454

IEEE TRANSACTIONS ON RELIABILITY, VOL. 56, NO. 3, SEPTEMBER 2007

On Recent Generalizations of the Weibull Distribution

Hoang Pham, Fellow, IEEE, and Chin-Diew Lai

Abstract—This short communication first offers a clarification to
a claim by Nadarajah & Kotz. We then present a short summary
(by no means exhaustive) of some well-known, recent generations
of Weibull-related lifetime models for quick information. A brief
discussion on the properties of this general class is also given. Some
future research directions on this topic are also discussed.

Index Terms—Bathtub shape, failure rate function, Weibull dis-
tribution.
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hazard rate function

T =3

(t)  Cumulative failure rate function [H (t) = fot h(z)dx]
Reliability function [= 1 — F(t)]
u(t)  Mean residual life defined by E(T — t|T > t)

m Mean lifetime

=
—
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=

ACRONYM!
IFR  Increasing failure rate
DFR Decreasing failure rate
BT Bathtub
MBT Modified bathtub
UBT Upside-down bathtub
MRL Mean residual life
WPP  Weibull probability plot

1. INTRODUCTION
N the context of reliability modeling, some well-known in-
I terrelationships between the various quantities such as pdf,
cdf, failure rate function, cumulative failure rate function, and
reliability function, for a continuous lifetime 7', can be summa-
rized as

W) = —— = o (1)

H(t) = / h(z)dz )

e—H(t) (3)
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IThe singular and plural of an acronym are always spelled the same.

Note that all the cumulative failure rate functions must satisfy
the following conditions:

i. H(t) is nondecreasing for all ¢ > 0

ii. H0) =0

il limy_oo H(t) = 00

Thus, knowing one of the three quantities, one can easily ob-
tain the other two. In this short communication, we shall see how
(3) facilitates the construct of Weibull-type lifetime distribu-
tions. The bathtub-shaped failure rate function plays an impor-
tant role in reliability applications, such as human life, and elec-
tronic devices. Many authors have proposed new distributions
based on the traditional Weibull distribution function. Nadarajah
& Kotz [20] recently made the point that the proposed distribu-
tions, published in reliability engineering journals, are either not
new, or arise from a representation suggested by Gurvich et al.
[8]. They feel that Gurvich et al. [8] were the first to present a
class of distributions generalizing the traditional Weibull distri-
bution, and their work needs to be recognized by the readers of
reliability journals.

This short communication first offers a clarification that the
claim by Nadarajah & Kotz [20] is inaccurate because (8) in
[8] (equivalent to (1) in [20]) is exactly one of many common
fundamental interrelationships in reliability concepts (see [1],
page 12, (2.1)]. Thus, the contribution by Gurvich et al. [8] has
no direct relevance in reliability engineering. We then present a
short summary (by no means exhaustive) of some well-known
related Weibull distributions with two or more parameters, and
their characteristics along with some recent distribution models
for quick information. Some future research directions on this
topic are also discussed.

II. CUMULATIVE FAILURE FUNCTION H AND GURVICH ET
AL’S G

Equation (3) above describes the relationship between the re-
liability function, and cumulative failure rate function; it can be
found in, for example, Barlow & Proschan [1], page 12. De-
pending on how elaborate a lifetime distribution one wishes to
obtain, one can simply use H(t) (or the failure rate function h(t))
to yield more complex, or less complex analytic function for
R(t). In the past decades, many authors [2]-[4], [6]-[10], [13],
[15]-[18], [20]-[22], [26]-[35] have proposed, or studied life-
time distributions with various bathtub-shaped failure rates.

In the context of modeling the random strength of brittle ma-
terials, Gurvich et al. [8] considered a class of distributions gen-
eralizing the traditional Weibull model:

R(t) = exp{—aG(t)},a >0 O]

where G(t) is a monotonically increasing function of ¢. Com-
paring (3) to (4), we immediately note that «G(¢) = H(t). This
implies that the class represented by (4) is a well-known general
result in reliability literature.

