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1 Introduction 

We consider an M(2)/M(iz)/c queue, where customers transfer to a critical 
state when their queueing (sojourn) time exceeds a random time. This time is 
exponentially distributed with parameter 0. Critical customers have preemptive 
priority over non-critical ones (hence the servers never attend non-critical cus- 
tomers if there are critical customers waiting in the queue). 

In the application that we have in mind, the customers are repairjobs and the 
servers are repairmen (engineers). When the queueing time of a job exceeds a 
random time, the repairjob will be called critical and causes a slowdown of 
the entire installation from which the repairjobs originate. An example of such 
an installation is a sugarfactory (sugarhouse), where sugarbeets are refined. 
The technical staff of such a factory, who maintain the installation, consists of 
engineers working in full shift during the beetcampaign. This beetcampaign is a 
period of approximately 100 days during which the beets are harvested from 
the fields and refined in the factory. The management of the sugarhouse is 
interested in the delay of the refinery process caused by technical failures of the 
installation. We model the repairjobs and the engineers as a multi-server queue. 
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A repairjob becomes critical when its queueing time exceeds a given random 
time and it is then treated with priority. We arrive at the model described above 
by assuming that failures arrive according to a Poisson process, the repairwork 
is done with an exponential rate and jobs become critical with an exponential 
rate. Of course, such a model can only be used as a first approximation. The 
basic quantities of interest for the management are the total time during a 
campaign that the system contains critical repairjobs and the average number 
of critical repairjobs. 

The system can be represented by a two-dimensional Markov process with 
states (m, n) where m is the number of non-critical jobs and n the number of 
critical jobs in the system. It is difficult to find an explicit solution for the sta- 
tionary probabilities of this Markov process. We will not attempt to do this. 
Instead lower and upper bounds for the distribution of the number of critical 
jobs will be derived from two modifications of the original system, which are 
easier to solve. The number of non-critical jobs in these two systems is bounded 
by a certain threshold. In the lower bound model this is realized by rejecting a 
new job if the number of non-critical jobs has reached the threshold and in the 
upper bound model a new job becomes immediately critical in this case. The 
larger the threshold, the better the bounds will be, but also the more effort it 
takes to compute the bounds. Note that when there are many jobs in the origi- 
nal system, most of them will be critical. Hence one might expect that the 
bounds are tight for already moderate values of the threshold. 

The reason why the lower and upper bound system are easier to handle than 
the original model is that the Markov processes describing these systems have 
only one unbounded variable, namely n. So they are essentially one-dimensional. 
In fact, these processes are so-called quasi-birth-death processes, which can be 
efficiently solved by using Neuts' matrix-geometric approach [10]. 

The proof of the bounds in based on a Markov reward technique similar to 
the ones used in [4, 5, 6, 7, 1, 2]. In these references first the Markov processes 
representing the original model and the lower and upper bound model are 
translated into equivalent Markov chains. Then it is shown by induction that 
for each finite number of periods the performance of the original model is 
sandwiched between the performances of the two bound models. Letting the 
number of periods tend to infinity yields the result for the average performance. 
The translation into a Markov chain is only possible if the transition rates are 
bounded. In our case, this holds for the lower and upper bound model, but not 
for the original model. Therefore we have to follow a slightly different road. 
First we prove that the number of critical jobs in the lower (upper) bound 
model stochastically increases (decreases) as the threshold increases. This is 
established by using the technique described above. Then the proof is finished 
by showing that the distributions (and also the means) of the number of critical 
jobs in the lower and upper bound models converge to that of the original 
model as the threshold tends to infinity. In fact, we prove more than in the 
references mentioned, in the sense that not only the bounds are proved, but also 
that they converge to each other. 
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The Markov reward technique used in the present paper to establish com- 
putable bounds is also a powerful tool to prove qualitative properties, like e.g. 
monotonicity properties in queueing networks (of. [13]) or optimality of routing 
policies to parallel queues (cf. [8]). 

The model with an additional input stream of jobs which are critical from the 
beginning has been studied by De Waal [12] and Van Rooij [11]. They use this 
model to describe corrective and preventive maintenance of components in an 
installation like, e.g., a plant at an oil refinery. In their model corrective main- 
tenance jobs (i.e., the critical jobs) have priority over preventive maintenance 
jobs. But preventive maintenance of a component can change into corrective 
maintenance, namely when that component breaks down while it is waiting. 
They develop approximations for the fraction of preventive maintenance jobs 
that become corrective and the mean waiting time of corrective maintenance 
jobs. 

The paper is organized as follows. In Section 2 we describe the models. The 
bounds are established in Section 3 and the matrix-geometric analysis of the 
lower and upper bound model is briefly described in Section 4. We present 
numerical results in Section 5. The final section is devoted to conclusions and 
comments. 

