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a b s t r a c t

Prediction of flyrock distance has a remarkable role in reduction and control of blasting accident in

surface mines. In this paper, at first a new empirical equation for predicting flyrock distance was

developed using dimensional analysis. The equation extended based on controllable blasting para-

meters that compiled from 150 blasting events in Sungun copper mine, Iran. Then, flyrock phenomenon

is simulated using this equation and Monte Carlo (MC) method. Results showed that MC is a good

means for modeling and assessing the variability of blasting parameters. Finally, sensitivity analysis

was conducted to analyze the effects of the controllable blasting parameters on flyrock distance. Based

on correlation sensitivity, the most effective parameters were powder factor, stemming and burden.

Finally, it should be noted that the proposed flyrock equation and obtained results are site-specific; it

should be used only in the Sungun copper mine, and it should not be used directly in other

surface mines.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Blasting is a primary means of extracting minerals and ores at
surface mining operations. The main purpose of blasting operations
is rock fragmentation and requires a large amount of explosives. The
explosives release a large amount of energy during explosion, which
only 20–30% of it is utilized for breaking and displacement of rocks
and the rest of it is wasted in the form of environmental side
impacts [1]. Flyrock is one of these environmental impacts that is
defined as the rock propelled beyond the blast area by the force of
an explosion [2]. The flyrock of these rock fragments beyond the
allowable limits leads to facility and structure damages [3]. Also,
main reason of many fatal and non-fatal blasting accidents in
surface mining is excessive flyrock beyond the protected blast zone
[4–8]. According to Fig. 1, flyrock can result from three key
mechanisms which are explained briefly in the following [5,9,10]:

Face burst occurs when explosive charges intersect or are in
close proximity to major geological structures or zones of weak-
ness. The high-pressure gases of the explosives jet along the
weakness zones (paths of low resistance) and generate noise,
airblast, and flyrock. In these circumstances, burden conditions
usually control flyrock distances in front of the face.
ll rights reserved.

9.
Cratering occurs when the ratio of stemming height to blast-
hole diameter is too small or the collar rock is weak. In this
situation, flyrock can be projected in any direction from a crater at
the hole collar.

Rifling occurs when stemming material is inefficient or is
absent. Blast gases can stream up the blasthole along the path
of least resistance resulting in stemming ejection and sometimes
ejection of the collar rock as harmful flyrock.

During recent years, various approaches have been developed
for flyrock analysis in surface mines that can be divided into two
categories. One approach is the mechanistic modeling in which
the physics mechanisms are clearly identified [10–14]. The other
approach is the empirical approach, which involves no details of
physics mechanisms and the results in an empirical equation are
obtained by some ‘‘best statistical’’ analysis of measured flyrock
range data [3,15,16]. There are advantages and disadvantages of
both approaches. The advantage of mechanistic models is that
they include universal mechanisms such as trajectory shape, air
drag, rock bounce etc., which are not site dependent. The
disadvantage of these models is that in order to calculate the
flyrock range, they require inputs such as launch angle, launch
velocity and fragment mass, which are difficult to obtain, and are
site dependent to some degree. The advantage of empirical
models is that they directly give the flyrock range via a single
and simple equation. The main disadvantage of empirical models
is that they are site dependent, simply because the statistical fits
are only done for the site-measured range of data. Of course there
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Fig. 1. Schematic illustration of flyrock mechanisms.

Fig. 2. Sungun copper mine.
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are also models that have an element of both mechanistic and
empirical [9]. Nowadays, application of artificial intelligence
techniques such as artificial neural network and fuzzy logic is
increasing in this field [17–20].

Additional studies on flyrock phenomena can be found in
[5,8,21–29]. Based on these studies, flyrock occurrence and
intensity is influenced by controllable and uncontrollable para-
meters. Controllable parameters can be changed by the blasting
pattern, while uncontrollable parameters are natural and cannot
be changed. The main controllable parameters causing flyrock are
insufficient burden, improper delay timing, inadequate stemming,
inaccurate drilling, and unwarranted powder factor. Whereas,
poor geological and geotechnical conditions specially existence
of loose rock in the upper part of the blast hole are considered to
be the uncontrollable parameters affecting flyrock.

