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Abstract. The Kalman Filter is traditionally viewed as a prediction–correction
filtering algorithm. In this work we show that it can be viewed as a Bayesian fusion
algorithm and derive it using Bayesian arguments. We begin with an outline of
Bayes theory, using it to discuss well-known quantities such as priors, likelihood
and posteriors, and we provide the basic Bayesian fusion equation. We derive the
Kalman Filter from this equation using a novel method to evaluate the Chapman–
Kolmogorov prediction integral. We then use the theory to fuse data from multiple
sensors. Vying with this approach is the Dempster–Shafer theory, which deals
with measures of “belief”, and is based on the nonclassical idea of “mass” as
opposed to probability. Although these two measures look very similar, there are
some differences. We point them out through outlining the ideas of the Dempster–
Shafer theory and presenting the basic Dempster–Shafer fusion equation. Finally
we compare the two methods, and discuss the relative merits and demerits using
an illustrative example.
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1. Introduction

Data Fusion is a relatively new field with a number of incomplete definitions. Many of these
definitions are incomplete owing to its wide applicability to a number of disparate fields. We
use data fusion with the narrow definition of combining the data produced by one or more
sensors in a way that gives a best estimate of the quantity we are measuring.

Current data fusion ideas are dominated by two approaches or paradigms. In this report we
discuss these two philosophies that go to make up a large amount of analysis in the subject
as it currently stands. We also give a brief and select review of the literature.

The oldest paradigm, and the one with the strongest foundation, is Bayes theory. This
theory is based on the classical ideas of probability, and has at its disposal all of the usual
machinery of statistics. We show that the Kalman Filter can be viewed as a Bayesian data
fusion algorithm where fusion is performed over time. One of the crucial steps in such a
formulation is the solution of the Chapman–Kolmogorov prediction integral. We present a
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novel method to evaluate this prediction integral and incorporate it into the Bayesian fusion
equations. We then put it to use to derive the Kalman Filter in a straightforward and novel
way. We next apply the theory in an example of fusing data from multiple sensors. Again, the
analysis is very straightforward and shows the power of the Bayesian approach.

Vying with the Bayes theory is the Dempster–Shafer theory, which is a recent attempt
to allow more interpretation of what uncertainty is all about. The Dempster–Shafer theory
deals with measures of “belief” as opposed to probability. In a binary problem, Dempster–
Shafer theory introduces to the “zero” and “one” states that standard probability takes as
exhausting all possible outcomes, other alternatives such as “unknown”. We outline the ideas
of the Dempster–Shafer theory, with an example given of fusion using the cornerstone of the
theory known as Dempster’s rule. Dempster–Shafer theory is based on the nonclassical idea
of “mass” as opposed to the well-understood probabilities of Bayes theory; and although the
two measures look very similar, there are some differences that we point out. We then apply
the Dempster–Shafer theory to a fusion example, and point out the new ideas of “support”
and “plausibility” that this theory introduces.

Although some of the theory of just how to do this is quite old and well established, in
practice, many applications require a lot of processing power and speed: performance that only
now is becoming available in this current age of faster computers with streamlined numerical
algorithms. So fusion has effectively become a relatively new field.

A further fusion paradigm – not discussed here – is fuzzy logic, which in spite of all of the
early interest shown in it, is not heavily represented in the current literature.

2. A review of data fusion literature

In this section we describe some of the ways in which data fusion is currently being applied in
several fields. Since fusion ideas are currently heavily dependent on the precise application for
their implementation, the subject has yet to settle into an equilibrium of accepted terminology
and standard techniques. Unfortunately, the many disparate fields in which fusion is used
ensure that such standardisation might not be easily achieved in the near future.

2.1 Trends in data fusion

To present an idea of the diversity of recent applications, we focus on the recent International
Conferences on Information Fusion, by way of a choice of papers that aims to reflect the
diversity of the fields discussed at these conferences. Our attention is mostly confined to the
conferences, Fusion ’98 and ’99. The field has been developing rapidly, so that older papers
are not considered purely for reasons of space. On the other hand, the latest conference,
Fusion 2000, contains many papers with less descriptive names than those of previous years,
that impart little information on what they are about. Whether this indicates a trend toward
the abstract in the field remains to be seen.

Most papers are concerned with military target tracking and recognition. In 1998 there was
a large number devoted to the theory of information fusion: its algorithms and mathematical
methods. Other papers were biased toward neural networks and fuzzy logic. Less widely
represented were the fields of finance and medicine, air surveillance and image processing.

The cross section changed somewhat in 1999. Although target-tracking papers were as
plentiful as ever, medical applications were on the increase. Biological and linguistic models
were growing, and papers concerned with hardware for fusion were appearing. Also appearing
were applications of fusion to more of the everyday type of scenario: examples are traffic
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analysis, earthquake prediction and machining methods. Fuzzy logic was a commonly used
approach, followed by discussions of Bayesian principles. Dempster–Shafer theory seems
not to have been favoured very much at all.

2.2 Basic data fusion philosophy

In 1986 the Joint Directors of Laboratories Data Fusion Working Group was created, which
subsequently developed the data fusion process model (Hall & Garga 1999). This is a plan of
the proposed layout of a generic data fusion system, and is designed to establish a common
language and model within which data fusion techniques can be implemented.

The model defines relationships between the sources of data and the types of processing
that might be carried out to extract the maximum possible information from it. In between the
source data and the human, who makes decisions based on the fused output, there are various
levels of processing.

Source preprocessing:This creates preliminary information from the data that serves to inter-
face it better with other levels of processing.

Object refinement:The first main level of processing refines the identification of individual
objects.

Situation refinement:Once individual objects are identified, their relationships to each other
need to be ascertained.

Threat refinement:The third level of processing tries to infer details about the future of the
system.

Process refinement:The fourth level is not so much concerned with the data, but rather with
what the other levels are doing, and whether it is or can be optimised.

Data management:The housekeeping involved with data storage is a basic but crucial task,
especially if we are dealing with large amounts of data or complex calculations.

Hall & Garga (1999) discuss this model and present a critique of current problems in data
fusion. Their points in summary are as below.

• Many fused poor quality sensors do not make up for a few good ones.
• Errors in initial processing are very hard to correct down the line.
• It is often detrimental to use well-worn presumptions of the system: for example that its

noise is Gaussian.
• Much more data must be used for training a learning algorithm than we might at first

suppose. They quote (Hush & Horne 1993) as saying that if there arem features and
n classes to be identified, then the number of training cases required will be at least of
the order of between 10 and 30 timesmn.

• Hall and Garga (1999) also believe that quantifying the value of a data fusion system is
inherently difficult, and that no magic recipe exists.

• Fusion of incoming data is very much an ongoing process, not a static one.

Zouet al(2000) have used Dempster–Shafer theory in the study of reducing the range errors
that mobile robots produce when they use ultrasound to investigate a specular environment.
Such an environment is characterised by having many shiny surfaces, and as a result, there
is a chance that a signal sent out – if it encounters several of these surfaces – will bounce
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repeatedly; so that if and when it does return to the robot, it will be interpreted as having
come from very far away. The robot thus builds a very distorted picture of its environment.

What a Bayesianrobot does is build a grid of its surroundings, and assign to each
point a value of “occupied” (by e.g. a wall) or “empty”. These are mutually exclusive, so
p(occupied) + p(empty) = 1. The Dempster–Shafer approach introduces a third alternative:
“unknown”, along with the idea of a “mass”, or measure of confidence in each of the alterna-
tives. Dempster–Shafer theory then provides a rule for calculating the confidence measures
of these three states of knowledge, based on data from two categories: new evidence and old
evidence.

The essence of Zou’s work lies in building good estimates of just what the sensor measures
should be. That is the main task, since the authors show that the results of applying Dempster–
Shafer theory depend heavily on the choice of parameters that determine these measures.
Thus for various choices of parameters, the plan built by the robot varies from quite complete
but with additional points scattered both inside and outside of it (i.e. probabilities of detection
and false alarm both high), to fairly incomplete, but without the extraneous extra points
(corresponding to probabilities of detection and false alarm both low).

The final conclusion reached by Zouet al(2000) is that the parameter choice for quantifying
the sensor measure is crucial enough to warrant more work being done on defining just what
these parameters should be in a new environment. The Dempster–Shafer theory they used is
described more fully in § 4.

Myler (2000) considers an interesting example of data fusion in which Dempster–Shafer
theory fails to give an acceptable solution to a data fusion problem where it is used to fuse two
irreconcilable data sets. If two sensors each have strongly differing opinions over the identity
of an emitter, but agree very very weakly on a third alternative, then Dempster–Shafer theory
will be weighted almost 100% in favour of that third alternative. This is an odd state of affairs,
but one to which there appears to be no easy solution.