2 The Models 

We consider an M(2)/M(It) /c queue, where jobs become critical when their 
queneing time exceeds an exponential time with mean 1/0. Critical jobs have 
preemptive priority over non-critical jobs. In the lower and upper bound model 
the arrival mechanism is modified such that the number of non-critical jobs 
never exceeds a (fixed) threshold T. If, due to an arrival, the number of non- 
critical jobs would exceed T, then in the lower bound model that job is rejected 
and in the upper bound model that job becomes instantaneously critical. 

The three models are Markov processes. The state of the original system can 
be described by the pair (m, n), where m is the number of non-critical jobs in 
the system and n the number of critical jobs. From state (re, n) there are tran- 
sitions to (m+  1,n) with rate 2 (an arrival) and ( m -  1 ,n+  1) with rate mO 
(transfer to critical state). There are two other transitions corresponding to 
service completions, namely to (m,n - 1) with rate min(n, c)/z (departure of a 
critical job) and, if n < c, then also a transition to ( m -  1,n) is possible with 
rate min(c - n, m)/t (departure of a non-critical job). The states in the lower 
and upper bound systems are restricted to the pairs (m, n) with m < T. The 
transitions are the same as in the original system, except that in the states (T, n) 
the transitions to (T + 1,n) with rate ~ are replaced by transition (with the 
same rate to (T,n) and (T ,n+  1) in the lower and upper bound system, 
respectively. 
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Since in the original and upper bound system the total number of jobs is the 
same as in the ordinary M / M / c ,  the condition 2 < c/t is necessary and suffi- 
cient for these systems to be ergodic. The lower bound system destroys work, so 
it is ergodic if the original system is ergodic. The transition rates for the three 
models with c -- 1 are depicted in Fig. 1. For the lower and upper bound model 
we only indicate the differences with respect to the original model. 

In the next section we will prove that the number of critical jobs in the 
upper bound model is stochastically larger than in the original model. The 
proof for the lower bound model proceeds along the same lines, and it is 
therefore omitted. 

3 Proof  of  the Upper Bounds 

We first compare the upper bound models with thresholds T and T + 1. Let L~r 
be a random variable denoting the (stationary) number of critical jobs in the 
model with threshold T. Then we will prove the following result. 

Theorem 3.1." LUr >__ stZUT+l for  each T > O. 

Let us fix T > 0 and N > 0. We now have to show that 

P ( L ~  >- N )  >_ e(L"r+ 1 >__ N )  . (1) 

Let Qr be the generator of the model with threshold T. Its equilibrium distri- 
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bution rrr satisfies ~zrQr = 0. Related to this Markov process we introduce the 
Markov chain with transition matrix I + zfQr where A > 0, but sufficiently 
small for I + / IQT to be nonnegative. Clearly the Markov chain has the 
same equilibrium distribution nT as the Markov process. Hence, to establish 
(1) we can focus on the Markov chains I +  zfQr and I +  zlQr+l with A = 
1/(2 + c/z + (T + 1)0). Along with these chains we introduce the one-step cost 
c(m,n) defined as 1 if n >_ N and 0 otherwise. Define vk(rn, n) and wk(m,n) as 
the total expected cost over k periods for the models with thresholds T and 
T + 1, respectively, and with (m,n) as initial state. Further we set v0 = w0 = 0. 
In the Appendix we prove by induction the following intuitively obvious 
inequalities for the functions Wk. 

Lemma 3.2: For all k >_ 0 we have 

(i) w k ( m , n + l )  >_wk(m,n), O < m <  T + l , n > 0 ;  
(ii) wk(m + 1, n) >_ Wk(m, n), 0 <_ m <_ T, n >_ 0; 

(iii) wk(m,n + 1) _> Wk(m + 1,n), 0 <_ m <_ T,n  >_0. 

The inequalities (i) and (ii) state that it is preferable to start with less jobs in 
the system and (iii) states that it is attractive to change a critical job into a non- 
critical job. Note that the cost function also satisfies these inequalities. Lemma 
3.2 is crucial for the proof of the following result (see the Appendix). 

Lemma 3.3: For all k > 0 and all (m, n) with 0 < rn < T and n > O, 

vk(m,n) >__ Wk(m, n) . (2) 

From Lemma 3.3 we conclude that 

P(L~ > N ) =  lim vk(m,n________~)) > lim wk(m,n) 
k~oo k k--.oo k P(L~+I -> N) , 

and so the proof of Theorem 3.1 is complete. 
Next we show that the equilibrium distribution rrr of the upper bound model 

with threshold T converges weakly to the equilibrium distribution 7r of the 
original model as T tends to infinity. 

d 
Theorem 3.4: nr  ~ 7r as T --~ or. 
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Balancing the flow into and out the set of states (m, n) with m + n < k yields 
that min(k + 1, c) lmr(k  + 1) = 2nr(k) (note that for the lower bound model 
we have < instead of =). Hence, it is immediate that for 2 < cg and indepen- 
dent of T the probabilities 7~r(k) decrease exponentially. It follows that the 
class of discrete probability measures {nr, T = 0, 1,.. .} on S = {(m, n) e N 2} 
is tight. Consequently, by Prohorovs theorem (cf. [3], Theorem 6.1) the class 
{nr} is relatively compact, meaning that each subsequence nr~, contains a fur- 
ther subsequence hr.,, that converges weakly to some discrete probability mea- 
sure ~ on S. The limit probability measure ~ must satisfy the equilibrium 
equations of the original model and hence is equal to n. So each converging 
subsequence nr~,, has limit n and this implies the statement of the theorem. [] 

Let L be the number of critical jobs in the orginal system. Theorems 3.4 and 
3.1 imply that the distribution of L~. converges to that of L, monotonously. 