The detrimental effects of flyrock are unavoidable and cannot
be completely eliminated, but certainly can be minimized up to a
permissible level to avoid damage. One of the effective
approaches to control and prevent flyrock accidents is prediction
of flyrock range and effects of blasting parameters on it. This
enables mining engineers and contractors to locate the workers
and equipments in a safe area and distance so hazards due to
flyrock can be minimized. For this purpose, various empirical
models were developed for prediction of flyrock distance that
most of them are based on blasthole diameters and specific
charge [3,11,13,30]. These methods do not include all effective
parameters on flyrock, consequently they have very low predic-
tive capacity. On the other hand, accurate prediction of flyrock is
very difficult because of uncertainty in blasting parameters. In
order to overcome these shortcomings, in this paper a stochastic
model for prediction of flyrock distance in surface mines is
developed. This model takes into account the uncertainty arising
from variability in blasting parameters and uses Monte Carlo
(MC) method for stochastic analysis. It is clear that for performing
MC simulation an empirical equation is necessary, so at first this
equation is established using dimensional analysis. This equation
is developed based on the most effective controllable blasting
parameters on flyrock, which were collected from blasting opera-
tions in Sungun copper mine located in the northwest region of
Iran. Then, to analyze the effect of each controllable parameter on
flyrock range, sensitivity analysis is conducted.
2. Case study: Sungun copper mine

2.1. Mine description

Sungun Copper Mine is one of Iranian porphyry copper mines,
which is located in a mountainous area approximately 125 km
northeast of Tabriz town in East Azarbaijan province in the north-
west part of Iran, between 461 431 E longitudes and 381 421 N
latitudes (Fig. 2). This mine is at 2000 m above sea level. The geology
of Sungun porphyry deposit is very complicated and various rock
types can be found. The mineralization in this deposit occurs in the
Cenozoic Sahand–Bazman orogenic belt [19,31]. The main minerals
of the deposit are chalcopyrite, pyrite, chalcocite, cuprite, malachite,
covellite. Other minerals such as molybdenite, gold and silver are
seen in the deposit. Therefore, copper is considered the main
product of the mine, whereas molybdenum is a by-product. The
geological reserve of the deposit is approximately 796 Mt, whereas
the proved reserve is approximately 410 Mt with an average grade
of 0.67%. The ore is extracted by open pit mining employing three
drilling machines, five hydraulic shovels, twelve trucks with a
capacity of 150 t each, and various supporting equipments during
production operation. According to the mine plan, the final open-pit
depth is considered to be 725 m starting from level of 2350 m to
level of 1625 m (as the final minable bottom level). The height and
slope of working benches are 12.5 m and 681, respectively. The angle
of overall slope is 371. The width and slope of ramp are 30 m and 51,
respectively. The age of mine has been estimated about 32 years and
overall stripping ratio (W/O) is 1.7. The geotechnical studies show
that the major fault systems of the area have WW–SE, N–S and
ENE–WSW strikes. In the mine area the overall rock mass is
extremely broken and fractured and the geomechanical character-
istics of rock mass are uniform throughout the mine and rock mass
rating (RMR) is about 40.

In this mine, blasting operation is performed for rock excava-
tion. ANFO is used as the main explosive material and detonating
cord is applied for initiation. Pattern geometry is staggered and
drilling cuttings are used as stemming material.

2.2. Data collection

In this paper, for developing flyrock distance equation and
determining the effects of controllable parameters of blasting
patterns on flyrock distance, a database including all of controllable
blasting parameters was compiled from 150 blasting operations in
ore zone of Sungun copper mine. For collecting this database,
burden, spacing, stemming, blasthole length, blasthole diameter,
powder factor and mean charge per blasthole were gathered as
controllable parameters, and the maximum flyrock distance was
measured as a favorable parameter in each blasting round. In each
blasting pattern, burden, spacing, stemming, blasthole length and
blasthole diameter were measured by a tape meter. The amount of
mean charge per blasthole was recorded for each blast by control-
ling the charge of blasthole. Powder factor was obtained by
division of mean charge per blasthole on blast volume (burden� -
spacing�blasthole length) [32]. In order to measure the flyrock, all
mechanisms were considered but, based on field observations the
maximum flyrock distance was due to face burst mechanism in
first blast row. Then, the maximum horizontal distance between
original face and landed fragments was considered as flyrock
distance and was measured using a hand-held GPS (global



Table 1
Basic descriptive statistics of the parameters collected from Sungun copper mine.