Myler accepts this and instead offers a measure of a new term he calls “disfusion”: the
degree to which there is agreement among sensors as to an alternative identity of the target
that has not been chosen as the most likely one. IfD is the number of dissenting sensors that
disagree with the winning sensor, but agree with each other, andN is the total number of
sensors fused, then the disfusion is defined as

disfusion≡ D/(N − 1). (1)

Thus if all but one sensor weakly identify the target as someX, while the winning sensor
identifies it asY 6= X, thenD = N − 1 and there is 100% disfusion. Myler contrasts this
with “confusion”, in which none of the sensors agree with any other. Clearly though, there
are other definitions of such a concept that might be more useful in characterising how many
sensors disagree, and whether they are split into more than one camp.

However, Myler’s paper gives no quantitative use for disfusion, apart from advocating its
use as a parameter that should prompt a set of sensors to take more measurements if the
disfusion is excessive. This is certainly a good use for it, since we need to be aware that the
high mass that Dempster–Shafer will attribute to an otherwise weak choice of target in the
above example does not mean that Dempster–Shafer is succeeding in fusing the data correctly;
and there needs to be an indicator built in to the fusion system to warn us of that.

Kokar et al (2000) bemoan the fact that at their time of writing (early 2000), data fusion
had not lived up to its promises. They suggest that it needs to be approached somewhat
differently to the current way, and have described various models that might provide a way
forward. Their main suggestion is that a data fusion system should not be thought of so much
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as a separate system that humans use to fuse data, but that rather we should be designing a
complete human-automaton system with data-fusion capability in mind.

This reference concentrates on describing various models for ways to accomplish this. The
authors first describe a generic information-centred model that revolves around the flow of
information in a system. Its highest levels are dealing with sensor data, down to the preliminary
results of signal processing, through to extraction of relevant details from these, prediction
of their states, and using these to assess a situation and plan a response. These levels are as
described in the Joint Directors of Laboratories model at the beginning of this section.

Kokar’s paper next describes a function-centred model. This is a cycle made up of four
processes that happen in temporal sequence: collecting information, collating and sorting it
to isolate the relevant parts, making a decision, and finally carrying out that decision. The
results of this then influence the environment, which in turn produces more data for the cycle
to begin anew. This model leads on quite naturally to an object-oriented approach, since it
implies a need for objects to carry out these activities. The strength of this object-oriented
approach is that it has the potential to make the code-writing implementation much easier.

Kokar et al (2000) emphasise the view that in many data fusion systems humans must
interact with computers, so that the ways in which the various processes are realised need to
take human psychology into account.

The three main methods of data fusion are compared in Cremeret al (1998). In this paper,
the authors use Dempster–Shafer, Bayes and fuzzy logic to compare different approaches to
land mine detection. Their aim is to provide a figure of merit for each square in a gridded
map of the mined area, where this number is an indicator of the chance that a mine will be
found within that grid square.

Each technique has its own requirements and difficulty of interpretation. For example,
Dempster–Shafer and Bayes require a meaning to be given to a detection involving background
noise. We can use a mass assigned to the background as either a rejection of the background,
or as an uncertainty. The fuzzy approach has its difficulty of interpretation when we come
to “defuzzify” its results: its fuzzy probabilities must be turned into crisp ones to provide a
bottom line figure of merit.

Cremeret al(1998) do not have real mine data, so rely instead on a synthetic data set. They
find that Dempster–Shafer and Bayes approaches outperform the fuzzy approach – except for
low detection rates, where fuzzy probabilities have the edge. Comparing Dempster–Shafer
and Bayes, they find that there is little to decide between the two, although Dempster–Shafer
has a slight advantage over Bayes.

2.3 Target location and tracking

Sensor fusion currently finds its greatest number of applications in the location and tracking
of targets, and in that sense it is probably still seen very much as a military technique that is
gradually finding wider application.

Triesch (2000) describes a system for tracking the face of a person who enters a room and
manoeuvres within it, or even walks past another person in that room. The method does not
appear to use any standard theory such as Bayes or Dempster–Shafer. Triesch builds a sequence
of images of the entire room, analysing each through various cues such as intensity profile,
colour and motion continuity. To each metric are assigned a “reliability” and a “quality”, both
between zero and one, and set to arbitrary values to begin with. The data fusion algorithm is
designed so that their values evolve from image to image in such a way that poorer metrics
are given smaller values of reliability, and so are weighted less. Two-dimensional functions
of the environment are then produced, one for each cue, where the function’s value increases
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in regions where the face is predicted to be. A sum of these functions, weighted with the
reliabilities, then produces a sort of probability distribution for the position of the face.

Each cue has a “prototype vector”: a representation of the face in the parameter space of
that cue. This prototype is allowed to evolve in such a way as to minimise discordance in the
cues’ outputs. The rate of evolution of the prototype is determined by comparing the latest
data with the current value of the prototype vector, as well as incorporating a preset time
constant to add some memory ability to the system’s evolution.

The results quoted by Triesch are spread across different regimes and cannot be described as
conclusive. Although higher success rates are achieved when implementing their algorithm,
the highest success occurs when the quality of each cue is constrained to be constant. Allowing
this quality itself to evolve might be expected to give better results, but in fact it does not.
Triesch posits that the reason for this anomalous result is that the dynamics of the situation,
based as they are on a sequence of images, are not as continuous as they were assumed to
be when the rules governing the system’s evolution were originally constructed. He suggests
that more work is needed to investigate this problem.

Schwartz (2000) has applied a maximum a posteriori (MAP) approach to the search for
formations of targets in a region, using a model of a battlefield populated by a formation of
vehicles. A snapshot taken of this battlefield yields a map which is then divided into a grid,
populated by spots that might indicate a vehicle – or might just be noise. He starts with a
set of templates that describe what a typical formation might look like (based on previously
collected data about such formations). Each of these templates is then fitted digitally over
the grid and moved around cell by cell, while a count is kept of the number of spots in each
cell. By comparing the location of each spot in the area delineated by the template to the
centroid of the spots in that template, it becomes possible to establish whether a particularly
high density of spots might be a formation conforming to the template, or might instead just
be a random set of elements in the environment together with noise, that has no concerted
motion.

The MAP approach to searching for formations uses the Bayesian expression:

p(formation| data) = p(data| formation) p(formation)

p(data)
. (2)

As mentioned in § 3, the MAP estimate of the degree to which a data set is thought to
be a formation is the value of a parameter characterising the formation, that maximises
p(formation | data). As is typical of Bayesian problems, the value of the priorp(formation)
at best can only be taken to be some constant. Schwartz discusses statistical models for the
placing of spots in the grid. His method does not involve any sort of evolution of parameters;
rather it is simply a comparison of spot number with template shapes. Good quality results are
obtained with – and require – many frames; but this is not overly surprising, since averaging
over many frames will reduce the amount of noise on the grid.

Fuzzy logic is another method that has been used to fuse data. This revolves around the
idea of a “membership function”. Membership in a “crisp” set (i.e. the usual type of set
encountered in mathematics) is of course a binary yes/no value; and this notion of a one or
zero membership value generalises in fuzzy set theory to a number that lies between one and
zero, that defines the set by how well the element is deemed to lie within it.

These ideas are applied by Simardet al(2000) of Lockheed Martin Canada and the Canadian
Defence Research Establishment, along with a combination of other fusion techniques, to
ship movements in order to build a picture of what vessels are moving in Canadian waters.
The system they described as of 1999 is termed the Adaptive Fuzzy Logic Correlator (AFLC).
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The AFLC system receives messages in different protocols relating to various contacts
made, by both ground and airborne radars. It then runs a Kalman Filter to build a set of
tracks of the various ships. In order to associate further contacts with known tracks, it needs
to prepare values of the membership functions for electromagnetic and position parameters.
For example, given a new contact, it needs to decide whether this might belong to an already-
existing track, by looking at the distance between the new contact and the track. Of course,
a distance of zero strongly implies that the contact belongs to the track, so we can see that
the contact can be an element of a fuzzy set associated with the track, where the membership
function should peak for a distance of zero.

Given surveillance data and having drawn various tracks from it, the system must then
consult a database of known ships to produce a candidate that could conceivably have produced
the track of interest. Electromagnetic data, such as pulse repetition frequency, can also be
given a membership within different sets of emitters. The ideas of fuzzy sets then dictate
what credence we give to the information supplied by various radar or surveillance systems.
Comparing this information for many sensors reduces to comparing the membership function
values for the various system parameters.

Once we have a candidate ship for any given track, we need to fuse incoming data by
combining it with the data that already forms part of the track history. For example, the AFLC
takes the last ten contacts made and forms the track history from these. Finally, the output
of the AFLC is a map of the region of interest filled with tracks of ships, together with their
identifications if these can be found in the ship database.

As the authors point out, the use of fuzzy logic is not without its problems when comparing
different parameters. The membership function quantifying how close a new contact is to a
track is not related to the membership function for say pulse repetition frequency, and yet
these two functions may well need to be compared at some point. This comparison of apples
with oranges is a difficulty, and highlights the care that we need to exercise when defining
just what the various membership functions should be.