0018-9529/$25.00 © 2007 IEEE
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Nadarajah & Kotz [20] recently claim that “Because of the
obvious flexibility of (1), we feel that it is important that the
work of Gurvich et al. [8] is recognized by the general audience
of reliability journals.”? This claim is therefore inaccurate in
view of our discussion above.

III. RECENT DEVELOPMENT IN WEIBULL RELATED MODELS

A life distribution can be classified according to the shape of
its h(t), or its u(t). For convenience sake, the life classes are
often given by their abbreviations IFR, DFR, BT, MBT, etc. We
say that F'is IFR (DFR) if h(¢) is nondecreasing (nonincreasing)
in t; BT (UBT) if h(t) has a bathtub (upside-down bathtub)
shape; MBT (modified bathtub) if h(t) is first increasing, then
followed by a bathtub curve. For more details concerning these
and other aging classes, see Lai & Xie ([12], Section 2.4).

Despite its popularity, and wide applications, the traditional
2- or 3-parameter Weibull distribution is unable to capture the
behavior of a lifetime data set that has a non-monotonic failure
rate function Ah(t). For this reason, many aging distributions
were proposed to overcome this deficiency. Taking the advan-
tage of the relationship given in (3), or (4), one can construct a
generalized Weibull distribution by selecting an easily differen-
tiable function H (t). We note that H'(¢) = h(t). With a suit-
able choice of H (t), and its parameter, we can obtain a bathtub
shaped failure rate distribution. In many practical applications,
h(t) is initially decreasing, followed by a period of approxi-
mately constant hazard, and ultimately increasing because of the
eventual positive aging effect. It has widely been believed that
many products, particularly electronic items such as silicon in-
tegrated circuits, exhibit a bathtub shaped failure rate function.
This belief is supported by much experience, and extensive data
collection in many industries.

For most of the existing generalized Weibull distributions in
reliability literature, the function H(¢) is quite simple so that
both f(t), and h(t) have a simple form. In general, the moments
of Weibull related models are often difficult to obtain, but their
quantiles are not hard to find. In particular, the median can be
easily obtained. Also, one can usually construct a generalized
probability plot similar to the well-known Weibull probability
plot (WPP). A WPP plot allows the model builder to determine
whether one or more of the Weibull models are suitable for mod-
eling a given data set. It also provides some initial estimates of
the parameters concerned. See Section 11.3 of Murthy ez al. [19]
for a discussion.

Table I offers a brief but by no means exhaustive summary
of common well-known lifetime distributions with two or more
parameters, and their characteristics, along with some recent
distributions appearing in the reliability engineering literature.
Table II summarizes some other generalized Weibull models
that do not have a simple form for R(t), but nevertheless is re-
lated to the Weibull one way or another. Without loss of gener-
ality, we may classify a generalized Weibull distribution as one
of the following:

2In the original quote, the reference is numbered as [1], but we renumbered
it to match our references for your convenience.
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1) Involve with one single Weibull: a) linear transformation;
b) power transformation; c) log transformation; d) non-
linear transformation; and e) Inverse transformation.

2) By adding one or more parameters: a) adding a location
parameter; b) adding a shape parameter; c) adding a scale
parameter; d) adding a location and a shape parameter; e)
adding a parameter that serves as a hybrid of a shape and a
scale parameter; f) adding two location parameters, and g)
truncation.

3) Power transformation of cumulative distribution, or sur-
vival function.

4) Asamodification of some generalized gamma distribution.

5) Mixtures: a) mixtures of two or more Weibull distributions;
b) mixture of a singular distribution with a Weibull; and c)
mixtures of two generalized Weibull distributions.

6) Construct a new failure rate function h(t) as a simple gen-
eralization of the failure rate function of Weibull. Then a
generalized Weibull can be obtained:

R(t) = exp{=H()}, > 0where H(t) = / h(z)dz.