Parameters Unit Symbol Min. Mean Max. Std.

dev.

Burden m B 2.5 4.17 5 0.41

Spacing m S 3 4.89 6 0.54

Stemming m St 2 3.85 4.5 0.34

Blasthole length m H 8 11.82 16 1.82

Blasthole diameter m D 0.089 0.134 0.152 0.010

Powder factor Kg/m3 P 0.15 0.4 1.12 0.12

Mean charge per

blasthole

Kg Q 50 89.41 139.17 16.25

Flyrock distance m Fd 30 68.23 95 14.20
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positioning system). It is worth mentioning that only the fragments
which had the capacity to damage, injury or fatality were con-
sidered and based on past experiences in Sungun copper mine
these fragments have the approximate diameter of 10 cm and
smaller landed fragments were neglected. The basic descriptive
statistics of this database are summarized in Table 1.
3. Development of a flyrock predictive model

3.1. Flyrock equation

In this section, an equation for the prediction of flyrock distance
is developed using dimensional analysis. The dimensional analysis
can be defined as a research method to deduce more information
about a certain phenomenon relying on the postulate that any
phenomenon can be described through a dimensionally homoge-
neous equation. In other words, dimensional analysis is a techni-
que for restructuring the original dimensional variables of a
problem into a set of dimensionless products using the constraints
imposed upon them by their dimensions [33,34]. In this section, an
equation for the prediction of flyrock distance is developed using
dimensional analysis. Flyrock is assumed to be a function of the
controllable blasting parameters as below:

Fd ¼ f ðB, S, St , H, D, P, Q Þ ð1Þ

Now, in order to specify the relationship among the indepen-
dent and dependent variables of the problem Eq. (1) can be
transformed into

f ðFd,B, S, St , H, D, P, Q Þ ¼ 0: ð2Þ

In dimensional analysis, it is necessary to select a unit system.
There are totally two main systems: mass and force systems. In
mass system, three units are regarded, namely, mass (M), length
(L), and time (T), whereas force system includes force (F), L, and T.
Here, the mass system has been chosen because M, L and T are the
fundamental units. Accordingly, dimensions of each variable can
be defined as follows: [Fd]¼L, [B]¼L, [S]¼L, [St]¼L, [H]¼L, [D]¼L,
[P]¼ML�3 and [Q]¼M.

The fundamental theorem of dimensional analysis indicates
that the total number of dimensionless parameters (p terms) that
can be formed from a list of physical quantities (variables) is n–m,
where n is the total number of physical quantities and m the total
number of fundamental dimensions occurring in them. In this
paper, n is equal to eight and m is two (M and L), so the total
number of dimensionless parameters is six. If P and Q are selected
as repeating variables so [P/Q] has dimensions of L�3, and hence
[P/Q]1/3 has the dimension of L�1. Therefore, all dimensionless
parameters are as follows: p1¼Fd(P/Q)1/3, p2¼B(P/Q)1/3, p3¼S(P/
Q)1/3, p4¼St(P/Q)1/3, p5¼H(P/Q)1/3 and p6¼D(P/Q)1/3. Now, Eq. (2)
transformed into the following based on obtained results for
dimensionless parameters:

f ½FdðP=Q Þ1=3, BðP=Q Þ1=3, SðP=Q Þ1=3,

StðP=Q Þ1=3, HðP=Q Þ1=3, DðP=Q Þ1=3
� ¼ 0 ð3Þ

The relationship among the dimensionless products can be
linear or non-linear. Linear and non-linear equations are written
as follows:

FdðP=Q Þ1=3
¼ a1þb1 ½BðP=Q Þ1=3

�þc1½SðP=Q Þ1=3
�þd1½StðP=Q Þ1=3

�

þe1 ½HðP=Q Þ1=3
�þ f 1 ½DðP=Q Þ1=3

� ð4Þ

Ln ½FdðP=Q Þ1=3
� ¼ a2þb2ln ½BðP=Q Þ1=3

�þc2ln ½SðP=Q Þ1=3
�

þd2ln ½StðP=Q Þ1=3
�þe2ln ½HðP=Q Þ1=3

�

þ f 2ln ½DðP=Q Þ1=3
� ð5Þ

By the help of multiple regression analysis of the collected
data from blasting operation in the Sungun copper mine,
unknown coefficients of Eqs. (4) and (5) can be determined. By
the comparison between correlation coefficient (R2) of the both
linear and nonlinear equations, it was concluded that the non-
linear equation is more suitable. The unknown coefficients were
calculated by SPSS 16.0 [35] to be a2¼8.846, b2¼�0.796,
c2¼0.783, d2¼1.994, e2¼1.649, and f2¼1.766. Finally, Eq. (5)
can be simplified as below, which is the most proper empirical
equation for determination of flyrock distance throughout Sungun
copper mine:

Fd ¼ 6946:547 ½B�0:796S0:783S1:994
t H1:649D1:766

ðP=Q Þ1:465
� ð6Þ

3.2. Performance of flyrock equation

The coefficient of determination between the measured and
predicted values of flyrock distance is a good indicator to check
the prediction performance of the equation. Fig. 3 shows the
relationships between measured and predicted flyrock distance,
with good coefficient of determination. According this figure, the
determination coefficient of presented flyrock equation is 83.38%.

Furthermore, variance account for (VAF) (Eq. (7)) and root
mean square error (RMSE) (Eq. (8)) indices were calculated to
assess the prediction capacity performance of the equation [36]:

VAF ¼ 1�
varðAi�PiÞ

varðAiÞ

� �
100 ð7Þ

RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i ¼ 1
ðAi�PiÞ

2

r
ð8Þ

where Ai and Pi are the measured (actual) and predicted values,
respectively, and N is the number of samples.

If the VAF is 100 and RMSE is 0, then the equation will be
excellent. The VAF and the RMSE indices for proposed flyrock
equation were obtained 83.38% and 6.09, respectively, which
show that this equation can provide a good prediction for flyrock
distance.
4. Stochastic modeling approach for prediction of flyrock
range

4.1. Background

The most common sampling technique used in stochastic
analysis is the Monte Carlo (MC) method. MC method allows
the variability and/or uncertainty of the available data to be
adequately taken into account. The frequency histograms and/or
the density functions that best describe the data distribution are
used as input. In a MC simulation, a random value is selected for



Table 2
Probability distribution functions of input variables used in MC simulation.

Input

variable

Function

B Discrete ({2.5,3,4,4.5,5}, {0.007,0.06,0.66,0.26,0.013})

S Discrete ({3,3.5,4,4.5,5,5.5,6},

{0.02,0.027,0.033,0.16,0.52,0.233,0.007})

St Logistic (4.05788, 0.15848)

H Triangular (6.8371, 13, 16.0791)

D Discrete ({0.09,0.1,0.11,0.13,0.14,0.15},

{0.02,0.007,0.013,0.3,0.647,0.013})

P Loglogistic (0.043997, 0.33764, 6.8696)

Q Normal (90.537, 17.523)
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Fig. 3. Relationship between measured and predicted flyrock distance.
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each of the inputs, based on the range of estimates. The model is
calculated based on this random value. The result of the model is
recorded, and the process is repeated many times. A typical MC
simulation calculates the model hundreds or thousands of times,
each time using different randomly-selected values. When the
simulation is complete, a large number of results are obtained
from the model, each based on random input values. These results
are used to describe the likelihood, or probability, of reaching
various results in the model.

If the value taken on by one variable has no influence upon the
value assumed by another variable, then these variables are said
to be independent in MC models. Independence of random
variables greatly simplifies the representation and analysis of
uncertainty, and often independence is assumed even where it is
not really true. A complete probabilistic treatment of dependent
random variables requires joint probability distributions, which
for two variables may be depicted as a surface. Simple descriptors
suffice in place of full probability distributions for many applica-
tions; the descriptors for covariance and correlation coefficient
indicate the degree of dependence among the variables.