Kewley (1992) compares the Dempster–Shafer and fuzzy approaches to fusion, so as to
decide which of a given set of emitters has produced certain identity attribute data. He finds
that fuzzy logic gives similar results to Dempster–Shafer, but for less numerical work and
complexity. Kewley also notes that while the Dempster–Shafer approach is not easily able to
assimilate additional emitters after its first calculations have been done, fuzzy logic certainly
can.

It’s not apparent that there is any one approach we should take to fuse track data from
multiple sensors. Watsonet al (2000) discuss one solution they have developed: the optimal
asynchronous track fusion algorithm (OATFA). They use this to study the tracking of a target
that follows three constant velocity legs with two changes of direction in between, leading to
its travelling in the opposite direction to which it started.

The authors base their technique on the Interacting multiple model algorithm (IMM).
The IMM is described as being particularly useful for tracking targets through arbitrary
manoeuvres, but traditionally it uses a Kalman Filter to do its processing. Watsonet al(2000)
suggest replacing the IMM’s Kalman Filter with their OATFA algorithm (which contains
several Kalman Filters of its own), since doing so produces better results than for the straight
Kalman Filter case. They note, however, that this increase in quality tends to be confined to
the (less interesting) regions of constant velocity.

The OATFA algorithm treats each sensor separately: passing the output from each to a
dedicated Kalman Filter, that delivers its updated estimate to be combined with those of all
of the other sensor/Kalman Filter pairs, as well as feeding back to each of the Kalman Filters.
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Certainly the OATFA model departs from the idea that the best way to fuse data is to deliver
it all to a central fusion engine: instead, it works upon each sensor separately. Typical results
of the IMM-OATFA algorithm tend to show position estimation errors that are about half
those that the conventional IMM produces, but space and time constraints make it impossible
for the authors to compare their results with any other techniques.

Hatchet al (1999) describe a network of underwater sensors used for tracking. The overall
architecture is that of a command centre taking in information at radio frequency, from a
sublevel of “gateway” nodes. These in turn each take their data acoustically from the next
sublevel of “master” nodes. The master nodes are connected (presumably by wires) to sensors
sitting on the ocean floor.

The communication between command centre and sensors is very much a two-way affair.
The sensors process and fuse some of their data locally, passing the results up the chain
to the command centre. But because the sensors run on limited battery power, the com-
mand centre must be very careful with allocating them tasks. Thus, it sets the status of each
(“process data”, “relay it only up the chain”, “sleep” or “die”) depending on how much
power each has. The command centre also raises or lowers detection thresholds in order
to maintain a constant false alarm rate over the whole field; so that if a target is known
to be in one region, then thresholds can be lowered for sensors in that region (to max-
imise detection probabilities), while being raised in other areas to keep the false alarm rate
constant.

The processing for the sensors is done using both Kalman Filtering and a fuzzy logic-based
α–β filter (with comparable results at less computational cost for theα–β filter). Fuzzy logic
is also used to adapt the amount of process noise used by the Kalman Filter to account for
target manoeuvres.

The paper gives a broad overview of the processing hierarchy without mentioning mathe-
matical details. Rather, it tends to concentrate more on the architecture, such as the necessity
for a two-way data flow as mentioned above.

2.4 Satellite positioning

Heifetzet al (1999) describe a typical problem involved with satellite-attitude measurement.
They are dealing with the NASA Gravity Probe B, that was designed to be put into Earth
orbit for a year or more in a precision measurement of some relativistic effects that make
themselves felt by changes in the satellite’s attitude.

Their work is based around a Kalman Filter, but the nonlinearities involved mean that at
the very least, an extended Kalman Filter is required. Unfortunately, the linearisation used in
the extended Kalman Filter introduces a well-understood bias into two of the variables being
measured. The authors are able to circumvent this difficulty by using a new algorithm Haupt
et al (1996), that breaks the filtering into two steps: a Kalman Filter and a Gauss-Newton
algorithm.

The first step, the Kalman Filter, is applied by writing trigonometric entities such as
sin(ωt + δ) in terms of their separate sinωt, cosωt, sinδ, cosδ constituents. Combinations
of some of these constituents then form new variables, so that the nonlinear measurement
equation becomes linear in those variables. Thus a linear Kalman Filter can be applied, and
the state estimate it produces is then taken as a synthetic new measurement, to be fed to the
Gauss-Newton iterator.

Although the paper was written before NASA’s satellite was due for launch, the authors
have plotted potentially achievable accuracies which show that in principle, the expected
relative errors should be very small.
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2.5 Air surveillance

Rodŕıguezet al (1998) discuss a proposal to fuse data in an air surveillance system. They
describe a system whose centre is the Automatic Dependent Surveillance system, in which
participating aircraft send their navigation details to Air Traffic Control for assistance in
marshalling.

Since the proposed scheme uses a central control centre for fusion, it provides a good
example of an attempt to fuse data in the way that preserves each sensor’s individuality for as
long as possible, which thus should lead to the best results. Air Traffic Control accepts each
Automatic Dependent Surveillance system message and tries to associate it with an existing
track. It does not do this on a message-by-message basis, but rather listens for some preset
period, accumulating the incoming data that arrives during this time. Once it has a collection
of data sets, it updates its information iteratively, by comparing these data sets with already-
established tracks.

2.6 Image processing and medical applications

By applying information theory, Cooper & Miller (1998) address the problem of quantifying
the efficacy of automatic object recognition. They begin with a library of templates that can be
referenced to identify objects, with departures of an object’s pose from a close match in this
library being quantified by a transformation of that template. They require a metric specifying
how well a given object corresponds to some template, regardless of that object’s orientation
in space.

This is done by means of “mutual information”. They begin with the usual measures of
entropyS(x), S(y) and joint entropyS(x, y) in terms of expected values:

S(x) = −Ex [ln p(x)],

S(x, y) = −ExEy [ln p(x, y)]. (3)

Using these, the mutual information ofx andy is defined as

I (x, y) = S(x) + S(y) − S(x, y). (4)

If two random variables are independent, then their joint entropy is just the sum of their
individual entropies, so that their mutual information is zero as expected. On the other hand,
if they are highly matched, their mutual information is also high. The core of Cooper and
Miller’s paper is their calculation of the mutual information for three scenarios: two different
sorts of visual mapping (orthographic and perspective projections), and the fusion of these.
That is, they calculate the mutual information for three pairs of variables: one element of each
pair being the selected template, and the other element being the orthographic projection, the
perspective projection, and the fusion of the two projections.

For very low signal to noise ratios (SNRs), all three mutual informations are zero, meaning
there is very little success in the object-template fits. All three informations climb as the SNR
increases, tending toward a common upper limit of about 6·5 for the highest SNR values.
The middle of the SNR range is where we see the interesting results. As hoped for, here the
fused scenario gives the highest mutual information. Typical values in the middle of the SNR
range(SNR = 10) are orthographic projection: 3·0, perspective projection: 3·8 and fused
combination: 4·6.

Similar work has been done by Viola & Gilles (1996), who fuse image data by maximising
the mutual information. In contrast to Cooper and Miller’s work, they match different images



154 Subhash Challa and Don Koks

of the same scene, where one might be rotated, out of focus or even chopped up into several
dozen smaller squares. They achieve good results, and report that the method of mutual
information is more robust than competing techniques such as cross-correlation.

Fuzzy logic has been applied to image processing in the work of Debonet al (1999), who
use it in locating the sometimes vague elliptical cross-section of the human aorta in ultrasound
images. The situation they describe is that of an ultrasound source lowered down a patient’s
oesophagus, producing very noisy data that shows slices of the chest cavity perpendicular to
the spine. The noise is due partly to the instrument, and partly to natural chest movements of
the patient during the process. Within these ultrasound slices they hope to find an ellipse that
marks the aorta in cross-section.

Rather than using the common approach of collecting and fusing data from many sensors,
Debonet al (1999) use perhaps just one sensor that collects data, which is then fused with
prior information about the scene being analysed. In this case the authors are using textbook
information about the usual position of the aorta (since this is not likely to vary from patient to
patient). This is an entirely reasonable thing to do, given that the same principle of accumulated
knowledge is perhaps the main contributor for the well known fact that humans tend to be
better, albeit slower, than computers at doing certain complex tasks.

The fuzzy model that the authors use allocates four fuzzy sets to the ultrasound image.
These are sets of numbers allocated to each pixel, quantifying for example brightness and
its gradient across neighbouring pixels. They then use these numbers in the so-called Hough
transform, a method that can detect parametrised curves within a set of points.

The result of this fusion of library images of the aorta with actual data is that an ellipse is
able to be fitted to an otherwise vague outline of the aorta in the ultrasound images. Inspection
of the ultrasound images shows that this technique works very well.

