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Metamaterial model of fractal time
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While numerous examples of fractal spaces may be found in various fields of science, the flow of time
is typically assumed to be one-dimensional and smooth. Here we present a metamaterial-based physical
system, which can be described by effective three-dimensional (2+1) Minkowski spacetime. The peculiar
feature of this system is that its time-like variable has fractal character. The fractal dimension of the
time-like variable appears to be D = 2.

© 2012 Elsevier B.V. All rights reserved.
Recent advances in metamaterial optics [1–3] enable researchers
to design novel physical systems, which can be described by ef-
fective spacetimes having very unusual metric and topological
properties. Examples include constructing analogues of black holes
[4–7], wormholes [8,9], spinning cosmic strings [10], and even
the metric of Big Bang itself [11]. More unusual examples include
building a physical system, which can be described by (−,−,+,+)

metric signature, which differs from the usual Minkowski signa-
ture (−,+,+,+) of physical spacetime [12]. The latter advance is
based on the unusual optics of hyperbolic metamaterials, which
have different signs of dielectric permittivity ε along different
spatial directions. Mapping of monochromatic extraordinary light
distribution in a hyperbolic metamaterial along some spatial direc-
tion may model the “flow of time” in a three-dimensional (2 + 1)

effective Minkowski spacetime [11]. To better understand this ef-
fect, let us start with a non-magnetic uniaxial anisotropic material
with dielectric permittivities εx = εy = ε1 and εz = ε2, and as-
sume that this behavior holds in some frequency range around
ω = ω0. Any electromagnetic field propagating in this material can
be expressed as a sum of the “ordinary” and “extraordinary” con-
tributions, each of these being a sum of an arbitrary number of
plane waves polarized in the “ordinary” (�E perpendicular to the
optical axis) and “extraordinary” (�E parallel to the plane defined
by the k-vector of the wave and the optical axis) directions. Let us
define our “scalar” extraordinary wave function as ϕ = Ez so that
the ordinary portion of the electromagnetic field does not con-
tribute to ϕ . Since metamaterials exhibit high dispersion, let us
work in the frequency domain and write the macroscopic Maxwell
equations as [13]

ω2

c2
�Dω = �∇ × �∇ × �Eω and �Dω = ↔

εω �Eω, (1)
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Fig. 1. (a) Schematic view of the “layered” hyperbolic metamaterial made of sub-
wavelength metal and dielectric layers. (b) Schematic view of a particle world line
in a (2 + 1)-dimensional Minkowski spacetime.

which results in the following wave equation for ϕω if ε1 and ε2
are kept constant inside the metamaterial:

−ω2

c2
ϕω = ∂2ϕω

ε1∂z2
+ 1

ε2

(
∂2ϕω

∂x2
+ ∂2ϕω

∂ y2

)
. (2)

In hyperbolic metamaterials [14] ε1 and ε2 have opposite signs.
Let us consider the case of constant ε1 > 0 and ε2 < 0, and as-
sume that this behavior holds in some frequency range around
ω = ω0. Such behavior can be obtained in the “layered” hyper-
bolic metamaterial [15] shown in Fig. 1(a). Let us assume that
the metamaterial is illuminated by coherent CW laser field at fre-
quency ω0, and we study spatial distribution of the extraordinary
field ϕω at this frequency. Under these assumptions Eq. (2) can be
re-written in the form of 3D Klein–Gordon equation describing a
massive scalar ϕω field:

− ∂2ϕω

2
+ 1

(
∂2ϕω

2
+ ∂2ϕω

2

)
= ω2

0
2
ϕω = m∗2c2

2
ϕω (3)
ε1∂z |ε2| ∂x ∂ y c h̄
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in which the spatial coordinate z = τ behaves as a “time-like” vari-
able. Therefore, Eq. (3) describes world lines of massive particles
which propagate in a flat (2 + 1) Minkowski spacetime. When a
metamaterial is built and illuminated with a coherent extraordi-
nary CW laser beam, the stationary pattern of light propagation
inside the metamaterial represents a complete “history” of a toy
(2 + 1)-dimensional spacetime populated with particles of mass
m* (Fig. 1(b)). This “history” is written as a collection of particle
world lines along the “time-like” z coordinate. The effective inter-
val in this spacetime may be written as

ds2 = −ε1 dz2 + |ε2|
(
dx2 + dy2), (4)

where the “time interval” between events may be calculated as

T =
∫

dτ =
∫

ε
1/2
1 dz. (5)

Now let us recall that in addition to frequency dispersion, hy-
perbolic metamaterials typically exhibit spatial dispersion, which
means that ε1 and ε2 exhibit weak dependence on the wave vec-
tor of the form

ε = ε(0) + α

(
k2c2

ω2

)
(6)

where α is small [16]. When the absolute values of ε
(0)
1 and ε

(0)
2

are large, spatial dispersion can be disregarded, and description of
the hyperbolic medium in terms of effective (2 + 1) Minkowski
spacetime is a good approximation. On the other hand, the effect
of spatial dispersion may become very interesting if either ε1 or
ε2 are close to zero. Below we will demonstrate that the case of
constant small positive ε1 ∼ 0 and large negative ε2 leads to very
interesting and peculiar physical situation, in which the behavior
of time-like z = τ variable becomes fractal.