Recently, MC has been successfully applied to many real world
problems especially in modeling complex systems in the science
and engineering field especially mining, rock mechanics and
engineering geological. For example, MC methods were used in
porous media flow and transport problems for ground water
contamination and remediation studies. Huang et al. [37] applied
MC methods to study groundwater flow and solute transport in
heterogeneous, dual-porosity media and compared the results
with analytical models. Lu and Zhang [38] demonstrated the
development of an important sampling method to solve compli-
cated problems with MC and applied it to fluid transport pro-
blems in aquifers. You et al. [39] used MC for modeling of
uncertainty in a tunneling project in order to determine of
support pattern. Morin and Ficarazzo [40] used stochastic tech-
niques and MC simulations to predict fragmentation of rock
during blasting. They have shown that the results produced by
the simulator were comparable with the data obtained from a
quarry, and that the use of MC extended the understanding of the
factors affecting blast fragmentation. Little and Blair [10] applied
MC for analysis of flyrock risk. Sari [41] and Sari et al. [42]
demonstrated the use of MC simulations to evaluate the strength
and deformability of rock masses by including the uncertainties of
the intact rock strength and discontinuity parameters. They
concluded that the MC method provided a viable means for
assessing the variability of rock mass properties. Ghasemi et al.
[43] used MC for quantifying the uncertainty of coal pillar safety
factor. Karacan and Luxbacher [44] described a practical approach
for implementing stochastic determination of gob gas ventholes
(GGV) production performances and for generalizing the predic-
tion capability of deterministic models. They indicated that this
approach was a promising method of representing the variability
in GGV performances and to improve the limited and site-specific
character of the deterministic models.

4.2. Monte Carlo simulation

In the Section 3, an empirical model (Eq. 6) estimating flyrock
distance was built using the dimensional analysis. In this section,
this model is used to simulate flyrock danger and determine the
most influential input variables on the flyrock range. In the
stochastic model, burden, spacing and blasthole diameter are
assumed as discrete probability distributions since these inputs
take only very few realizations and it is not possible to define them
as continuous probability distributions (CPD). However, stemming
length, blasthole length, powder factor, and mean charge per
blasthole were represented with suitable CPD functions based on
the available data (Table 2). Fig. 4 shows all of the input variables
used in the stochastic model and their frequency histograms.

@RISK software [45] was used as the MC simulator in this
work. This program provides utilization of MC functions and
random distributions as MS-ExcelTM add-in features and creates
spreadsheet models that employ MC simulations. This software
allows for a basic data fitting by the use of Maximum Likelihood
Estimators to estimate the distribution parameters (i.e. to deter-
mine the parameters that maximize the likelihood of the sample
data). Furthermore, the goodness of the data fit is performed by
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Chi-squared [w2] statistics, determining the sum of differences
between the observed and expected sample outcomes. For the
model, 5000 iterations are performed with Latin hypercube
sampling to closely resemble the resulting probability distribu-
tion. This means that every run of the simulation yields 5000
different possible combinations of input variables, which are
sampled randomly from the defined distributions. In the Monte
Carlo analysis, the Latin hypercube sampling may be viewed as a
stratified sampling scheme designed to ensure that the upper or
lower ends of the distributions are used in the analysis, and
requires fewer simulation runs to produce the same level of
precision with complex models.

To develop an improved method of MC simulation of flyrock
range in the study, it is important to take into consideration the
relationships between input parameters. As can be seen in
Table 3, some significant relationships between input parameters
present. It is known that burden, spacing, stemming, blasthole
diameter, and blasthole length are closely related and the



Table 3
Spearman’s rho correlation coefficients between input variables.

B S St H D P Q

B 1

S 0.83 1

St 0.45 0.33 1

H 0 0 0 1

D 0.33 0.56 0.40 �0.38 1

P �0.65 �0.56 0 0 0 1

Q 0 0 0 0.54 0 0.4 1

Lognormal (4.3546, 0.56268) Shift = -2.1012

N = 5,000
Min = 16.85

Mean = 81.44
Max = 977.7

StdDev = 34.75
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Table 4
Corresponding values of input variables w.r.t. the specified flyrock values obtained

from the simulation results.