A simpler approach to medical data fusion is taken by Zachary & Iyengar (1999), who
describe a method for fusing data to reconstruct biological surfaces. They are dealing with
three sets of data: namely, contour slices that result from imaging in three orthogonal planes.
This is relatively new work, in the sense that medical imaging is usually done in a single
plane.

Their approach to the problem does not actually analyse how well they are fusing the
three sets of data. Their major effort lies in defining a good coordinate system within which
to work, as well as giving care to ensuring that the sets of data are all scaled to match
each other correctly. Although the resulting surfaces that are drawn through the points fit
well, this has only been done in Zachary & Iyengar (1999) for a spherical geometry. How-
ever, the authors do describe having applied their method to ellipsoids and to some medical
data.

2.7 Intelligent internet agents

Intelligent internet agents are also discussed in the literature, although somewhat infre-
quently. Str̈omberg (2000) discusses the makeup of a sensor management system in terms
of two architectures: agent modelling and multi-level sensor management. His approach
maintains that agents can be useful because, as an extension to the object oriented approach
that is so necessary to modern programming, they allow a high degree of robustness
and re-usability in a system. He points out that in a typical tracking problem, different
modes of operation are necessary: fast revisits to establish a candidate track, with vari-
able revisit times once the track is established. Agents are seen to be well suited to this
work, since they can be left alone to make their own decisions about just when to make an
observation.
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2.8 Business and finance

An application of fusion to the theory of finance is described by Blasch (1998). He discusses
the interaction betweenmonetary policy, being concerned with money demand and income,
andfiscal policy, the interaction between interest rates and income. The multiple sensors here
are the various sources of information that the government uses to determine such indicators
as changes in interest rates. However, these sources have differing update frequencies, from
hourly to weekly or longer. The perceived need to update markets continually, means that
such inputs are required to be combined in a way that acknowledges the different confidences
in each.

Blasch (1998) quantifies the policies using a model with added Gaussian noise to allow
the dynamics to be approximated linearly, with most but not all of his noise being white. Not
surprisingly, he uses a Kalman Filter for the task, together with wavelet transforms introduced
because of the different resolution levels being considered (since wavelets were designed
to analyse models with different levels of resolution). An appreciation of Blasch’s analysis
requires a good understanding of fiscal theory, but his overall conclusion is that the Kalman
Filter has served the model very well.

3. Bayesian data fusion

We will begin our presentation of Bayesian data fusion by first reviewing Bayes’ the-
orem. To simplify the expressions that follow, we shorten the notation ofp(A) for the
probability of some eventA occurring to just(A): the “p” is so ubiquitous that we will
leave it out entirely. Also, the probability that two eventsA, B occur is written as(A, B),
and this can be related to the probability(A|B) of A occurring given thatB has already
occurred:

(A, B) = (A|B) (B). (5)

Now since(A, B) = (B, A), we have immediately that

(A|B) = [(B|A) (A)]/(B). (6)

If there are several eventsAi that are distinguished fromB in some way, then the denominator
(B) acts merely as a normalisation, so that

(A|B) = [(B|A) (A)]/
[∑

i (B|Ai) (Ai)
]
. (7)

Equations (6) or (7) are known as Bayes’ rule, and are very fruitful in developing the ideas
of data fusion. As we said, the denominator of (7) can be seen as a simple normalisa-
tion; alternatively, the fact that the(B) of (6) can be expanded into the denominator of (7)
is an example of the Chapman–Kolmogorov identity that follows from standard statistical
theory:

(A|B) =
∑

i

(A|Xi, B)(Xi |B), (8)

which we use repeatedly in the calculations of this paper.
Bayes’ rule divides statisticians over the idea of how best to estimate an unknown parameter

from a set of data. For example, we might wish to identify an aircraft based on a set of
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measurements of useful parameters, so that from this data set we must extract the “best” value
of some quantityx. Two important estimates of this best value ofx are:

Maximum likelihood estimate:The value ofx that maximises(data|x)

Maximum a posteriori estimate:the value ofx that maximises(x|data)

There can be a difference between these two estimates, but they can always be related using
Bayes’ rule.

A standard difficulty encountered when applying Bayes’ theorem is in supplying values for
the so-calledprior probability (A) in equation (7). As an example, suppose several sensors
have supplied data from which we must identify an aircraft, which might be a Bombardier
Learjet, a Dassault Falcon, and so on. From (7), the chance that the aircraft is a Learjet on the
available evidence is

(Learjet|data) = (data|Learjet) (Learjet)

(data|Learjet) (Learjet) + (data|Falcon) (Falcon) + . . .
. (9)

It may well be easy to calculate(data|Learjet), but now we are confronted with the question:
what is (Learjet), (Falcon) etc.? These are prior probabilities: the chance that the aircraft
in question could really be for example a Learjet, irrespective of what data has been taken.
Perhaps Learjets are not known to fly in the particular area in which we are collecting data,
in which case(Learjet) is presumably very small.

We might have no way of supplying these priors initially, so that in the absence of any
information, the approach that is most often taken is to set them all to be equal. As it happens,
when Bayes’ rule is part of an iterative scheme these priors will change unequally on each
iteration, acquiring more meaningful values in the process.

3.1 Single sensor tracking

As a first example of data fusion, we apply Bayes’ rule totracking. Single sensor tracking,
also known as filtering, involves a combining of successive measurements of the state of a
system, and as such it can be thought of as a fusing of data from a single sensor over time
as opposed tosensor set, which we leave for the next section. Suppose then that a sensor is
tracking a target, and makes observations of the target at various intervals. Define the following
terms:

xk = target state at “time”k (iteration numberk);
yk = observation made of target at timek;
Yk = set of all observations made of target up to timek

= {y1, y2, . . . , yk}. (10)

The fundamental problem to be solved is to find the new estimate of the target state(xk|Yk)

given the old estimate(xk−1|Yk−1). That is, we require the probability that the target is some-
thing specific given the latest measurement and all previous measurements, given that we
know the corresponding probability one time step back. To apply Bayes’ rule for the setYk,
we separate the latest measurementyk from the rest of the setYk−1 – sinceYk−1 has already
been used in the previous iteration – to write(xk|Yk) as(xk|yk, Yk−1). We shall swap the two
termsxk, yk using a minor generalisation of Bayes’ rule. This generalisation is easily shown
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by equating the probabilities for the three events(A, B, C) and(B, A, C) expressed using
conditionals as in (5):

(A, B, C) = (A|B, C) (B|C) (C); (11)
(B, A, C) = (B|A, C) (A|C) (C); (12)

so that Bayes’ rule becomes

(A|B, C) = (B|A, C) (A|C)

(B|C)
. (13)

Before proceeding, we note that since only the latest timek and the next latestk − 1 appear
in the following expressions, we can simplify them by replacingk with 1 andk − 1 with 0.
So we write

“conditional density”︷ ︸︸ ︷
(x1|Y1)= (x1|y1, Y0) =

“likelihood”︷ ︸︸ ︷
(y1|x1, Y0)

“predicted density”︷ ︸︸ ︷
(x1|Y0)

(y1|Y0)︸ ︷︷ ︸
normalisation

. (14)

There are three terms in this equation, and we consider each in turn.
Thelikelihooddeals with the probability of a measurementy1. We will assume the noise is

“white”, meaning uncorrelated in time,1 so that the latest measurement does not depend on pre-
vious measurements. In that case the likelihood (and hence normalisation) can be simplified:

likelihood = (y1|x1, Y0) = (y1|x1). (15)

Thepredicted densitypredictsx1 based onold data. It can be expanded using the Chapman–
Kolmogorov identity:

predicted density= (x1|Y0) =
∫

dx0 (x1|x0, Y0)︸ ︷︷ ︸
“transition density”

result from previous iteration (“prior”)︷ ︸︸ ︷
(x0|Y0) . (16)

We will also assume the system obeys a Markov evolution, implying that its current state
directly depends only on its previous state, with any dependence on old measurements encap-
sulated in that previous state. Thus the transition density in (16) can be simplified to(x1|x0),
changing that equation to

predicted density= (x1|Y0) =
∫

dx0 (x1|x0) (x0|Y0). (17)

Lastly, thenormalisationcan be expanded by way of Chapman–Kolmogorov, using the
now-simplified likelihood and the predicted density:

normalisation= (y1|Y0) =
∫

dx1 (y1|x1, Y0) (x1|Y0) =
∫

dx1 (y1|x1) (x1|Y0).

(18)

Finally then, (14) relates(x1|Y1) to (x0|Y0) via (15)–(18), and our problem is solved.

1Such noise is called white because a Fourier expansion must yield equal amounts of all frequen-
cies.
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An example – Deriving the Kalman Filter:As noted above, the Kalman Filter is an example
of combining data over time as opposed to sensor number. Bayes’ rule gives a very accessible
derivation of it based on the preceding equations. Our analysis actually requires two matrix
theorems given in appendix A. These theorems are reasonable in that they express Gaussian
behaviour that’s familiar in the one dimensional case. Refer to appendix A to define the
notationN(x; µ, P ) that we use.

