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An on-the-go optical soil sensor with 660 nm red and 940 nm near-infrared wavelengths with an electrical
conductivity (EC) sensing unit were tested to estimate soil organic matter (SOM) and cation-exchange capacity
(CEC) on 551 ha on 15 fields in 6 U.S. states. For calibration between sensed data and lab-analyzed values, a
multivariate linear regression (MLR) with leave-one-out cross validation was performed on fields with more
than 10 lab samples and a single variable linear regression was performed on fields with less than 10 samples.
From the SOM calibration results, 12 of 15 fields had good results with R2 of 0.80 or higher and RPD (Ratio of
Prediction to Deviation=standard deviation / root mean square error of prediction) of 2.33 or greater. For CEC
calibrations, six of nine fields had good results with R2 of 0.86 or higher and RPD of 2.78 or greater. The best
calibration model was applied to each field and the estimated SOM and CECmaps exhibited strong spatial struc-
ture and high correlation to lab-analyzed SOM in all fields. EC and optical data in each field was normalized and
combined together by state and testedwithMLR. Combiningfields in thismanner showedgood resultswith R2 of
0.80 or higher and RPD of 2.30 or greater for SOM in four of five states, and combined fields in two of three states
showed good correlations to lab data with R2 of 0.86 or higher and RPD of 2.69 or greater for CEC. From these
results, SOM and CEC mapping with soil EC and optical sensors seems to be a promising approach. Future
researchwill be implemented to estimate SOMand CECmore precisely bydeveloping a reliable universal calibra-
tion model using soil EC, optical data, soil moisture contents and topographic attributes for global areas.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Through variable rate technology (VRT) application, site-specific
crop management (SSCM) has potential to increase profit and decrease
environmental impact (Adamchuk et al., 2004; Fraisse et al., 2001;
Plant, 2001). For SSCM, information about the variability of different
soil attributes within a field is necessary. However traditional soil sam-
pling is expensive and laborious, and grid sampling is not dense enough
to obtain an accuratemap (Bianchini andMallarino, 2002; Lauzon, et al.,
2005). Therefore various on-the-go soil sensing systems have been
developed to provide high-density measurements and full field cover-
age at a relatively low cost (Dhillon et al., 2010).

Bauer and Black (1994) reported that soil organic matter (SOM) is
an important factor in crop growth, as it affects soil moisture infiltration
and retention, soil tilth, rooting depth, soil-applied herbicide activity,
nitrogen release, and other aspects of nutrient cycling. A precise SOM
map can provide an important piece of information for growers as
they seek to vary nitrogen, seed population, herbicides, and other
inputs.
+1 785 825 6983.
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Variations in soil properties can be detected, even with the human
eye, based on differences in light reflectance. Darker soils contain
higher levels of moisture or SOM than light-coloured soils
(Alexander, 1969; Krishnan et al., 1980; Page, 1974). While this can
be detected visually, light sensors in the visible and near infrared
(VIS-NIR) can quantify the reflectance characteristics and provide the
data needed to develop calibrations to soil properties. Soil reflectance
has been studied extensively since the 1970s and is widely reported
in the scientific literature as an effective means for approximating
SOM (Smith et al., 1987; Stoner and Baumgardner, 1981; Sudduth and
Hummel, 1993; Sudduth and Hummel, 1996).

Griffis (1985) designed an inexpensive soil organic matter sensor
with an infrared light emitting diode (LED) and a phototransistor.
Shonk et al. (1991) also developed a shank-mounted real-time soil
organic matter sensor with a red LED (660 nm) and a photodiode,
and it showed promising results, when a wide range of SOM levels
were present and conditions were closely controlled.

Shibusawa et al. (1999) developed a real-timeportable spectropho-
tometer with 400 to 2400 nm ranges that is capable of field mapping of
soil properties, and showed high correlationwith SOM contents as R2 of
0.87. A commercialized VIS-NIR spectrophotometer system has been
used for measurement of various soil properties such as soil organic
matter, soil total carbon, soil nitrogen (Bricklemyer and Brown, 2010;
Christy, 2008; Huang et al., 2007; Kweon et al., 2009).
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A VIS-NIR spectrometer was used to predict cation exchange
capacity (CEC) in addition to SOM from its soil spectral response
(Adamchuk et al., 2004). Since a soil's CEC is related to percent of
the clay and organic matter, it can be estimated from soil texture
and colour (Mengel, 1993). As the percent of clay and organic matter
increases, the CEC also increases. Sudduth and Hummel (1993)
reported the best CEC calibration yielded a standard error of prediction
of 3.59 meq 100 g−1 from 30 Illinois soil samples with mean of 24.65
and standard deviation (SD) of 9.43 meq l00 g−1 with a portable NIR
spectrophotometer. La et al. (2008) tested 37 soils, 17 from Illinois and
20 from Missouri, with mean of 13.2 and SD of 5.5 meq l00 g−1 using
a VIS-NIR spectrometer with a range between 350 and 2500 nm. From
the calibration, R2 of 0.83, root mean square error of prediction
(RMSEP) of 2.23, and RPD (Ratio of Prediction to Deviation=SD/
RMSEP) of 2.45 were obtained. Lee et al. (2009) also reported CEC
estimations with R2 of 0.83, RMSEP of 3.43, and RPD of 2.47 from 165
samples from Missouri, Illinois, Michigan, South Dakota, and Iowa
using the same spectrometer. RPD is a useful measure of fit to compare
results from datasets with different degrees of variability (Hummel et
al., 2001; Lee et al., 2009; Williams and Hoey, 1987). Chang et al.
(2001) categorized RPD ranges as high (>2.0), medium (1.4–2.0) and
low (b1.4) to classify the ability of NIR to estimate soil properties. A
higher RPD level indicates a more accurate prediction.