Fd B S St H D P Q

Maximum 977.7 2.5 3.0 3.9 13.3 0.13 2.98 125.5

Minimum 16.9 4.0 3.5 3.1 13.1 0.09 0.34 87.7

Mean 81.4 4.1 4.9 4.1 12.0 0.14 0.39 90.5

1% 232.6 3.6 4.6 4.4 12.4 0.14 0.70 91.8

99% 23.4 4.1 4.5 3.6 11.6 0.11 0.31 90.7

E. Ghasemi et al. / International Journal of Rock Mechanics & Mining Sciences 52 (2012) 163–170168
common formulas usually calculate one of them as a function of
the others. Therefore, these correlations should be taken into
account in simulation modeling if one wants to obtain meaningful
combinations during sampling of inputs rather than doing a
completely random sampling. Significant rank order correlations
(Spearman’s rho) between input parameters are included in the
MC model by incorporating these relationships via a correlation
matrix in the program.

In the stochastic estimation of flyrock distance, the following
steps are taken into consideration:
i.
 The data for controllable blasting parameters was compiled
from the blasting patterns of Sungun open-pit copper mine.
ii.
 Distribution functions, which represent both the probability
and range of values that would be expected in the blasting
patterns, were defined for each of the controllable blasting
parameters.
iii.
 The stochastic assessment of flyrock distance was accom-
plished using the discrete and continuous probability distri-
butions from the previous step as inputs for each parameter in
Eq. (6).
iv.
 5000 MC simulations were executed to obtain a statistical
representation of the flyrock risk in the spreadsheet model.

Fig. 5 presents resulting flyrock distribution model obtained
from MC simulations and summary statistics. Fig. 6 compares the
measured, predicted and simulated flyrock distance cumulative
frequencies. The type of best fitting model to flyrock is found to be
lognormal distribution with a mean of 4.35 and standard devia-
tion of 0.56. Average flyrock distance is simulated as 81.44 m with
a standard deviation of 34.75 m. Minimum and maximum flyrock
ranges are computed as 16.85 m and 977.7 m, respectively. It is
clear from the results that the model predicts an extensive range
of flyrock. Even, there is a risk for the Sungun copper mine from a
rock fragment, which can be thrown almost 1 km away with a
possibility of 1/5000. The probability for a flyrock range exceeding
300 m is only 0.0094. This distance plus some safety factor can be
used to estimate the safe distance for flyrock in this mine. Table 4
indicates corresponding values of input variables w.r.t. the speci-
fied flyrock values obtained from the simulation results. For the
maximum flyrock case, powder factor, charge per blasthole, and
blasthole length take the highest values, while burden and
spacing take the smallest values. On the other hand, for the
minimum flyrock case, significant differences are observed
between the blasthole diameter, powder factor, and charge per
blasthole.

4.3. Sensitivity analysis

@RISK software performs two different sensitivity analyses:
regression sensitivity and correlation sensitivity. In regression
sensitivity, a multiple regression analysis using stepwise selection
criteria is performed by variation of one input parameter across
the possible range while other input parameters are kept constant
on their mean values. Basically, when running a sensitivity
analysis, @RISK program runs a regression where each iteration
represents an observation. Same procedure is repeated for all
input parameters to find most influential parameters on flyrock
phenomenon. Consequently, sensitivity analysis was conducted
to identify the effects of contributing parameters on flyrock range.
The dependent variable is the output cell (flyrock) and the
independent variables are each ‘‘random’’ @RISK function defined
for each input variables in the spreadsheet model.

In correlation sensitivity, however, the program finds the rank
order correlations from the simulated results of input and output
variables. The rank order correlation value returned by @RISK can
vary between �1 and þ1. Rank order correlation calculates the
relationship between two data sets by comparing the rank of each
value in a data set. To calculate rank, the data is ordered from
lowest to highest and assigned numbers (the ranks) that
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correspond to their position in the order. This method is prefer-
able to linear correlation when we do not necessarily know the
probability distribution functions from which the data
were drawn.