In particular, (A.5) gives a direct method for calculating the predicted probability density
in (17), which then allows us to use the Bayesian framework (Ho 1964) to derive the Kalman
Filter equation. A derivation of the Kalman Filter based on Bayesian belief networks was
proposed recently by Krieg (2002). However, in both these papers the authors do not solve
for the predicted density (17) directly. They implicitly use a “sum of two Gaussian random
variables is a Gaussian random variable” argument to solve for the predicted density. While
alternative methods for obtaining this density by using characteristic functions exist in the
literature, we consider a direct solution of the Chapman–Kolmogorov equation as a basis
for the predicted density function. This approach is more general and is the basis of many
advanced filters, such as particle filters. In a linear Gaussian case, we will show that the
solution of the Chapman–Kolmogorov equation reduces to the Kalman predictor equation.
To the best of our knowledge, this is an original derivation of the prediction integral, (26).

First, assume that the target is unique, and that the sensor is always able to detect it. The
problem to be solved is: given a setYk of measurements up until the current timek, estimate
the current statexk; this estimate is called̂xk|k in the literature, to distinguish it from̂xk|k−1,
the estimate ofxk given measurements up until timek −1. Further, as above we will simplify
the notation by replacingk − 1 andk with 0 and 1 respectively. So begin with the expected
value ofx1:

x̂1|1 =
∫

dx1 x1(x1|Y1). (19)

From (14) and (15) write the conditional density(x1|Y1) as

(x1|Y1) =

likelihood︷ ︸︸ ︷
(y1|x1)

predicted density︷ ︸︸ ︷
(x1|Y0)

(y1|Y0)︸ ︷︷ ︸
normalisation

. (20)

We need the following quantities.

Likelihood(y1|x1): This is derived from the measurement dynamics, assumed linear:

y1 = Hx1 + w1, (21)

wherew1 is a noise term, assumed Gaussian with zero mean and covarianceR1. Givenx1,
the probability of obtaining a measurementy1 must be equal to the probability of obtaining
the noisew1:

(y1|x1) = (w1) = (y1 − Hx1) = N(y1 − Hx1; 0, R1) = N(y1; Hx1, R1). (22)

Predicted density(x1|Y0): Using (17), we need the transition density(x1|x0) and the
prior (x0|Y0). The transition density results from the system dynamics (assumed linear):

x1 = Fx0 + v1 + perhaps some constant term, (23)
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wherev1 is a noise term that reflects uncertainty in the dynamical model, again assumed
Gaussian with zero mean and covarianceQ1. Then just as for the likelihood, we can write

(x1|x0) = (v1) = (x1 − Fx0) = N(x1 − Fx0; 0, Q1) = N(x1; Fx0, Q1). (24)

The prior is also assumed to be Gaussian:

(x0|Y0) = N(x0; x̂0|0, P0|0). (25)

Thus from (17) the predicted density is

(x1|Y0) =
∫

dx0 N(x1; Fx0, Q1) N(x0; x̂0|0, P0|0)

(A.5)= N(x1; x̂1|0, P1|0), (26)

where

x̂1|0 ≡ F x̂0|0,

P1|0 ≡ FP0|0FT + Q1. (27)

Normalisation(y1|Y0): This is an integral over quantities that we have already dealt with:

(y1|Y0) =
∫

dx1 (y1|x1)︸ ︷︷ ︸
(3.18)

(x1|Y0)︸ ︷︷ ︸
(3.22)

=
∫

dx1 N(y1; Hx1, R1) N(x1; x̂1|0, P1|0)

(A.5)= N(y1; Hx̂1|0, S1), (28)

where

S1 ≡ HP1|0HT + R1. (29)

Putting it all together, the conditional density can now be constructed through equations (20,
22, 26, 28):

(x1|Y1) = N(y1; Hx1, R1) N(x1; x̂1|0, P1|0)
N(y1; Hx̂1|0, S1)

(A.3)= N(x1; X1, P1|1), (30)

where

K ≡ P1|0HT
(
HP1|0HT + R1

)−1
, (used in next lines),

X1 ≡ x̂1|0 + K(y1 − Hx̂1|0),

P1|1 ≡ (1 − KH) P1|0. (31)
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Finally, we must calculate the integral in (19) to find the estimate of the current state given
the very latest measurement:

x̂1|1 =
∫

dx1 x1N(x1; X1, P1|1) = X1, (32)

a result that follows trivially, since it is just the calculation of the mean of the normal distri-
bution, and that is plainlyX1.

This then is the Kalman Filter. Starting witĥx0|0, P0|0 (which must be estimated at the
beginning of the iterations), andQ1, R1 (really Qk, Rk for all k), we can then calculatêx1|1
by applying the following equations in order, which have been singled out in the best order
of evaluation from (27, 31, 32):

P1|0 = FP0|0FT + Q1

K = P1|0HT
(
HP1|0HT + R1

)−1

P1|1 = (1 − KH) P1|0
x̂1|0 = F x̂0|0
x̂1|1 = x̂1|0 + K(y1 − Hx̂1|0) (33)

The procedure is iterative, so that the latest estimatesx̂1|1, P̂1|1 become the old esti-
matesx̂0|0, P̂0|0 in the next iteration, which always incorporates the latest datay1. This is
a good example of applying the Bayesian approach to a tracking problem, where only one
sensor is involved.

3.2 Fusing data from several sensors

Figure 1 depicts a sampling of ways to fuse data from several sensors.
Centralising the fusion combines all of the raw data from the sensors in one main proces-

sor. In principle this is the best way to fuse data in the sense that nothing has been lost in
preprocessing; but in practice centralised fusion leads to a huge amount of data traversing
the network, which is not necessarily practical or desirable. Preprocessing the data at each
sensor reduces the amount of data flow needed, while in practice the best setup might well
be a hybrid of these two types.

Bayes’ rule serves to give a compact calculation for the fusion of data from several sensors.
Extend the notation from the previous section, with time as a subscript, by adding a superscript
to denote sensor number:

Single sensor output at indicated time step= y sensor number
time step

,

all data up to and including time step= Y sensor number
time step . (34)

Fusing two sensors:The following example of fusion with some preprocessing shows the
important points in the general process. Suppose that two sensors are observing an aircraft,
whose signature ensures it is either one of the jet-powered Bombardier Learjet and Dassault
Falcon, or perhaps the propeller-driven Cessna Caravan. We will derive the technique here
for the fusing of the sensors’ preprocessed data.
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Figure 1. Different types of data fusion: centralised (top), centralised with preprocessing done at
each sensor (middle), and a hybrid of the two (bottom).

Sensor 1’s latest data set is denotedY 1
1 , formed by the addition of its current measurementy1

1
to its old data setY 1

0 . Similarly, sensor 2 addsits latest measurementy2
1 to its old data setY 2

0 .
The relevant measurements are in table 1. Of course these are not in any sense raw data. Each
sensor has made an observation, and then preprocessed it to estimate what type the aircraft
might be, through the use of tracking involving that observation and those preceding it (as
described in the previous section).

As can be seen from the old data,Y 1
0 Y 2

0 , both sensors are leaning towards identifying the
aircraft as a Learjet. Their latest data,y1

1 y2
1, makes them even more sure of this. The fusion

node has allocated probabilities for the fused sensor pair as given in the table, with e.g. 0·5
for the Learjet. These fused probabilities are what we wish to calculate for the latest data;
the 0·5, 0·4, 0·1 values listed in the table might be prior estimates of what the aircraft could
reasonably be (if this is our first iteration), or they might be based on a previous iteration using
old data. So for example if the plane is known to be flying at high speed, then it probably
is not the Caravan, in which case this aircraft should be allocated a smaller prior probability
than the other two.

Now how does the fusion node combine this information? With the aircraft labelledx, the
fusion node wishes to know the probability ofx being one of the three aircraft types, given the
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Table 1. All data from sensors 1 and 2 in § 3·2.