7) Involving two or more Weibull distributions: a) finite mix-
tures; b) n-fold competing risk (equivalent to independent
components being arranged in a series structure); c) n-fold
multiplicative models; and d) n-fold sectional models.

8) Weibull with varying parameters. The parameter(s) are ei-
ther a function of time ¢, or some other variables such as
stress level, or are random variables.

IV. RECENT WEIBULL MODELS

Most of the generalizations or modifications of Weibull distri-
butions listed in the tables have been discussed in Murthy et al.
[19]. We now briefly discuss some of the recent Weibull studies
that appeared since 2004.

i) Based on (4), Nadarajah & Kotz [20] proposed a gener-
alization that contains the model of Xie et al. [34], with
Chen [5] as a particular case

R(t) = exp {—atb (edd - 1)} ya,d > 05b,¢> 05t > 0.

ii) Muralidharan & Lathika [18] considered a lifetime phe-
nomenon with instantaneous, or early failures. They
showed that such situations can be modeled by mixing
a Weibull distribution with a singular distribution at
zero (or at ¢ = ¢§), thus resulting in a generalized
Weibull model. Let F' be either a two-parameter, or a
three-parameter Weibull distribution; Fy; be the cdf of
the resulting mixture, and R(t) = 1 — F(t), then the
distribution of the instantaneous failure Weibull model
can be expressed as

t=20
t>0

l—«

FM(t):{l—a-l-aF(t)
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TABLE I
RELIABILITY FUNCTIONS FOR SOME COMMON GENERALIZED WEIBULL DISTRIBUTIONS
Author Reliability function Characteristics
Gompertz (1825) [7] 9 IFRif o >0
R(1)=exp ;(l—ew) ) DFRif @ <0

0>0,—o<a<ow; t=0.

Weibull (1951) [30] R(t) = exp(— ,1;“), A,a>0;1>0. Exponential. if o =1
IFR if a>1
DFR if a <1
Smith & Bain (1975) R {1_ (M“}. 150150 |BTifO<a<l
[28](Exponential power (O =exp|l=e™ f;0,4>0;120. Special cases of Chen’s
model) model

Xie & Lai (1995) [33]

R(t)=exp{—~(t/ B)*1—(t/ 5,2}
al’aZ’ﬂl’ﬂz >0; t20.

IFRif o, @, >1
DFRif a;,a, <1
BTif ¢ <1, a,>1

Chen (2000) [5] R(f) - exp{—/'L I:etﬁ_ I:I} ,A,ﬂ > 0;t >0 BT if ﬂ <1
IFR if g2>1
Exponential power if
A=1

Pham (2002) [26] R(t)= exp{l - at“} sa,a>0,120. DFR for 1<t

IFR for > #,where

l-a

1
o[ams)
0"\ alna

Xie, Tang & Goh (2002)
[34]
a,f,A>0; t>0.

R(t)=exp {/1/}[1 - e(t/ﬁ)"]}

Chen’s model if g =1
IFRif a 21
BTif 0<a<l

Lai, Xie & Murthy (2003)

R(f) = exp {—ato‘el’}
(13]

A20, a,a>0; t=0.

Weibull if 1=0:
Exponential if =0, =1

Gurvich, Dibenedetto & IFRif ¢ >1

Rande (1997) [8] BTif 0<a<l
Nadarajah & Kotz (2005) R()=exp {ﬁ at"(e“dq)} Xie, Tang & Goh’s model
[20] if b=0

T a,d >0;b,c>0; t>0. Chen’s model if 5=0, c=1

Bebbington, Lai & Zitikis
(2006) [3]]

R(?) =exp{—(e°” B ’)};a,ﬂ >0;¢>0.