The level of technology inherent in a spectrophotometer may be
appropriate for soil research to measure numerous soil properties,
but are likely impractical for grower and consultant use due to
expense and complexity. Veris Technologies has developed a com-
mercially available dual-wavelength on-the go soil optical sensor
(OpticMapper™) for SOM and CEC measurements with high-density
and full field coverage at a relatively low cost. Kweon and Maxton
(in review) found a strong correlation with R2 of 0.87 between
estimated SOM by OpticMapper and lab-analyzed SOM for 56 samples
in Kansas fields. However further field tests are needed to confirm the
sensor's performance for SOM and CEC estimations over different
types of soils in other states.
Table 1
Description of the research fields in 6 states.

State Field
name

Location: county Area
(ha)

Major land resource area (MLRA)

Alabama AL1 Lawrence 30 129 Sand mountain

AL2 Henry 21 133A Southern coastal plain

Illinois IL1 De Witt 132 108A IL and IA deep loess and drift

IL2 Pike 47 115C Central MS valley wooded slopes

IL3 Greene 39 115C Central MS valley wooded slopes

Iowa IA1 Guthrie 39 108D IL and IA deep loess and drift

IA2 Harrison 17 107B IA and MO deep loess hills

IA3 Harrison 11 107B IA and MO deep loess hills

Michigan MI1 Muskegon 61 98 Southern MI and Northern IN drift plain

Missouri MO1 Carroll 34 109 IA and MO Heavy till plain

MO2 Carroll 14 109 IA and MO Heavy till plain

MO3 Lafayette 42 107B IA and MO Deep loess hills

Ohio OH1 Clark 17 111A IN and OH Till plain

OH2 Champaign 15 111A IN and OH Till plain

OH3 Champaign 32 111A IN and OH Till plain
The objectives of this study were to evaluate the performance of
OpticMapper for SOM and CEC measurements on fields with various
soils types and wider ranges of soil properties, and to compare SOM
and CEC estimations by each field model, each combined field
model by state, and a universal calibration model.

2. Materials and methods

2.1. Research sites

This study covered 551 ha on 15 fields in 6 U.S. states, providing a
wide range of soil types, conditions, and organic matter levels. Soil
types and textures ranged from sands in Michigan to a range of silt
loams in Iowa, Illinois, Ohio, and Missouri and sandy loam in Alabama.
The 15 fields are included in 10 different “major land resource areas”
(MLRAs) such as sand mountain and coastal plain for Alabama, loess
and drift for Illinois and Iowa, drift plain for Michigan, and till plain
for Missouri and Ohio (Table 1). From these fields, 130 geo-referenced
soil samples were collected for organic matter and CEC analysis. The
samples were a composite of a minimum of six 0–15 cm deep cores
collectedwithin a 5 m radius, and tested in the soil testing Lab of Kansas
State University and the Midwest soil testing Lab in Nebraska. Soil
organic matter was measured by the Walkley–Black method (Combs
and Nathan, 1998) and CEC was determined by the cation summation
method with an ammonium acetate solution at a pH of 7.0 (Warncke
and Brown, 1998).

2.2. On-the-go electrical conductivity and optical sensors

Soil electrical conductivity (EC) and optical data were collected
with an implement designed and commercialized for the purpose of
mapping with multiple soil sensors (Figure 1). The sensor modules
consist of six coulter electrodes for EC measurements, and a specially
configured row unit for optical measurements. The EC module iden-
tifies soil variability by directly sensing EC. As the module is pulled
Soil series Soil classification

Decatur
Tyler

Fine, kaolinitic, thermic Rhodic Paleudults
Fine-silty, mixed, mesic Aeric Fragiaquults

Dothan
Lucy

Fine-loamy, kaolinitic, thermic Plinthic Kandiudults
Loamy, kaolinitic, thermic Arenic Kandiudults

Sable
Buckhart

Fine-silty, mixed, mesic Typic Endoaquolls
Fine-silty, mixed, mesic Oxyaquic Argiudolls

Beaucoup
Titus

Fine-silty, mixed, mesic Fluvaquentic Endoaquolls
Fine, smectitic, mesic Vertic Endoaquolls

La Hogue
Titus

Fine-loamy, mixed, mesic Aquic Argiudolls
Fine, smectitic, mesic Vertic Endoaquolls

Nevin
Zook

Fine-silty, mixed mesic Aquic Pachic Argiudolls
Fine, smectitic, mesic Cumulic Vertic Endoaquolls

Ida
Napier

Fine-silty, mixed, mesic Typic Udorthents
Fine-silty, mixed, mesic Cumulic Hapludolls

McPaul
Colo

Coarse-silty, mixed, mesic Mollic Udifluvents
Fine-silty, mixed, mesic Cumulic Endoaquolls

Au Gres
Saugatuck

Sandy, mixed, frigid Typic Endoaquods
Sandy, mixed, mesic Typic Duraquods

Leta
Haynie

Clayey over loamy, smectitic, mesic Fluvaquentic Hapludolls
Coarse-silty, mixed, mesic Mollic Udifluvents

Haynie
Leta

Coarse-silty, mixed, mesic Mollic Udifluvents
Clayey over loamy, smectitic, mesic Fluvaquentic Hapludolls

Marshall
Blackoar

Fine-silty, mixed, mesic Typic Hapludolls
Fine-silty, mixed, mesic Fluvaquentic Endoaquolls