Sensor 1 Sensor 2

Old data(
x = Learjet | Y 1

0

) = 0·4 (
x = Learjet | Y 2

0

) = 0·6(
x = Falcon | Y 1

0

) = 0·4 (
x = Falcon | Y 2

0

) = 0·3(
x = Caravan| Y 1

0

) = 0·2 (
x = Caravan| Y 2

0

) = 0·1
New data(
x = Learjet| Y 1

1

) = 0·70
(
x = Learjet| Y 2

1

) = 0·80(
x = Falcon| Y 1

1

) = 0·29
(
x = Falcon| Y 2

1

) = 0·15(
x = Caravan| Y 1

1

) = 0·01
(
x = Caravan| Y 2

1

) = 0·05

Fusion node has:(
x = Learjet| Y 1

0 Y 2
0

) = 0·5(
x = Falcon| Y 1

0 Y 2
0

) = 0·4(
x = Caravan| Y 1

0 Y 2
0

) = 0·1

latest set of data:
(
x|Y 1

1 Y 2
1

)
. This can be expressed in terms of its constituents using Bayes’

rule:

(
x | Y 1

1 Y 2
1

) = (
x | y1

1 y2
1 Y 1

0 Y 2
0

)
=

(
y1

1 y2
1 | x, Y 1

0 Y 2
0

) (
x | Y 1

0 Y 2
0

)(
y1

1 y2
1 | Y 1

0 Y 2
0

) . (35)

The sensor measurements are assumed independent, so that

(
y1

1 y2
1 | x, Y 1

0 Y 2
0

) = (
y1

1 | x, Y 1
0

) (
y2

1 | x, Y 2
0

)
. (36)

In that case, (35) becomes

(
x | Y 1

1 Y 2
1

) =
(
y1

1 | x, Y 1
0

) (
y2

1 | x, Y 2
0

) (
x | Y 1

0 Y 2
0

)(
y1

1 y2
1 | Y 1

0 Y 2
0

) . (37)

If we now use Bayes’ rule to again swap the datay and aircraft statex in the first two terms
of the numerator of (37), we obtain the final recipe for how to fuse the data:

(
x | Y 1

1 Y 2
1

) =
(
x | Y 1

1

) (
y1

1 | Y 1
0

)(
x | Y 1

0

) ·
(
x | Y 2

1

) (
y2

1 | Y 2
0

)(
x | Y 2

0

) ·
(
x | Y 1

0 Y 2
0

)(
y1

1 y2
1 | Y 1

0 Y 2
0

)
=

(
x | Y 1

1

) (
x | Y 2

1

) (
x | Y 1

0 Y 2
0

)(
x | Y 1

0

) (
x | Y 2

0

) × normalisation. (38)
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The necessary quantities are listed in table 1, so that (38) gives

(
x = Learjet| Y 1

1 Y 2
1

) ∝ 0·70× 0·80× 0·5
0·4 × 0·6 ,

(
x = Falcon| Y 1

1 Y 2
1

) ∝ 0·29× 0·15× 0·4
0·4 × 0·3 ,

(
x = Caravan| Y 1

1 Y 2
1

) ∝ 0·01× 0·05× 0·1
0·2 × 0·1 . (39)

These are easily normalised, becoming finally(
x = Learjet| Y 1

1 Y 2
1

) ' 88·8%(
x = Falcon| Y 1

1 Y 2
1

) ' 11·0%(
x = Caravan| Y 1

1 Y 2
1

) ' 0·2%. (40)

Thus for the chance that the aircraft is a Learjet, the two latest probabilities of 70%, 80%
derived from sensor measurements have fused to update the old value of 50% to a new value
of 88·8%, and so on as summarised in table 2. These numbers reflect the strong belief that
the aircraft is highly likely to be a Learjet, less probably a Falcon, and almost certainly not a
Caravan.

Three or more sensors:The analysis that produced equation (38) is easily generalised for the
case of multiple sensors. The three sensor result is

(
x | Y 1

1 Y 2
1 Y 3

1

) =
(
x | Y 1

1

) (
x | Y 2

1

) (
x | Y 3

1

) (
x | Y 1

0 Y 2
0 Y 3

0

)(
x | Y 1

0

) (
x | Y 2

0

) (
x | Y 3

0

) × normalisation,

(41)

and so on for more sensors. This expression also shows that the fusion order is irrelevant, a
result that also holds in Dempster–Shafer theory. Without a doubt, this fact simplifies multiple
sensor fusion enormously.

4. Dempster–Shafer data fusion

The Bayes and Dempster–Shafer approaches are both based on the concept of attaching
weightings to the postulated states of the system being measured. While Bayes applies a

Table 2. Evolution of probabilities for the various aircraft.

Latest sensor probs:

Target type Old value Sensor 1 Sensor 2 New value

Learjet 50% 70% 80% 88·8%
Falcon 40% 29% 15% 11·0%
Caravan 10% 1% 5% 0·2%
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more “classical” meaning to these in terms of well known ideas about probability, Dempster–
Shafer (Dempster 1967, 1968; Shafer 1976; Blackman & Popoli 1999) allow other alternative
scenarios for the system, such as treating equally the sets of alternatives that have a nonzero
intersection: for example, we can combine all the alternatives to make a new state corre-
sponding to “unknown”. But the weightings, which in Bayes’ classical probability theory are
probabilities, are less well understood in Dempster–Shafer theory. Dempster–Shafer’s anal-
ogous quantities are calledmasses, underlining the fact that they are only more or less to be
understood as probabilities.

Dempster–Shafer theory assigns its masses to all of the subsets of the entities that comprise
a system. Suppose for example that the system has 5 members. We can label them all, and
describe any particular subset by writing say “1” next to each element that is in the subset,
and “0” next to each one that isn’t. In this way it can be seen that there are 25 subsets possible.
If the original set is calledS then the set of all subsets (that Dempster–Shafer takes as its start
point) is called 2S , thepower set.

A good example of applying Dempster–Shafer theory is covered in the work of Zouet al
(2000) discussed in § 2·2. Their robot divides its surroundings into a grid, assigning to each
cell in this grid a mass: a measure of confidence in each of the alternatives “occupied”,
“empty” and “unknown”. Although this mass is strictly speaking not a probability, certainly
the sum of the masses of all of the combinations of the three alternatives (forming the power
set) is required to equal one. In this case, because “unknown” equals “occupied or empty”,
these three alternatives (together with the empty set, which has mass zero) form the whole
power set.

Dempster–Shafer theory gives a rule for calculating the confidence measure of each state,
based on data from both new and old evidence. This rule, Dempster’s rule of combination,
can be described for Zou’s work as follows. If the power set of alternatives that their robot
builds is

{occupied, empty, unknown} which we write as {O, E, U}, (42)

then we consider three masses: the bottom-line massm that we require, being the confi-
dence in each element of the power set; the measure of confidencems from sensors (which
must be modelled); and the measure of confidencemo from old existing evidence (which
was the massm from the previous iteration of Dempster’s rule). As discussed in the next
section, Dempster’s rule of combination then gives, for elementsA, B, C of the power
set:

m(C) =
[ ∑

A∩B=C

ms(A)mo(B)

] / [
1 −

∑
A∩B=∅

ms(A)mo(B)

]
. (43)

Apply this to the robot’s search for occupied regions of the grid. Dempster’s rule becomes

m(O) = ms(O)mo(O) + ms(O)mo(U) + ms(U)mo(O)

1 − ms(O)mo(E) − ms(E)mo(O)
. (44)

While Zou’s robot explores its surroundings, it calculatesm(O) for each point of the
grid that makes up its region of mobility, and plots a point ifm(O) is larger than some
preset confidence level. Hopefully, the picture it plots will be a plan of the walls of its
environment.

In practice, as we have already noted, Zou and coworkers 2000 did achieve good results,
but the quality of these was strongly influenced by the choice of parameters determining the
sensor massesms .
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4.1 Fusing two sensors

As a more extensive example of applying Dempster–Shafer theory, focus again on the aircraft
problem considered in § 3·2. We will allow two extra states of our knowledge:

(1) The “unknown” state, where a decision as to what the aircraft is does not appear to be
possible at all. This is equivalent to the subset{Learjet, Falcon,}.

(2) The “fast” state, where we cannot distinguish between a Learjet and a Falcon. This is
equivalent to{Learjet, Falcon}.

Suppose then that two sensors allocate masses to the power set as in table 3; the third
column holds the final fused masses that we are about to calculate. Of the eight subsets that
can be formed from the three aircraft, only five are actually useful, so these are the only ones
allocated any mass. Dempster–Shafer also requires that the masses sum to one over the whole
power set. Remember that the masses are not quite probabilities: for example if the sensor 1
probability that the aircraft is a Learjet was really just another word for its mass of 30%,
then the extra probabilities given to the Learjet through the sets of fast and unknown aircrafts
would not make any sense.

These masses are now fused using Dempster’s rule of combination. This rule can in the
first instance be written quite simply as a proportionality, using the notation of (34) to denote
sensor number as a superscript:

m1,2(C) ∝
∑

A∩B=C

m1(A) m2(B). (45)

We will combine the data of table 3 using this rule. For example the Learjet:

m1,2(Learjet) ∝ m1(Learjet) m2(Learjet) + m1(Learjet) m2(Fast)

+ m1(Learjet) m2(Unknown) + m1(Fast) m2(Learjet)

+ m1(Unknown) m2(Learjet)

= 0·30× 0·40+ 0·30× 0·45+ 0·30× 0·03+ 0·42× 0·40

+ 0·10× 0·40

= 0·47. (46)

The other relative masses are found similarly. Normalising them by dividing each by their
sum yields the final mass values: the third column of table 3. The fusion reinforces the idea

Table 3. Mass assignments for the various aircraft.