IFRiff af > (27/64)
MBT if aff < (27/64)

1 Contrary to what was stated in Nadarajah & Kotz [20], this model does not contain the model given by Lai et al. [13]

iif)

R(t)

iv)

Similarly, the distribution Fy; with early failure can be
obtained by mixing the two distributions D, and F’ as

Fy(t) = (1 — a)D(t) + aF(t)

where D(t) is a discrete (singular) distribution with mass
at t = 9. Here, the known 6 is assumed to be small, and
specified in advance.

Nikulin & Haghighi [24] proposed a generalized power
Weibull distribution with three parameters, and its relia-
bility function

=exp{1=(1+@#/A™'}, t>00,8>0,60>0.
4)
Note that when # = 1, (5) reduces to a two-parameter
Weibull; when § = 1, and o = 1, it reduces to the ex-
ponential. They also showed that h(t) is i) IFR if either
a > 1l,and o > 1/6;0or @ = 1,and § > 1; ii) DFR
if either 0 < a < 1,and @ < 1/6; or af = 1, and
0 < a < 1;iii)) BTif0 < 1/6 < « < 1; and iv) UBT if
1/0 > a > 1.
Bebbington ef al. [3] obtained a generalization of Weibull
having a simple, yet flexible cumulative failure rate H:

R(t) = exp {~(" ")} 10,8 > 06> 0. ()

Equation (6) reduces to a standard Weibull when § = 0,
and let @ = log \.It was shown that F' is IFR iff af <
(27/64), and MBT if a8 < (27/64).

V. CONCLUDING REMARKS

Many generalized Weibull models have been proposed in re-
liability literature through the fundamental relationship between
the reliability function R(¢), and its corresponding cumulative
failure rate function H(¢). In this note, we summarize some
commonly known models, and also discuss their general proper-
ties with a hope to provide practitioners a quick overview of the
most recent developments in reliability concerning the Weibull
distribution. Most generalizations of the Weibull distribution
stemmed from a desire to provide a better fitting of certain data
sets than the traditional two- or three- parameter Weibull. One
would expect many more such generalizations, modifications,
or extensions to appear in years to come. Given a data set, a re-
searcher has an onerous task to select an ‘optimal’ model among
many possible Weibull related models.

In general, there are three steps involving the empirical mod-
eling of data, including Weibull, such as model selection, esti-
mation of model parameters, and model validation. On param-
eter estimation, the number of parameters could be pivotal; and
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TABLE II
RELIABILITY FUNCTIONS FOR SOME PARAMETRIC DISTRIBUTIONS THAT CAN BE CONSIDERED AS GENERALIZED WEIBULL DISTRIBUTIONS
Author Reliability function Characteristics
Whige (1969) [ f—a h(t) defined over (—o0,00)
16] R(t)=exp —exp(T) , —0<t<o0;
(log Weibull) —w<a<m, b>0
Hjorth (1980) exp(—5t2/2) BT shape if 0< 5 < 6p
9] RO)=———72=>, 3,5,0>0,:20.
(1+pn°F
Slymen & B —1? BT if
Lachenbruch | R(f)=expy—exp| a+————|;,720 2{(@+1)t-6-2-(0-1)10-2}
20
(1984) [29] x(t0-1-¢-6-1)-2 bounded
Phani (1987) (t—a)P1 Kies (1958)[9]
[27] R(t) =exp {—ﬁ. —(b s 7 itp=p,=4
A50,8's>0,0<a<t<b<owo IFRif f>1
BTif 0<p<1
Mudholkar & o7’ . Weibull if 8=1
Srivastava R@n= 1_[1 - exp(—t/ﬂ) } 120; Exponential if o =6 =1
(1993) [16] a,f>0,60 DFRif ,6 <1
(Exponentiated IFR if «,0>1
Weibull) BT of IFR if & >1,0<1:
UBT of DFRif @ <1,0 >1:
Mudholkar, N BT for a <1, A >0
Srivz_istava & R(t)=1-|1- 1_,1(i] , IFR for =1, 120
Kollia (1996) B DFR for <1, 120
[17] a,f>0,120 UBT for a >1, 1>0
Exponential for « =1, A =0
Marshall Olkin vexp [_(, / ﬁ)ﬂ} IFRifv>1, a>1
(1997) [15] R(@)= P DFRif v>1, a <1
1-(1-v)exp| (t/ B)* |
MBT a=2,v=0.10r0.05
a,B,v>0;t>0.
Inverse R(®) =1-exp(—(B/6)*),a, B >0;t>0. UBT
Weibull ( )
(Jiang et al.
2001) [10]
Nikulin & B o\? . Can achieve various shapes,
Haghighi R(r)=exp {1 _(1 + (l/ﬂ) ) }’t 20,,6>0,020 See Section 6 below.
(2006) [24]