Fractal objects and fractal dimensions are very useful mathe-
matical concepts. A typical problem where the fractal dimension
arises naturally is an attempt to measure the perimeter of an is-
land in the ocean. The result would depend on the resolution used
in the measurements. The value of the perimeter measured on the
large scale from an aerial map would be much smaller than the
value obtained by walking along the beach with a ruler, when ev-
ery tiny curve of the beach is measured. The fractal dimension D
is defined from the variation with resolution of the main fractal
variable (a length L of a fractal curve, an area of a fractal sur-
face, etc.) [17]. If DT is the topological dimension (DT = 1 for a
curve, DT = 2 for a surface, etc.), the scale or fractal dimension
D = DT + δ is defined as

δ = d(ln L)

d(ln(l/λ))
, (7)

where λ is the resolution of the measurements. If δ is constant and
DT = 1 we obtain

L = L0

(
l

λ

)δ

, (8)

where the length L0 is measured when λ = l. A well-known exam-
ple of a fractal self-similar curve (the Koch snowflake having fractal
dimension D = 1.2619) is shown in Fig. 2. Compactified fractal
extra dimensions of space have been considered in [18], while the-
oretical models of fractal time and more general models of fractal
spacetime has been suggested by many authors since about 30
year ago [19–22]. These models may help tame divergencies, which
typically occur in the quantum gravity theories on sub-Planckian
scales. However, the models of fractal spacetime have remained in
the theoretical domain only.
Fig. 2. Example of a self-similar fractal curve (Koch snowflake). The fractal dimen-
sion of this curve is D = 1.2619. Similar behavior of the time-like coordinate with
D = 2 may be achieved in a layered hyperbolic metamaterial based on ITO.

Let us now examine the behavior of “time intervals” (Eq. (5))
in a hyperbolic metamaterial in the case of constant small positive
ε1 ∼ 0 and large negative ε2. Neglecting spatial dispersion of ε2,
and assuming

ε1 = ε
(0)
1 + α

(
k2

z c2

ω2

)
≈ α

(
k2

z c2

ω2

)
(9)

the time intervals are equal to

T =
∫

dτ =
∫

ε
1/2
1 dz =

∫
α1/2 kzc

ω
dz = T0

(
2πc

ωλ

)
(10)

which indicates that the measured time intervals are scale-
dependent. According to Eq. (8), δ = 1 and the fractal dimension
of the time-like variable appears to be D = 2. Thus, the fractal be-
havior of the time-like variable found here is best illustrated as
a Hilbert curve (a particular example of Peano curve, a continu-
ous space-filling curve having D = 2, which is shown in Fig. 3).
Note that the main physical reason for spatial dispersion in hyper-
bolic metamaterials is the presence of surface plasmon (SP) modes
propagating along metal–dielectric interfaces. At large SP momenta
kz ∼ kxy [23]. Therefore, the chosen functional dependence of ε1
on kz (Eq. (9)) appears natural and reasonable.

Let us consider a practical design of such metamaterial. Di-
agonal components of dielectric tensor of the layered hyperbolic
metamaterial shown in Fig. 1(a) may be obtained using Maxwell–
Garnett approximation [15]:

ε1 = αεm + (1 − α)εd, ε2 = εmεd

(1 − α)εm + αεd
(11)

where α is the fraction of metallic phase, and εm < 0 and εd > 0
are the dielectric permittivities of metal and dielectric, respectively.
ε1 ∼ 0 requirement leads to the following choice of α:

α = εd
, (12)
(εd − εm)



I.I. Smolyaninov / Physics Letters A 376 (2012) 1315–1317 1317
Fig. 3. Fractal behavior of the time-like z coordinate found in the metamaterial ex-
ample considered here is best illustrated as a Hilbert curve (a particular example of
Peano curve, a continuous space-filling curve having D = 2). First, second and third
order Hilbert curves are shown as red, blue and black curves, respectively. (For in-
terpretation of the references to color in this figure legend, the reader is referred to
the web version of this Letter.)

which leads to ε2 being equal to

ε2 = εmεd(εd − εm)

(ε2
d − ε2

m)
. (13)

We can see that ε2 < 0 requirement may be satisfied if −εm < εd .
Therefore, such low loss “alternative plasmonic materials” [24] as
indium tin oxide (ITO) can be used as the “metallic” component
of the required hyperbolic metamaterial in the near IR (1.5–2 μm)
spectral range.

Building an experimental model of fractal time and more gen-
eral fractal spacetime will provide us with an interesting tool to
gain direct experimental insights into the “analogue sub-Planckian
physics”. Modern developments in gravitation research strongly in-
dicate that classic general relativity is an effective macroscopic
field theory, which needs to be replaced with a more fundamen-
tal theory based on yet unknown microscopic degrees of freedom.
It seems plausible that the macroscopic general relativity domain,
and the microscopic physics domain are separated by an interest-
ing region in which spacetime behavior may indeed show fractal
features [25,26]. Therefore, experimental studies of such an ana-
logue transitional region could be extremely useful. Moreover, re-
cent observation that physical vacuum itself may behave as a hy-
perbolic metamaterial [27] provides an additional incentive.

In conclusion, we have presented a “layered” hyperbolic meta-
material system exhibiting spatial dispersion, which can be de-
scribed by effective three-dimensional (2 + 1) Minkowski space-
time. The peculiar feature of this system is that its time-like vari-
able has fractal character. The fractal dimension of the time-like
variable appears to be D = 2. Such a metamaterial may be realized
in the near IR range using such “alternative plasmonic materials”
as ITO.
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