Kokomo
Strawn

Fine, mixed, mesic Typic Argiaquolls
Fine-loamy, mixed, mesic Typic Hapludalfs

Kendallville Crosby Fine-loamy, mixed, mesic Typic Hapludalfs
Fine, mixed, mesic Aeric Epiaqualfs

Homer
Lippincott

Fine-loamy over sandy, mixed, mesic Aeric Endoaqualfs
Fine, mixed, mesic Typic Argiaquolls



Fig. 1. Veris OpticMapper with soil EC and optical sensors.
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through the field, a pair of coulter electrodes injects an electrical
current into the soil, while the other coulter electrodes measure the
voltage change, one pair for a “shallow” EC reading (0–30 cm) and
one pair for a “deep” EC reading (0–90 cm). The EC of soils varies
depending on soil particle size and the amount of moisture held by
soil particles. Sands have a low conductivity, silts have a medium
conductivity, and clays have a high conductivity. Consequently, EC
correlates strongly to soil particle size and texture in non-saline
soils (Williams and Hoey, 1987).

An optical module consists of two light sources with a red LED of
660 nm wavelength and a NIR LED of 940 nm wavelength, and a
single photodiode. The module is mounted between two disks
which operate at a slight angle, forming a V-shaped slot in the soil.
A depth-gauging side wheel for each disk controls sensing depth. A
wear plate with a sapphire window is pressed against the bottom of
the slot and the consistent pressure provides a self-cleaning function.
Data was collected approximately 4 cm below the soil surface at a
1 Hz rate on 15–20 m transects with speed of 10–15 km/hr. Approxi-
mately 150–200 EC and optical data points per hectare were collected
(Kweon and Maxton, in review).

2.3. Data analysis

The rawdata obtained by the on-the-go soil optical sensor required
data processing to remove outliers. GPS outliers which are out of
100 m radius from the previous sensing location, system outliers
which are out of normal ranges of soil reflectance, global field outliers
that are not within three times the standard deviation from the mean
of all field data, and local field outliers which are greater than two
times the standard deviation from the mean at the neighboring 10
sensing points were removed in the manner described by Kweon
and Maxton (in review).

To estimate SOM and CEC in fields, a calibration routine was
programmed by LabVIEW (National Instruments Corp., Austin, TX,
USA). The relationship between light reflectance and organic matter
content for the soil with less than 5% SOM was found to be linear from
previous studies (Kweon and Maxton, in review; Shonk et al., 1991).
The fields in six states had mostly less than 5% SOM; therefore linear
regressions were selected for calibration to estimate SOM in each
field. For the calibration, each red and NIR reflectance reading and
optical reading ratio (NIR/red), shallow EC (EC_SH) and deep EC
(EC_DP) values and EC ratio (EC_DP/EC_SH), slope, curvature and
elevation were used as independent variables. The calibration routine
with multiple linear regression (MLR) tested every combination for
their relationship to organic matter for each field with 10 or more
lab-analyzed calibration samples. On fields with less than 10 samples,
single variable linear regressions were performed to avoid overfitting,
using each independent variable and lab-analyzed OM values.

A validation step is required to assess the calibration model for
predicting data accurately without overfitting, and this procedure is
generally done either by splitting the dataset randomly into indepen-
dent calibration and validation sets or through a cross validation (Lee
et al., 2009). In this study the number of soil samples in each field is
too few for the independent validation approach, thus a leave-one-
out cross validation procedure was chosen as the same manner by
Christy (2008) in the previous research. A leave-one-out cross valida-
tion method leaves one sample out at a time and then uses the other
samples to predict the value of the omitted sample. The process is
repeated until all samples have been omitted and predicted. A new
regression equation is calculated each time that does not include
the influence of the left-out sample.

This leave-one-out cross validation method was applied to all
possible combinations among independent variables to estimate SOM
for each field, and the one with the lowest root mean square error
(RMSECV) was selected for the best calibration model for the field
(Kweon, 2012). Error statistics (i.e., R2, RMSEP and RPD) for each field
were calculated based on the predicted values of each best calibration
model and then the model was applied to the field data to produce an
SOM map. The equal number of classes was set to low, medium and
high for estimated SOM maps. CEC estimations were also performed
in the same manner.

To test multiple linear regressions for fields with less than 10 sam-
ples, each field was combined together by state. The best calibration
model for each combined state field was created in the same manner
as mentioned above with the lowest RMSECV. The soil sensor values
are affected by soil temperature and moisture, thus each field may
have different sensor data ranges, even if the fields have very similar
soil properties. In this study, soil optical and EC data were normalized
by dividing by the mean value in each field before merging data. How-
ever, the other variableswere spatial datawith absolute values and they
did not need to be normalized.

The fields in three adjacent states of Iowa, Illinois andMissouri had
similar soil properties with loam, silt and/or clay as seen in Table 1 and
are located in the same Land Resource Region (LRR) as Central feed
grains and livestock region, thus a universal calibration model could
be attempted for the fields. The number of soil samples from all
three states was too large to create a reliable calibration model due
to duplicated lab values, thus half of the total samples were randomly



Table 3
Descriptive statistics of optical readings for the research fields in 6 states.