1 log Weibull is not a lifetime distribution.

how easily the estimates of these parameters can be found is
also an important factor. The principle of parsimony may apply
in this case. An overcomplicated Weibull model often dimin-
ishes the possibility of interpreting the parameters. Generally
speaking, a Weibull model that has more than three parameters
is undesirable, with the exception of mixtures of two modified
Weibull distributions, which typically require 5-6 parameters
including the mixing proportion. This is because the parame-
ters in a mixture distribution are ‘separated’ owing to the ad-
ditive nature of both the distribution function, and the density
function. Thus mathematical operations on the failure rate can
be obtained relatively easily, and therefore, numerical estimates
of parameters become less prohibitive. Although the mixture of
two ‘pure’ Weibull distributions cannot yield a BT distribution,
its failure rate can achieve one of eight different types including
IFR, DFR, MBT and ‘roller-coaster’ shaped. See, for example,
Section 2.8.4 of Lai & Xie [12]. Our more recent search indi-
cates that a mixture of two (non-identical) modified Weibull dis-
tributions has a lot to offer.

The Weibull, and related models have been used in many ap-
plications, and for solving a variety of problems from many dis-
ciplines. Table 1.1 of Murthy et al. [19] gives a small sample

of such applications. Although the Weibull distribution is pri-
marily used for modeling product failures in reliability engi-
neering, it is also sometime used to model the human aging
process (Eakin ef al. [6]). Recently, Bebbington et al. [4] have
modeled human mortality using mixtures of two different mod-
ified Weibull distributions. We feel that various mixtures of two
modified Weibull distributions could have a wide range of pos-
sible applications, and it is worth further study.

Another important measure of reliability is the mean
residual life p(t), which is the expected remaining life be-
yond the present age t. Mathematically, it is defined as
w(t) = [, R(z)dx]/R(t). The mean residual life can also be
related to the failure rate h(t) through p/(t) = p(t)h(t) — 1.
In industrial reliability studies of repair, replacement, and other
maintenance strategies, the mean residual life function may
be proven to be more relevant than the failure rate function.
Indeed, if the goal is to improve the average system lifetime,
then the mean residual life is the relevant measure. The function
h(t) relates only to the risk of immediate failure, whereas p(t)
summaries the entire residual life distribution.

For generalized Weibull distributions, the mean residual life
w(t) is generally difficult to obtained explicitly. However, for
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the exponentiated Weibull (see Table II) of Mudholkar & Sri-
vastava [16], its u(t) is derived by Nassar & Eissa [22] for
6 = 2. Although the explicit expressions for these life distri-
butions are complex in general, their shapes can be determined
in view of their relationships with the failure rate functions (see
[12] Chapter 4). For example, suppose h(t) has a BT shape, then
w(t) has an UBT shape if h(0) > 1/u, and is decreasing if
h(0) < 1/u. Bebbington ef al. [2] recently proposed using the
curvature of the function A(t), and p(t) to identify a useful pe-
riod of a bathtub-shaped life distribution. A generalized Weibull
model is used to illustrate their procedure. Further analysis on
the relationship between the mean residual life, and the failure
rate functions for various generalizations of Weibull distribu-
tions is worth exploring.
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