Sensor 1 allocates a massm1, while sensor 2 allocates a massm2

Sensor 1 Sensor 2 Fused masses
Target type (massm1) (massm2) (massm1,2)

Learjet 30% 40% 55%
Falcon 15% 10% 16%
Caravan 3% 2% 0·4%
Fast 42% 45% 29%
Unknown 10% 3% 0·3%

Total mass 100% 100% 100%
(correcting for rounding errors)
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Table 4. A new set of mass assignments, to highlight the “fast” subset anomaly in table 3.

Sensor 1 Sensor 2 Fused masses
Target type (massm1) (massm2) (massm1,2)

Learjet 30% 50% 63%
Falcon 15% 30% 31%
Caravan 3% 17% 3·5%
Fast 42% 2%
Unknown 10% 3% 0·5%

Total mass 100% 100% 100%

that the aircraft is a Learjet and, together with our initial confidence in its being a fast aircraft,
means that we are more sure than ever that it is not a Caravan. Interestingly though, despite
the fact that most of the mass is assigned to the two fast aircraft, the amount of mass assigned
to the “fast” type is not as high as we might expect. Again, this is a good reason not to interpret
Dempster–Shafer masses as probabilities.

We can highlight this apparent anomaly further by reworking the example with a new set
of masses, as shown in table 4. The second sensor now assigns no mass at all to the “fast”
type. We might interpret this to mean that it has no opinion on whether the aircraft is fast or
not. But, such a state of affairs is no different numerically from assigning a zero mass: as if
the second sensor has a strong belief that the aircraft is not fast! As before, fusing the masses
of the first two columns of table 4 produces the third column. Although the fused masses still
lead to the same belief as previously, the 2% value form1,2(Fast) is clearly at odds with the
conclusion that the aircraft is very probably either a Learjet or a Falcon. So masses certainly
are not probabilities. It might well be that a lack of knowledge of a state means that we should
assign to it a mass higher than zero, but just what that mass should be, considering the possibly
high total number of subsets, is open to interpretation. However, as we shall see in the next
section, the new notions of support and plausibility introduced by Dempster–Shafer theory
go far to rescue this paradoxical situation.

Owing to the seeming lack of significance given to the “fast” state, perhaps we should have
no intrinsic interest in calculating its mass. In fact, knowledge of this mass is actually not
required for the final normalisation,2 so that Dempster’s rule is usually written as an equality:

m1,2(C) =
∑

A∩B=C

m1(A) m2(B)∑
A∩B 6=∅

m1(A) m2(B)
=

∑
A∩B=C

m1(A) m2(B)

1 − ∑
A∩B=∅

m1(A) m2(B)
. (47)

2The normalisation arises in the following way. Since the sum of the masses of each sensor
is required to be one, it must be true that the sum of all products of masses (one from each
sensor) must also be one. But these products are just all the possible numbers that appear in
Dempster’s rule of combination (45). So this sum can be split into two parts: terms where the
sets involved have a nonempty intersection and thus appear somewhere in the calculation, and
terms where the sets involved have an empty intersection and so don’t appear. To normalise, we’ll
ultimately be dividing each relative mass by the sum of all products that do appear in Dempster’s
rule, or – perhaps the easier number to evaluate – one minus the sum of all products that don’t
appear.
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Dempster–Shafer in tracking:A comparison of Dempster–Shafer fusion (47) and Bayes
fusion (38) shows that there is no time evolution in (47). But we can allow for it after the
sensors have been fused, by a further application of Dempster’s rule, where the setsA, B

in (47) now refer to new and old data. Zou’s robot is an example of this sort of fusion from
the literature, as discussed in the beginning of § 4.

4.2 Three or more sensors

In the case of three or more sensors, Dempster’s rule might in principle be applied in different
ways depending on which order is chosen for the sensors. But it turns out that because the
rule is only concerned with set intersections, the fusion order becomes irrelevant. Thus three
sensors fuse to give

m1,2,3(D) =
∑

A∩B∩C=D

m1(A)m2(B)m3(C)∑
A∩B∩C 6=∅

m1(A)m2(B)m3(C)
=

∑
A∩B∩C=D

m1(A)m2(B) m3(C)

1 − ∑
A∩B∩C=∅

m1(A)m2(B)m3(C)
,

(48)

and higher numbers are dealt with similarly.

4.3 Support and plausibility

Dempster–Shafer theory containstwo new ideasthat are foreign to Bayes theory. These are
the notions ofsupportandplausibility. For example, the support for the aircraft being “fast”
is defined to be the total mass of all states implying the “fast” state. Thus

spt(A) =
∑
B⊆A

m(B). (49)

The support is a kind of loose lower limit to the uncertainty. On the other hand, a loose upper
limit to the uncertainty is the plausibility. This is defined, for the “fast” state, as the total mass
of all states that don’t contradict the “fast” state. In other words:

pls(A) =
∑

A∩B 6=∅

m(B). (50)

The supports and plausibilities for the masses of table 3 are given in table 5.

Table 5. Supports and plausibilities associated with table 3.

Sensor 1 Sensor 2 Fused masses

Target type Spt Pls Spt Pls Spt Pls

Learjet 30% 82% 40% 88% 55% 84%
Falcon 15% 67% 10% 58% 16% 45%
Caravan 3% 13% 2% 5% 0·4% 1%
Fast 87% 97% 95% 98% 99% ∼100%

Unknown 100% 100% 100% 100% 100% 100%
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Interpreting the probability of the state as lying roughly somewhere between the support
and the plausibility gives the following results for what the aircraft might be, based on the
fused data. There is a good possibility that it’s a Learjet; a reasonable chance that it’s a Falcon;
almost no chance of its being a Caravan, which goes hand in hand with the virtual certainty
that the aircraft is fast. Finally, the last implied probability might look nonsensical: it might
appear to suggest that there is a 100% lack of knowledge of what the aircraft is, despite all
that has just been said. But that’s not what it says at all. What it does say is that there is
complete certainty that the aircraft’s identity is unknown. And that is quite true: the aircraft’s
identity is unknown. But what is also meant by the 100% is that there is complete certainty
that the aircraft issomething, even if we cannot be sure what that something is. Even so, we
have used such assumptions as

{Learjet} ∩ Unknown= {Learjet}, (51)

which is not necessarily true, because we cannot be sure that the Unknown set does contain a
Learjet. Dempster–Shafer theory treats the Unknown set as a superset, which is why we have
assumed it contains a Learjet. But this vagueness of just what is meant by an “Unknown”
state can and does give rise to apparent contradictions in Dempster–Shafer theory.

5. Comparing the Dempster–Shafer and Bayes theories

The major difference between these two theories is that Bayes works with probabilities,
which is to say rigorously-defined numbers that reflect how often an event will occur if
an experiment is performed a large number of times. On the other hand, Dempster–Shafer
theory considers a space of elements that each reflect not what Nature chooses, but rather
the state ofour knowledgeafter making a measurement. Thus, Bayes does not use a spe-
cific state called “unknown emitter type” – although after applying Bayes theory, we might
well have no clear winner, and will decide that the state of the emitter is best described
as unknown. On the other hand, Dempster–Shafer certainly does require us to include this
“unknown emitter type” state, because that can well be the state ofour knowledgeat any
time. Of course the plausibilities and supports that Dempster–Shafer generates also may or
may not give a clear winner for what the state of the emitter is, but this again is distinct
from the introduction into that theory of the “unknown emitter type” state, which is always
done.

The fact that we tend to think of Dempster–Shafer masses somewhat nebulously as prob-
abilities suggests that we should perhaps use real probabilities when we can, but Dempster–
Shafer theory doesn’t demand this.

Both theories have a certain initial requirement. Dempster–Shafer theory requires masses
to be assigned in a meaningful way to the various alternatives, including the “unknown” state;
whereas Bayes theory requires prior probabilities – although at least for Bayes, the alternatives
to which they’re applied are all well defined. One advantage of using one approach over the
other is the extent to which prior information is available. Although Dempster–Shafer theory
doesn’t need prior probabilities to function, it does require some preliminary assignment of
masses that reflects our initial knowledge of the system.

Dempster–Shafer theory also has the advantage of allowing more explicitly for an undecided
state of our knowledge. In the military arena, it can of course sometimes be far safer to be
undecided about what the identity of a target is, than to decide wrongly and act accordingly
with what might be disastrous consequences.
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Dempster–Shafer also allows the computation of the additional notions of support and
plausibility, as opposed to a Bayes approach which is restricted to the classical notion of
probabilities only. On the other hand, while Bayes theory might be restricted to more classical
notions (i.e. probability), the pedigree of these gives it an edge over Dempster–Shafer in terms
of being better understood and accepted.