State Field Red reflectance NIR reflectance R2

between
Red and
NIR

Mean Range SD Mean Range SD

Alabama AL1 82.00 65–101 5.66 261.3 203–323 19.20 0.24
AL2 81.91 63–112 6.61 256.2 191–350 23.15 0.95

Illinois IL1 115.8 92–150 9.35 333.2 246–444 31.11 0.83
IL2 116.9 96–142 7.31 328.8 265–401 22.49 0.81
IL3 139.2 108–182 14.19 395.9 275–512 44.64 0.89

Iowa IA1 92.7 85–113 3.88 249.0 205–313 15.38 0.78
IA2 126.2 109–159 6.99 403.5 342–488 24.41 0.80
IA3 117.1 106–147 4.96 379.6 333–437 17.95 0.88

Michigan MI1 115.4 103–135 5.50 306.2 241–372 20.17 0.84
Missouri MO1 120.9 105–150 6.90 306.2 252–390 21.71 0.68

MO2 127.9 106–159 10.19 338.6 266–427 29.79 0.91
MO3 124.2 108–153 6.80 340.3 274–422 22.84 0.82

Ohio OH1 172.5 133–216 14.47 319.1 278–362 9.66 0.82
OH2 169.6 130–221 9.84 282.1 233–335 10.06 0.76
OH3 173.0 104–268 12.91 304.3 240–420 14.78 0.73
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selected for development of a universal calibrationmodel for SOM and
CEC. The best universal calibration model for each OM and CEC was
created in the same manner as mentioned above with the lowest
RMSECV. The universal calibration model was applied to each field
in Iowa, Illinois and Missouri, and the estimated SOM and CEC values
were compared with ones generated by an individual field-based
calibration model and each combined field model by state.

3. Results and discussion

Descriptive statistics of soil organic matter and CEC lab values for
the research fields are shown in Table 2. As expected in Table 1
with various MLRAs, there was a wide variation in the soil properties
for the study fields in 6 states. Illinois, Iowa, Michigan and Ohio fields
had relatively high values with wide ranges for SOM; especially OH3
which had 1.4–6.9% SOM. Alabama and Missouri fields had relatively
low values with narrow ranges for SOM; for example, MO3 had only a
range of 1.6–2.4% of SOM. CEC also varied considerably across
the research fields from very low and narrow range value for AL2
(2.2–3.5 meq 100 g−1) to high and wide value for MO1 (14.6–32.9 meq
100 g−1). Missouri fields had wider range of CEC than SOM, and Alabama
and Michigan had low and narrow ranged CEC. This might be due to
different soil types as seen in Table 1. Mengel (1993) reported light
colored sands has only 3–5 meq 100 g−1 of CEC, and dark colored
silty clay loams and silty clays has 30–40 meq 100 g−1 of CEC for com-
mon color and texture soil groups. Illinois and Ohio fields did not have
lab analyzed CEC values in this study.

Table 3 shows descriptive statistics of optical readings for red and
NIR reflectance for the research fields in 6 states. Alabama fields
showed low reflectance in both red and NIR and Ohio fields showed
high optical reflectance readings. Mostly darker soils have less reflec-
tion; however this case was because of different soil conditions when
they were mapped. Fields AL2 and IA1 had different SOM ranges but
showed very similar NIR readings. Fields IL1 and IA1 had similar
SOM contents, but showed different optical readings. This is likely
due to different field moisture levels at mapping. AL2 and IA1 fields
may have been mapped under high moisture conditions, or IL1field
was mapped under dry soil conditions. According to the research by
Kweon and Maxton (in review), 10% of moisture increase in soil
samples caused over 43 in red and 100 in NIR reflectance reading
decrease in the lab test. Because moisture is the most significant
factor in addition to soil organic matter contents for soil reflectance
measurement with a dual-wavelength optical sensor, moisture
variation should be considered when field data are combined for
calibration, or when data from multiple fields are calibrated by one
universal model. In this research, normalization was used for each
Table 2
Descriptive statistics of soil organic matter (SOM) and cation exchange capacity (CEC)
lab values for the research fields in 6 states.

State Field No. of
samples

SOM (%) CEC (meq 100 g−1)

Mean Range SD Mean Range SD

Alabama AL1 10 1.82 1.1–3.5 0.76 8.17 5.1–13.6 2.66
AL2 4 1.28 0.9–2.0 0.50 2.80 2.2–3.5 0.54

Illinois IL1 10 3.82 3.0–5.1 0.78 – – –

IL2 5 1.78 1.2–2.3 0.47 – – –

IL3 5 1.30 0.4–2.7 0.86 – – –

Iowa IA1 6 3.87 2.6–5.3 0.94 20.13 17.6–22.4 1.70
IA2 6 2.40 1.5–2.7 0.45 18.62 16.4–21.9 2.22
IA3 4 2.58 1.7–3.7 0.83 18.23 14.4–23.3 3.90

Michigan MI1 11 2.97 1.7–4.5 0.92 7.66 5.8–10.1 1.40
Missouri MO1 31 2.60 1.5–3.4 0.51 24.00 14.6–32.9 4.86

MO2 13 1.82 1.0–2.4 0.46 18.46 10.6–22.4 3.60
MO3 12 2.04 1.6–2.4 0.28 14.70 12.0–17.8 1.78

Ohio OH1 5 2.74 1.5–3.8 0.98 – – –

OH2 4 2.13 1.3–2.9 0.90 – – –

OH3 4 3.48 1.4–6.9 2.57 – – –
dataset since the soil moisture contents were not obtained for the cali-
brations for combined fields or by a universal model. A moisture sensor
along with optical sensor would have benefit for more precise SOM
mapping.

The correlation between red and NIR reflectance for the study
fields showed mostly high with R2 of 0.68–0.95 except in AL1 having
the lowest R2 of 0.24. However another field in Alabama, AL2, had the
highest R2 of 0.95 between red and NIR. The reason may be because
the two fields had different soil types and are located in different
MLRA, although both AL1 and AL2 were mapped around the same
time and showed similar ranged optical reflectance. Fig. 2 shows
the relationships between red and NIR reflectance readings for each
field in six states.

