overview
The risk model resulting from the elicitation process at EVA Air-

ways is extensive. The complexity and proprietary nature of some
of the information in the model prohibit its complete inclusion in
the paper. However, we may discuss an overview of the model
variables whose presence in the model is common to most organi-
zations’ risk models. As illustrated in Fig. 1, the model variables
affecting Approach and Landing Accident Risk are grouped accord-
ing to three major categories: crew factors, aircraft factors, and
departure-arrival city-pair factors. ‘‘Crew factors” refers to all fac-
tors which influence crew performance. These include the high le-
vel categories of intercrew communication, experience, and stress
level. A sample intercrew communication variable is the quality of
the crew pairing, while experience is measured in terms of both
flying experience and airport familiarity. Stress level is determined
primarily by considering the amount of short-term and long-term
fatigue levels.

Aircraft factors depend primarily on the maintenance database,
considering primarily any known malfunctioning equipment.

City-pair factors consider primarily the complexity of flying to,
and landing at, the arrival airport. These complexities are depen-
dent on the route flown, airport factors, runway factors, and envi-
ronmental (weather) factors (which include visibility issues).

In total, about 44 non-leaf nodes and 80 leaf nodes represent
the risk model structure. Variable relationships are expressed in
approximately 200 tables representing approximately 1500 expert
system rules.

Software has been written to compile an expert-specified risk
model into a software implementation. Also, software and a graph-
ical user interface have been written to tie the implemented risk
model to databases supplying input data, accept user queries, per-
form the risk inference automatically, and display risk indices back
to the user.

3.4.3. Testing and validation proposal
A functional Approach and Landing model is operational at EVA

Airways. Validation of a knowledge-based system requires that we
show that the knowledge represented by the risk model accurately
represents the knowledge of the subject matter experts whose
expertise was used to create the model. The first phase of valida-
tion is to be performed on a small set of flights. The FORAS risk
model is used to generate an assessment for a set of flights which
are independently ranked by the experts. The risk index is valid if
the FORAS ranking of flights is similar to the expert ranking.

Further validation will be performed over a longer period, at
least one year, with a close monitoring of results by the subject
matter experts whose expertise is reflected by the model, and by
an independent set of experts. Validation may also be possible in
conjunction with digital flight data. Routine monitoring (post-
flight) of digital flight data parameters identifies exceedance
events during which certain parameters exceed allowable thresh-
olds. These exceedances may be used as an indication of higher risk
flights, and ideally there will be a positive and significant correla-
tion between FORAS higher risk flights, and flights registering high-
er than normal exceedance rates.

During an extended validation period, the model will be tuned
as necessary, and baseline values will be established for each sector
flown. Such tuning may range from adjusting membership func-
tions to re-writing rule sets.

4. Conclusion

This paper has presented a methodology by which the safety
knowledge inherent in an organization such as an airline can be
elicited, represented, and used for operational risk analysis on a
flight-by-flight basis. The knowledge is represented as a risk mod-
el, based on human expertise, and thus representative of and spe-
cialized the specific experience of a particular organization.
Because the model focuses on causal factors, it is useful as a proac-
tive risk reduction tool and decision aid. Output of the model is
normalized risk index which can be compared to a baseline value
to determine relative risk. Such a rapid, quantitative, and consis-
tent analysis is a valuable aid to communication of risk and safety
issues within the organization.

Further research follows three tracks. A study of an operational
implementation within an airline (EVA Airways) is now in pro-
gress. This study will provide a more in-depth analysis and valida-
tion of results, and determine the true usefulness of such a system.
In addition, a more robust method of determining the ‘‘most
causal” risk factors is necessary. This is a complex issue, as finding
a meaningful and useful definition of ‘‘most causal” is a significant
research challenge. Finally, when a useful definition has been
found, a second expert system can be developed to suggest mitiga-
tive actions to the users.
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