In statistics, standardized coefficients or beta coefficients can
be defined as the estimates resulting from an analysis performed
on variables that have been standardized so they have variances
of 1. This is usually done to answer the question of which of the
independent variables has a greater effect on the dependent
variable in a multiple regression analysis, when the variables
are measured in different units of measurement. Before fitting the
multiple regression equation, all variables (independent and
dependent) can be standardized by subtracting the mean value
and dividing by the standard deviation. The coefficients listed in
the @RISK sensitivity report are normalized regression coeffi-
cients associated with each input. A regression value of 0 indicates
that there is no significant relationship between the input and the
output, while a regression value of þ1 or �1 indicates a þ1 or
�1 standard deviation change in the output for a 1 standard
deviation change in the input.

Table 5 shows the regression sensitivity ranking results of
flyrock equation (Eq. 6). Here, the þ0.93 coefficient for powder
factor is the standardized, or beta weight coefficient of powder
factor in this regression. According to standardized b coefficients,
powder factor is the most influential parameter on the flyrock
range. One unit increase in the standard deviation of the powder
factor increases the standard deviation of the flyrock range by
0.93. The next most effective parameter on flyrock is the mean
charge per blasthole. One unit increase in standard deviation of
charge per blasthole decreases standard deviation of flyrock range
by 0.71. The least effective parameter on the flyrock is the burden
according to regression sensitivity analysis. One unit increase in
standard deviation of burden decreases standard deviation of the
flyrock range only 0.18.

When ranking by the correlation coefficients are considered in
Table 5, the most effective three parameters on the flyrock range
are the powder factor, stemming and burden, respectively. The
least effective parameters on the flyrock range are the spacing and
mean charge per blasthole, respectively. The obtained ranks for
parameters in regression are not compatible with intuition
whereas in correlation they are more reasonable based on
engineering judgments and past experiences. There should be a
multicollinearity effect on the regression analysis. Multicollinear-
ity occurs when independent variables in a model are correlated
to each other as well as to the output. Unfortunately, reducing the
impact of multicollinearity is a complicated problem to deal with,
but it may be considered to remove the variable that causes the
multicollinearity from the sensitivity analysis.

In a different study, Rezai et al. [17] developed a fuzzy model
to predict flyrock distance on the data collected from an open-pit
iron mine. They performed a sensitivity analysis to determine the
most effective parameters on the flyrock using the cosine
Table 5
Sensitivity ranking of input variables according to regression and correlation

analysis.

Name of the variable Stepwise regression Correlation coefficient

Powder factor (P) þ0.93 (1) þ0.53 (1)

Stemming (St) þ0.31 (4) þ0.42 (2)

Burden (B) �0.18 (7) �0.30 (3)

Blasthole length (H) þ0.63 (3) þ0.22 (4)

Blasthole diameter (D) þ0.25 (5) þ0.22 (5)

Spacing (S) þ0.24 (6) þ0.13 (6)

Charge per blasthole (Q) �0.71 (2) �0.02 (7)

The values in the bracket () shows the ranking.
amplitude method (CAM). The sensitivity analysis revealed that
the most effective parameters on the flyrock were the powder
factor and stemming length whereas the least effective was the
rock density. Aghajani-Bazzazi et al. [15] reported flyrock dis-
tances for fifteen blasts at Esfordi phosphate mine with blast
design parameters. They analyzed the influence of burden, stem-
ming length and powder factor, whereas they did not include
variation due to blasthole length or blasthole diameter. Linear,
exponential, power and polynomial regression methods were
compared in their research. Based on the results, an empirical
formula was developed to predict the flyrock distance and
powder factor was the major factor contributing to flyrock range.
5. Discussion and conclusions