Table 4 shows selected variables for SOM calibrations and the
results for the research fields in 6 states. From the table, 12 of 15 fields
had good results with R2 of 0.80 or higher and RPD of 2.33 or greater.
AL2 had the lowest R2 and RPD with 0.37 and 1.46, respectively. This
low correlation may be due to low variability in soil samples as shown
in Table 2. Among the fields with more than 10 samples, AL1, IL1 and
MI1 used only two variables for MLR, but all MO fields used more
than three variables for MLR. Particularly, MO2 used 8 variables for
MLR to obtain the lowest RMSECV. This result was because of no
dominant variable for SOM calibration in the field. Optical data were
selected in nine fields, and EC data were chosen in 10 fields for SOM
calibrations.However, optical ratiowas not used in anyfield. Topographic
data were used in four fields including slope selected in three fields,
curvature in two fields and elevation in one field. Correlations between
SOM and the variables used for calibrations would be shown later in
this section.

In order to investigate how topography affects OM calibration, ten
best calibration results are shown in Table 5 by ascending order for
RMSECV for IL1 field. Six calibrations used topographic data including
curvature selected in 4 models. Shallow EC with curvature showed
0.04 lower RMSECV than shallow EC alone, but slope and elevation
did not help to improve RMSECV in the calibration with shallow EC.
In IL1 field, EC data are dominant over optical and topographic data
for SOM calibrations.

With the ten best models, it was found that the optimal number of
variables used in each calibration is typically only one or two. From
the above results, the calibration with a leave-one-out validation
method seems to be a proper approach for MLR over the concern of
overfit.

Fig. 3 shows lab-analyzed values overlaid on estimated SOMmaps
for each representative field in the six states. Sensor-estimated SOM
maps exhibit strong spatial structure and visual correlation to
lab-analyzed SOM in all fields. Especially, MO1 with 31 dense soil



Fig. 2. Relationships between red and NIR reflectance readings for representative fields in six states.
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samples shows good correlation between lab data and estimated
SOM. The spatial structure of SOM in each field is discernible even
without interpolating or other manipulation.

Table 6 shows selected variables for CEC calibrations and the
results for the research fields in 4 states. From the table, six of nine
fields had good results with R2 of 0.86 or higher and RPD of 2.78 or
greater. IA2 showed the lowest calibration result with R2 of 0.40
and RPD of 1.41, and this field did not show good result either in
the SOM calibration (R2 of 0.57 and RPD of 1.67). AL2, which had
the lowest R2 of 0.37 and RPD of 1.46 in the SOM calibration, showed
very good result in CEC calibration with R2 of 0.93 and RPD of 4.30.
Among the fields with more than 10 samples, AL1 used two variables
and MI1 selected only one variable for their calibrations, but three
MO fields used at least five variables. The variable of shallow EC was

image of Fig.�2


Table 4
Selected variables for SOM calibrations and the results for the research fields in 6 states.

State Field Selected variable(s) R2 RMSEP
(%)

RMSECV
(%)

RPD

Alabama AL1 Red, EC_SH 0.81 0.31 0.48 2.43
AL2 NIR 0.37 0.34 0.65 1.46

Illinois IL1 EC_SH, Curvature 0.82 0.31 0.44 2.50
IL2 EC_DP 0.92 0.12 0.17 3.98
IL3 EC_SH 0.94 0.19 0.31 4.58

Iowa IA1 NIR 0.92 0.24 0.37 3.91
IA2 Red 0.57 0.27 0.53 1.67
IA3 NIR 0.95 0.16 0.28 5.09

Michigan MI1 NIR, EC_SH 0.92 0.25 0.33 3.54
Missouri MO1 EC_DP, EC ratio, Slope 0.70 0.28 0.31 1.84

MO2 Red, NIR, EC_SH, EC_DP, EC
ratio, Slope, Curvature,
Elevation

0.97 0.08 0.20 5.68

MO3 Red, EC ratio, Slope 0.80 0.12 0.18 2.33
Ohio OH1 EC_SH 0.96 0.16 0.31 5.94

OH2 EC_SH 0.99 0.04 0.07 25.03
OH3 Red 0.83 0.91 1.83 2.82
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chosen in seven fields, and red and NIR were used for each two fields
for the CEC calibrations. Topographic data were used in three MO
fields as used in the SOM calibrations. Correlations between CEC
and the variables would be shown later in this section.

The best calibration model was applied in each field for CEC map
creation, and Fig. 4 shows the estimated SOM maps on which lab-
analyzed values were overlaid. Like SOM maps in Fig. 3, sensor-
estimated SOM maps show strong spatial structure and high correla-
tion to lab-analyzed SOM in all fields. From comparison between two
soil properties maps, the patterns were similar; high SOM areas
typically had high CEC and low SOM areas had low CEC values. This
is because a soil's CEC is related to percent of organic matter (as the
percent of organic matter increases, the CEC also increases) as
discussed earlier. From these results, SOM and CEC mapping with
soil EC and optical sensors seems to be a promising approach.

To investigate the relationships between soil properties and soil
sensor and topographic data, correlation coefficients (R)were calculated
in Table 7 for the research fields. Generally, optical data is inversely
correlated with SOM, and EC data is proportionally correlated with
CEC. Mostly at least one sensor data had good correlation to SOM except
in MO2 and MO3. The low correlation between sensor data and SOM in
MO2 andMO3may be due to low variability in soil samples as shown in
Table 2 and more complex interactions between sensor data and soil
properties than other fields. This situation results in selecting many
variables for SOM calibration as shown in Table 4. EC data showed
good correlation with SOM in IL1, IL2, IL3, OH1 and OH2; therefore EC
data were selected for SOM calibrations in these fields. Optical data
were highly correlated with SOM in IA1, IA3, MI1, OH1 and OH3, and
the optical data were used for their calibration in except in OH1. OH1
had good correlations between SOM and both EC (R=0.98) and optical
data (R=−0.94) and higher correlation with EC was selected for a
Table 5
Ten best SOM calibrations results by selected variables for IL1 field.