Dempster–Shafer calculations tend to be longer and more involved than their Bayes ana-
logues (which are not required to work with all the elements of a set); and despite the fact
that earlier literature (e.g. Cremeret al1998 and Braun 2000) indicates that Dempster–Shafer
can sometimes perform better than Bayes theory, Dempster–Shafer’s computational disad-
vantages do nothing to increase its popularity.

Braun (2000) has performed a Monte Carlo comparison between the Dempster–Shafer and
Bayes approaches to data fusion. The paper begins with a short overview of Dempster–Shafer
theory. It simply but clearly defines the Dempster–Shafer power set approach, along with the
probability structure built upon this set: basic probability assignments, belief- and plausibility
functions. It follows this with a simple but very clear example of Dempster–Shafer formalism
by applying the central rule of the theory, the Dempster combination rule, to a set of data.

What is not at all clear is precisely which sort of algorithm Braun is implementing to run
the Monte Carlo simulations, and how the data is generated. He considers a set of sensors
observing objects. These objects can belong to any one of a number of classes, with the job
of the sensors being to decide to which class each object belongs. Specific numbers are not
mentioned, although he does plot the number of correct assignments versus the total number
of fusion events for zero to 2500 events.

The results of the simulations show fairly linear plots for both the Dempster–Shafer and
Bayes approaches. The Bayes approach rises to a maximum of 1700 successes in the 2500
fusion instances, while the Dempster–Shafer mode attains a maximum of 2100 successes –
which would seem to place it as the more successful theory, although Braun (2000) does not
say as much directly. He does produce somewhat obscure plots showing finer details of the
Bayes and Dempster–Shafer successes as functions of the degree of confidence in the various
hypotheses that make up his system. What these show is that both methods are robust over
the entire sensor information domain, and generally where one succeeds or fails the other
will do the same, with just a slight edge being given to Dempster–Shafer as compared with
the Bayes approach.

6. Concluding remarks

Although data fusion still seems to take tracking as its prototype, fusion applications are
beginning to be produced in numerous other areas. Not all of these uses have a statistical basis
however; often the focus is just on how to fuse data in whichever way, with the question of
whether that fusion is the best in some sense not always being addressed. Nor can it always
be, since very often the calculations involved might be prohibitively many and complex.
Currently too, there is still a good deal of philosophising about pertinent data fusion issues,
and the lack of hard rules to back this up is partly due to the difficulty in finding common
ground for the many applications to which fusion is now being applied.

Appendix A. Gaussian distribution theorems

The following theorems are special cases of the one-dimensional results that the product of
Gaussians is another Gaussian, and the integral of a Gaussian is also another Gaussian.
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The notation is as follows. Just as a Gaussian distribution in one dimension is written in
terms of its meanµ and varianceσ 2 as

N(x; µ, σ 2) ≡ 1

σ
√

2π
exp

−(x − µ)2

2σ 2
, (A.1)

so also a Gaussian distribution in ann-dimensional vectorx is denoted through its mean
vectorµ and covariance matrixP in the following way:

N(x; µ, P ) ≡ 1

|P |1/2(2π)n/2
exp

−1

2
(x − µ)T P −1(x − µ) = N(x − µ; 0, P ).

(A.2)

Theorem 1.

N(x1; µ1, P1) N(x2; Hx1, P2)

N(x2; Hµ1, P3)
= N(x1; µ, P ), (A.3)

where

K = P1H
T (HP1H

T + P2)
−1,

µ = µ1 + K(x2 − Hµ1),

P = (1 − KH)P1. (A.4)

The method of proving the above theorem is relatively well known, being first shown in Ho
(1964) and later appearing in a number of texts. However, the proof of the next theorem which
deals with the Chapman–Kolmogorov theorem is not that well known.

Theorem 2.∫ ∞

−∞
dx1 N(x1; µ1, P1) N(x2; Fx1, P2) = N(x2; µ, P ), (A.5)

where

µ = Fµ1,

P = FP1F
T + P2. (A.6)

Here, we present a proof of the above theorem by directly solving the integral. Note that in
Gaussian integrals,P1 andP2 are symmetric, which means their inverses will be too – a fact
that we will use often in our derivation.

The left hand side of (A.5) is∫ ∞

−∞
dx1 N(x1; µ1, P1) N(x2; Fx1, P2) = 1

(2π)n/2 |P1|1/2 (2π)n/2 |P2|1/2

×
∫

exp
−1

2

[
(x1 − µ1)

T P −1
1 (x1 − µ1) + (x2 − Fx1)

T P −1
2 (x2 − Fx1)

]
dx1.

(A.7)
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Write the integrand on the right hand side ase−E/2, so that

E = (x1 − µ1)
T P −1

1 (x1 − µ1) + (x2 − Fx1)
T P −1

2 (x2 − Fx1). (A.8)

If we define

A = x2 − Fµ1,

B = x1 − µ1, (A.9)

then it follows thatx2 − Fx1 = A − FB, in which case

E = BT P −1
1 B + (A − FB)T P −1

2 (A − FB)

= BT P −1
1 B + AT P −1

2 A − BT FT P −1
2 A − AT P −1

2 FB + BT FT P −1
2 FB.

(A.10)

Group the first and last terms to write

E = BT
(
P −1

1 + FT P −1
2 F

)
B + AT P −1

2 A − BT FT P −1
2 A − AT P −1

2 FB.

(A.11)

It will be convenient to introduce two new matrices:

M−1 = P −1
1 + FT P −1

2 F,

P = P2 + FP1F
T . (A.12)

Note that becauseP1 andP2 are symmetric, so willM andM−1 also be, which we make use
of frequently. The first term in (A.11) then becomes

E = BT M−1B + AT P −1
2 A − BT FT P −1

2 A − AT P −1
2 FB. (A.13)

We can simplifyE by first invertingP . The very useful matrix inversion lemma3 gives

P −1 =
(
P2 + FP1F

T
)−1

= P −1
2 − P −1

2 FMFT P −1
2 , (A.14)

which rearranges trivially to give

P −1
2 = P −1 + P −1

2 FMFT P −1
2 . (A.15)

We now insert this last expression into the second term of (A.13), giving

E = BTM−1B + AT P −1A + ATP −1
2 FMFTP −1

2 A − BT FTP −1
2 A − ATP −1

2 FB

= (
B − MFT P −1

2 A
)T

M−1
(
B − MFT P −1

2 A
) + AT P −1A. (A.16)

Definingµ2 = µ1 + MFT P −1
2 A producesB − MFT P −1

2 A = x1 − µ2, in which case

E = (x1 − µ2)
T M−1 (x1 − µ2) + AT P −1A. (A.17)

3This says that for matricesa, b, c, d of appropriate size and invertibility:

(a + bcd)−1 = a−1 − a−1b
(
c−1 + da−1b

)−1
da−1
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Hence the right hand side of (A.7) becomes

e
−1
2 AT P −1A

(2π)n/2 |P1|1/2 (2π)n/2 |P2|1/2

∫
exp

−1

2

[
(x1 − µ2)

T M−1 (x1 − µ2)
]

dx1.

(A.18)

This is a great improvement over (A.7), because the integration variablex1 only appears
in a simple Gaussian integral, and so can be integrated out. But before doing that integration,
we will show that the normalisation factors can be simplified, by means of the following
fact:

|P1 P2| = |P M|. (A.19)

To prove this fact, we first begin to rewriteP in terms ofM, P1 andP2:

P = FP1F
T + P2

= (
FP1F

T P −1
2 + 1

)
P2. (A.20)

It will prove useful to factor outF , but unfortunately becauseF is in general not square and
so not invertible, we cannot just introduce factors ofF−1 to effect this. However, it’s quite
sufficient to make use of a “right inverse”, through introducing a factor ofFFT (FFT )−1,
since this is always well defined. In that case

P = (
FP1F

T P −1
2 + 1

)
FFT (FFT )−1 P2

= (
FP1F

T P −1
2 F + F

)
FT (FFT )−1 P2

= FP1
(
FT P −1

2 F + P −1
1

)
FT (FFT )−1 P2

= FP1 M−1 FT (FFT )−1 P2. (A.21)

If we now multiply both sides byM and then take the determinant of each, we obtain

|P M| = |F P1 M−1FT (FFT )−1 P2 M|
= |F | |P1| |M|−1 |FT | |FFT |−1 |P2| |M|
= |P1 P2|, (A.22)

since the various determinants cancel. QED. This fact then enables the Gaussian integral
overx1 in equation (A.18) to be easily set equal to 1; and so we arrive at a simple expression
for equation (A.7):∫ ∞

−∞
dx1 N(x1; µ1, P1) N(x2; Fx1, P2) = e

−1
2 AT P −1A

(2π)n/2 |P |1/2

= 1

(2π)n/2 |P |1/2 exp
−1

2

[
(x2 − Fµ1)

T P −1 (x2 − Fµ1)
]

= N(x2; Fµ1, P ). (A.23)

This completes the proof.
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