Flyrock can be a serious hazard associated with blasting. Many
surface blasting accidents involving injury result from excessive
flyrock beyond the protected blast zone. Numerous cases of
equipment damage at the mine, quarry or construction site have
resulted from flyrock. Therefore, exact and accurate prediction of
flyrock will be a significant measure for eliminating related
problems. Flyrock prediction is a complex issue in mining indus-
try because at first many parameters influence flyrock phenom-
enon that can be divided generally into two categories;
controllable and uncontrollable parameters. Second, most of these
parameters accompany with uncertainty due to variability in
blasting parameters. The aim of this study was to predict flyrock
distance and effects of controllable blasting parameters on it
using stochastic modeling. In this study, for prediction of flyrock
distance an empirical equation and MC method were used.
Flyrock empirical equation was developed based on collected
data from blasting events in Sungun copper mine by dimensional
analysis. This model is constituted of major controllable blasting
parameters, such as burden, spacing, stemming, blasthole length,
blasthole diameter, powder factor, and mean charge per blasthole.
Also, sensitivity analysis was conducted for the determination of
the effects of controllable blasting parameters on flyrock distance.
The results of the presented study can be explained as follows:
1.
 For flyrock empirical equation, coefficient of determination
(R2), VAF and RMSE indices were obtained as 83.38%, 83.38%
and 6.09, respectively, so this equation can sufficiently predict
flyrock distance with acceptable accuracy.
2.
 It is important to note that the validity of the proposed equation
is limited by the data range and sample types, which are used to
derive the equation. Therefore, it is strongly recommended that
it is not assumed to be applicable to all surface mines. Similar
equations can also be developed in other surface mines, which
employ a similar mining method to those reported in this study
in order to predict flyrock distance.
3.
 A comparison between simulation results and measured
values of flyrock in the field, indicates that the MC simulation
can predict flyrock distance relatively well. The real mean
flyrock is 72.43 m while the predicted value is 81.44 m.
4.
 In this paper, the sensitivity analysis was performed employ-
ing two methods: regression sensitivity and correlation sensi-
tivity. The obtained results from these methods were different
but, the powder factor was the first parameter in controlling
flyrock in both methods. Based on regression sensitivity the
most effective parameters were powder factor, mean charge
per blasthole and blasthole length whereas based correlation
sensitivity these parameters are powder factor, stemming and
burden. The observed differences between two methods are
due to multicollinearity effect. It is worth mentioning that the
obtained ranks for parameters in correlation sensitivity are
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more reasonable based on engineering judgments and past
literatures.
5.
 Based on sensitivity analysis, stemming length, spacing, blast-
hole length, blasthole diameter and powder factor have a
direct relationship with flyrock distance while burden and
mean charge per blasthole have an indirect relationship. It
means that increase in stemming length, spacing, blasthole
length, blasthole diameter and powder factor cause more
flyrock distance, while increase in amounts of burden and
mean charge per blasthole leads to decrease in flyrock dis-
tance. It can be simply understood that the indirect relation-
ship between mean charge per blasthole and flyrock distance
is not in accordance with intuition. It is obvious that an
increase in mean charge per blasthole leads to an increase in
flyrock distance. The main reason of this contradiction is due
to the approach of developing flyrock equation. It is clear that
the necessity of equation in dimensional analysis is identical
dimensions in both sides of equation. Since, in proposed
flyrock equation the dimension in left-hand side of equation
is L, the dimension of right-hand side should be the same.
Among controllable blasting parameters; burden, spacing,
stemming, blasthole length and blasthole diameter have the
dimensions of length (L), and two other parameters, powder
factor and mean charge per blasthole have the dimensions of
M/L3 and M, respectively. Thus, in order to equalize the
dimension of both sides the ratio of P/Q was used, which has
the dimension of L. This means that in order to develop the
flyrock equation by dimensional analysis based on collected
data in Sungun copper mine, the Q has indirect relationship
with flyrock inevitably. Consequently, this indirect relation-
ship is observed in results of sensitivity analysis.
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[44] Karacan CÖ, Luxbacher K. Stochastic modeling of gob gas venthole produc-
tion performances in active and completed longwall panels of coal mines. Int
J Coal Geol 2010;84:125–40.

[45] Palisade. Guide to Using @RISK. Risk Analysis and Simulation Add-In for
Microsofts Excel. New York: Palisade Corporation; 2000.


	Development of an empirical model for predicting the effects of controllable blasting parameters on flyrock distance in...
	Introduction
	Case study: Sungun copper mine
	Mine description
	Data collection

	Development of a flyrock predictive model
	Flyrock equation
	Performance of flyrock equation

	Stochastic modeling approach for prediction of flyrock range
	Background
	Monte Carlo simulation
	Sensitivity analysis

	Discussion and conclusions
	Acknowledgments
	References