Selected variable(s) R2 RMSEP (%) RMSECV (%) RPD

EC_SH, Curvature 0.82 0.31 0.44 2.50
EC_DP, EC ratio, Curvature 0.92 0.28 0.45 2.76
EC_SH 0.75 0.37 0.48 2.12
EC_DP, EC ratio 0.80 0.34 0.48 2.33
EC_SH, Elevation 0.75 0.37 0.48 2.13
EC_SH, Slope 0.76 0.36 0.50 2.15
EC_SH, EC_DP, EC ratio, Curvature 0.90 0.24 0.50 3.27
Red, EC_SH 0.77 0.36 0.50 2.20
EC_DP, Curvature 0.73 0.39 0.50 2.03
NIR, EC_SH 0.76 0.36 0.51 2.16
calibration model. AL1 and MI1 selected both EC and optical data for
SOM calibrations because the two fields had moderate correlation for
SOM to both data. EC ratio was used in all Missouri fields and especially
EC ratio had the highest correlation (R=0.73) among other sensor data
in MO3. OM ratio was not selected in any field for SOM calibrations.
Topographic data were not used for a primary variable, but used as a
secondary variable with sensor data in IL1 and three MO fields.

For CEC calibrations, EC was selected in AL1, AL2, IA2, IA3, MO1,
MO2 and MO3 which had good or moderate correlations between
CEC and EC. AL2 and IA3 showed higher than 0.96 of R for shallow
EC. IA1 and MI1 had much higher correlation for CEC to optical data,
thus optical data were selected for CEC calibrations. Three Missouri
fields showed much higher correlation for CEC to EC data than optical
data, but optical ratio, which had moderate correlation with R of
|0.63| or higher, helped to improve the results. Some topographic
data helped for CEC calibrations such as slope which had the highest
correlation (R=|0.73|) among other sensor data in MO2. All the best
10 CEC calibration models for MO2 included slope. However, generally
the relationships between topographic and soil properties are not con-
sistently correlated. In some fields, the correlation coefficients are weak
and inverted.

Table 8 shows selected variables for SOM calibrations and the
results for combined fields. All combined field models selected both
EC and optical data, and a universal calibration model chose optical
data and topographic data. Four combined fields of five had good
results with R2 of 0.80 or higher and RPD of 2.30 or greater except
combined Missouri fields which had R2 of 0.68 or higher and RPD of
1.79. Combined Illinois and Ohio fields showed very good correlations
to SOMwith R2 of 0.94 and 0.92 and RPD of 4.27 and 3.73, respectively.
These results were as good as the ones for individual fields in these
states by each field-based calibration. A universal calibration model
was developed and showed R2 of 0.55 and RPD of 1.50 for SOM with
the data in Iowa, Illinois and Missouri. This result is lower than each
field-based model and each combined field model. Normalization is
effective to reduce moisture variation for EC and optical data in the
fields mapped under similar conditions with similar soil texture for a
combined field calibration model; however the fields in these three
states were mapped in different seasons under different conditions.
This may cause important information for EC and optical readings to
be lost by normalization. For example, optical readings for IA2 and
MO2 are similar around 127 for red reflectance in Table 3 but SOM is
different as 2.4% and 1.82% as seen in Table 2; therefore calibration
after normalization for the two fields results in erroneous output. Soil
moisture contents along with EC and optical data would help to obtain
better calibration results for fields over different states.

Table 9 shows selected variables for CEC calibrations and the
results for combined fields. All combined field models selected both
EC and optical data and elevation. Combined Alabama field showed
the highest R2 and RPD of 0.92 and 3.70 for CEC calibrations, and
this result was as good as the ones for individual field by each field-
based calibration. Combined Missouri field showed better correlation
for CEC than SOMwith R2 of 0.86 and RPD of 2.69, but combined Iowa
field had lower R2 and RPD than SOMwith 0.67 and 1.80, respectively.
A universal calibrationmodel for CEC with Iowa andMissouri data did
not have good correlation with R2 of 0.52 and RPD of 1.46 as the SOM
universal calibration model had. From the above findings, an each
field-based calibration is feasible but it appears that combined field
calibration models by state with normalization also provide acceptable
estimates. Further research is needed to investigate how soil moisture
values along with the sensor data improve calibration results.

Table 10 shows comparison of SOM and CEC estimations by each
field model, each combined field model by state, and a universal
calibration model. Estimated SOM and CEC by combined field models
typically showed higher RMSEP and lower RPD than ones by each
individual field model, although some fields such as AL1 and IL3 for
SOM and IA2 for CEC showed better results. SOM and CEC estimations



Fig. 3. Lab-analyzed values overlaid on estimated SOM maps for each representative field in six states.
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Table 6
Selected variables for CEC calibrations and the results for the research fields in 4 states.

State Field Selected variable(s) R2 RMSEP (meq 100 g−1) RMSECV (meq 100 g−1) RPD

Alabama AL1 Red, EC_SH 0.86 0.95 1.47 2.81
AL2 EC_SH 0.93 0.13 0.29 4.30

Iowa IA1 NIR 0.76 0.77 1.32 2.22
IA2 EC_SH 0.40 1.57 2.06 1.41
IA3 EC_SH 0.96 0.64 1.36 6.08

Michigan MI1 NIR 0.68 0.75 0.91 1.84
Missouri MO1 Optical ratio, EC_SH, EC_DP, EC ratio, Curvature 0.87 1.75 2.09 2.78

MO2 Optical ratio, EC_SH, EC_DP, EC ratio, Slope, Curvature 0.96 0.72 1.37 5.03
MO3 Red, Optical ratio, EC_SH, EC_DP, Elevation 0.93 0.46 0.88 3.85
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by universal calibration model did not show good correlations to lab
values except IL3 which had RPD of 4.30 for SOM.

The measured reflectance values by the optical sensor is mainly
the function of soil texture, soil moisture, distance between soil
surface and a sensor, and soil organic matter content (Kweon and
Fig. 4. Lab-analyzed values overlaid on estimated CEC
Maxton, in review; Shonk et al., 1991). Variations due to soil texture
interactions for SOM estimation can be compensated by an EC sensor,
and variations caused by inconsistent distance can be removed by
controlling the depth of the row unit. To remove variations due to
different moisture conditions, the use of a soil moisture sensor such as
maps for each representative field in four states.

image of Fig.�4


Table 7
Correlation coefficients between soil properties and sensor and topographic data for the research fields.

SOM vs. CEC vs.

Field EC Sh EC Dp EC ratio Red NIR Optc ratio Slp Curv Elv EC Sh EC Dp EC ratio Red NIR Optc ratio Slp Curv Elv

AL1 0.71 0.58 −0.30 −0.56 0.04 0.76 −0.07 0.18 0.29 0.74 0.59 −0.29 −0.56 0.07 0.79 −0.05 0.20 0.29
AL2 0.63 0.24 −0.61 −0.60 −0.61 −0.66 −0.19 −0.02 −0.53 0.96 0.77 −0.77 −0.56 −0.58 −0.73 −0.43 0.05 −0.31
IL1 0.87 0.76 −0.43 −0.75 −0.79 −0.54 −0.53 0.77 −0.68 – – – – – – – – –

IL2 0.95 0.96 −0.21 −0.83 −0.78 −0.46 −0.54 0.62 −0.78 – – – – – – – – –

IL3 0.97 0.97 −0.48 −0.56 −0.82 −0.92 −0.49 0.82 −0.85 – – – – – – – – –

IA1 −0.18 0.35 0.93 −0.92 −0.96 −0.53 −0.75 −0.47 −0.81 0.03 0.40 0.81 −0.73 −0.87 −0.81 −0.44 −0.25 −0.45
IA2 −0.65 −0.48 0.39 −0.75 −0.52 0.73 0.02 0.53 −0.27 0.63 0.57 −0.29 0.22 −0.06 −0.88 −0.12 −0.91 0.96
IA3 0.43 0.61 0.41 −0.97 −0.97 0.32 0.47 −0.42 −0.11 0.98 0.96 0.13 −0.42 −0.66 −0.57 0.61 0.47 0.73
MI1 0.75 0.60 −0.61 −0.89 −0.87 −0.54 0.03 0.51 −0.15 0.31 0.19 −0.56 −0.79 −0.82 −0.63 0.49 0.55 0.34
MO1 0.79 0.48 −0.23 0.19 −0.30 −0.65 −0.46 0.27 −0.31 0.88 0.53 −0.21 0.12 −0.44 −0.79 −0.55 0.33 −0.52
MO2 0.51 0.41 −0.33 −0.09 −0.33 −0.62 −0.77 0.52 0.06 0.62 0.44 −0.52 0.01 −0.22 −0.63 −0.73 0.39 0.14
MO3 −0.47 −0.26 0.73 −0.46 −0.28 0.40 0.04 0.35 0.18 0.49 0.64 0.46 0.01 0.04 0.07 0.36 −0.15 0.36
OH1 0.98 – – −0.92 −0.94 0.93 −0.69 0.75 −0.85 – – – – – – – – –

OH2 0.99 – – −0.78 0.29 0.97 0.64 −0.72 −0.23 – – – – – – – – –

OH3 0.19 – – −0.91 −0.94 0.86 0.11 0.67 0.17 – – – – – – – – –

88 G. Kweon et al. / Geoderma 199 (2013) 80–89
a soil capacitance sensor or an optical sensor with strong water vapor
absorbance wavelengths could be added. For development of
calibration models for combined fields, it is important to consider soil
type similarity for field grouping on the basis of the natural boundaries
defined by the MLRAs not by man-made political boundaries (Sudduth
et al., 2005).

Calibrating the sensormeasurements with lab results is not merely
an aspect of research and development, but is integral to commercial
deployment of the OpticMapper. Typically, soil EC measurements are
not calibrated to a soil test property, but are used as relative values
of soil texture variability. The exception to this practice is in saline
fields where bulk soil EC data can be calibrated with lab-measured
salinity. Soil EC is usually not calibrated with lab data in non-saline
soils for a number of reasons: the depth of EC signal penetration
makes it difficult to acquire reference samples, EC signals integrate
multiple soil properties, and soil texture is an expensive lab test that
is not typically conducted on farm fields. Calibrating EC alone with
CEC generates mixed results, as shown in Table 7. When CEC and
OM are highly correlated, calibrating EC with CEC can be acceptable,
but when they are independent, as in the case of high clay/low OM
soils, the results are poor. The addition of the optical soil sensor repre-
sents a measurement technology that responds to optical soil proper-
ties rather than electrical properties. As a result, the combination of
sensors is able to differentiate between soils with similar EC values
but dissimilar CEC values. Similarly, OM calibration results using the
sensor combination are stronger than from optical data alone. Further
study will be implemented to validate a global calibration model with
other sensor data such as moisture in addition to EC, optical and topo-
graphic data.

4. Conclusions

An on-the-go optical soil sensor with 660 nm red and 940 nm
infrared wavelengths with an electrical conductivity sensing unit
Table 8
Selected variables for SOM calibration and the results for combined fields.

Combined field No. of samples Selected variable(s)

Alabama 14 NIR, Optical ratio, EC_SH, EC_DP
Illinois 20 NIR, EC_SH, Elevation
Iowa 16 Red, EC ratio
Missouri 56 Red, NIR, Optical ratio, EC_DP, EC ra
Ohio 11 Red, EC_SH
Iowa, Illinois and Missouria 46 Red, NIR, Slope, Elevation

a Universal calibration model for SOM.
estimated soil organic matter contents and cation-exchange capacity
on 551 ha on 15 fields in 6 U.S. states. For calibration between sensed
data and lab-analyzed values, a multivariate linear regression with
leave-one-out cross validation was performed on fields with more
than 10 lab samples and a single variable linear regression was
performed on fields with less than 10 samples. From the SOM calibra-
tion results, 12 of 15 fields had good results with R2 of 0.80 or higher
and RPD of 2.33 or greater. For CEC calibrations, six of nine fields had
good results with R2 of 0.86 or higher and RPD of 2.78 or greater. Each
the best calibration models was applied to each field and the estimated
SOM and CEC maps exhibited strong spatial structure and high correla-
tion to lab-analyzed SOM in all fields.

EC and optical data in each field was normalized and combined
together by state and tested with MLR. Combining fields in this man-
ner showed good results with R2 of 0.80 or higher and RPD of 2.30 or
greater for SOM in four of five states, and combined fields in two of
three states showed good correlations to lab data with R2 of 0.86 or
higher and RPD of 2.69 or greater for CEC. A universal calibration
model was developed with the data from Iowa, Illinois and Missouri
and showed not as high as the results of each individual field model
or combined field models with R2 of 0.55 and RPD of 1.50 for SOM
and R2 of 0.52 and RPD of 1.46 for CEC.

From the comparison of SOM and CEC estimations by each field
model, each combined field model by state, and a universal calibra-
tion model, estimated SOM and CEC by combined field models and
by a universal calibration model typically did not show good correla-
tions to lab values. This poor estimation might result from the loss of
the level of reflectance values for specific SOM contents due to nor-
malization. A soil moisture sensor would help to solve this problem
by considering soil moisture contents on soil reflectance values.
Based on these findings, future research will be implemented to esti-
mate SOM and CEC more precisely by developing a reliable universal
calibration model using soil EC, optical data, soil moisture contents
and topographic attributes for global areas.
R2 RMSEP (%) RMSECV (%) RPD

0.80 0.31 0.51 2.30
0.94 0.32 0.42 4.27
0.88 0.11 0.41 3.01

tio, Slope, Curvature, Elevation 0.68 0.32 0.39 1.79
0.92 0.27 0.36 3.73
0.55 0.77 0.87 1.50



Table 10
Comparison of SOM and CEC estimations by each field model, each combined field model by state, and a universal model.

Field SOM (%) CEC (meq 100 g−1)

Field model Combined field
model

Universal model Field model Combined field
model

Universal model

RMSEP RPD RMSEP RPD RMSEP RPD RMSEP RPD RMSEP RPD RMSEP RPD

AL1 0.31 2.43 0.28 2.67 – – 0.95 2.81 1.00 2.67 – –

AL2 0.34 1.46 0.38 1.32 – – 0.13 4.30 0.65 0.83 – –

IL1 0.31 2.50 0.41 1.91 1.24 0.63 – – – – – –

IL2 0.12 3.98 0.23 2.05 0.34 1.38 – – – – – –

IL3 0.19 4.58 0.17 5.18 0.20 4.39 – – – – – –

IA1 0.24 3.91 0.66 1.44 1.17 0.80 0.77 2.22 1.40 1.21 2.19 0.78
IA2 0.27 1.67 0.48 0.94 0.88 0.51 1.57 1.41 1.33 1.67 4.58 0.49
IA3 0.16 5.09 0.49 1.69 0.96 0.86 0.64 6.08 1.50 2.61 3.03 1.29
MO1 0.28 1.84 0.30 1.72 0.42 1.22 1.75 2.78 1.89 2.58 3.28 1.48
MO2 0.08 5.68 0.30 1.54 0.74 0.62 0.72 5.03 2.14 1.68 3.24 1.11
MO3 0.12 2.33 0.38 0.72 0.51 0.54 0.46 3.85 2.47 0.72 5.19 0.34
OH1 0.16 5.94 0.44 2.22 – – – – – – – –

OH2 0.04 25.03 1.14 0.78 – – – – – – – –

OH3 0.91 2.82 1.95 1.32 – – – – – – – –

Table 9
Selected variables for CEC calibrations and the results for combined fields.

Combined field No. of samples Selected variable(s) R2 RMSEP (meq 100 g−1) RMSECV (meq 100 g−1) RPD

Alabama 14 Red, NIR, EC_SH, Elevation 0.92 0.91 1.54 3.70
Iowa 16 NIR, EC_DP, Elevation 0.67 1.40 1.94 1.80
Missouri 56 Red, NIR, Optical ratio, EC_DP, EC ratio, Slope, Curvature, Elevation 0.86 2.08 2.51 2.69
Iowa & Missouria 36 Optical ratio, EC_SH, Curvature, Elevation 0.52 3.61 4.25 1.46

a Universal calibration model for CEC.
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