Corollary 3.5: P(LU~ > N)  l P (L  >_ N) as T --. ~ for each N >_ O. 

Denote the means of L~. and L by L~ and L, respectively. From the mono- 
tone convergence theorem we can conclude that the means also converge. 

Corollary 3.6. LUr $ L as T ~ ~ .  

Similar results hold for Ltr, the number of critical jobs in the lower bound 
model (with, of course, obvious modifications such as T instead of s in the two 
corollaries formulated above). 

4 Analysis of the Upper Bound Model 

In this section we briefly describe the analysis of the upper bound model, which 
is based on the matrix geometric theory developed by Neuts [10]. The analysis 
of the lower bound model is identical (and therefore not included). 

The upper bound model can be described by an irreducible Markov process 
with states (rn, n), where m is the number of non-critical jobs in the system 
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and n the number of  critical ones. The state space is restricted to the pairs 
with m < T. Let us define for n = 0, 1 , . . . ,  level n as the set of  states (0,n), 
(1, n ) , . . . ,  (T, n). Then we partition the state space into the levels c, c + 1, . . .  
and we put together the levels 0, 1 , . . . ,  c - 1 with less regular transition behav- 
iour in one set of  boundary states. The states at a level are ordered lexico- 
graphically. For this partitioning the generator QT is of  the form 

QT = 

 010 0 0 i!!/ 
BlO A1 Ao 0 0 

0 A2 A1 Ao 0 

0 0 A2 A1 Ao 
. . . .  . " . .  

The blocks Ao, A1 and A2 are square matrices of order T + 1. The matrices Boo, 
B01 and B10 are of dimension c(T+ 1) x c(T+ 1), c(T+ 1) x ( T +  1) and 
(T + 1) x c(T + 1), respectively. 

For 2 < c/z the system is ergodic. Then the equilibrium probability vector 7rr 
exists. We partition 7rr into the (large) vector zrbr = (no , . . . ,  n~ -1) of boundary 
states and into the sequence zr~., 7r~.+l,..., where n~. is the equilibrium proba- 
bility vector of  level n. Note that the generator A0 + AI + A2 is irreducible, so 
we can conclude from (the continuous time version of) Theorem 1.5.1 in [10] 
that 

n~v = 7r~-R "-c , n > c ,  (3) 

where the matrix R (the so-called rate-matrix) is characterized as the minimal 
nonnegative solution of the matrix quadratic equation 

Ao + RA1 + R2A2 = 0. 

The vectors 7r~. and 7r~. follow from the boundary conditions 

c /' Boo BOl ) = 0 
[,BlO A1 + 

and the normalization equation 

c-1 
R)-le = 1, 

n=O 
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Fig. 2. Bounds for L as a function of 2 for/z = c = 1 and 0 = 0.25 with T varied as 2 and 3 

where e is the column vector o f  length T + 1 with all entries equal to one. For 
the determination o f  R efficient algorithms have been developed (see, e.g., [9]). 
From the equilibrium distribution 7rr it is now straightforward to determine 
global performance characteristics. For instance, for L~ we find, by inserting 
(3), that 

c--1 

L~ = ~ nn~e = ~ nn~.e + n~( I  - R)-2e + (c - 1 ) ~ . ( I  - R ) - l e .  
n=O n=O 

5 Numerical Results 

This section is devoted to numerical results. In Fig. 2 we demonstrate the rate 
of  convergence of  the bounds for the mean number of  critical jobs as a function 
of  2 for the case it = c = 1 and 0 = 0.25. The dashed lines are the bounds for 
T = 2; the dotted ones for T = 3. The results show that especially the upper 
bound rapidly converges to the exact values, and that for high workload this 
bound is much better than the lower bound. Apparently, transforming a non- 
critical job somewhat  earlier to a critical state has not  much effect on L, but the 
impact of  destroying work is considerable. Luckily, it is possible to produce 
with the upper bound model  a (much better) lower bound for L as well. This 
will be explained below. 
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Table 1. Performance characteristics. In all examples we have set c/z = 1 
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c ~ O L P(~ = 0) f, r 

1 .5 .1 .11353 .911353 .177295 16 
.5 .47101 .735504 .528992 9 

.9 .1 3.7234 .472336 .586293 29 
.5 7.4388 .219385 .867350 13 

3 .5 .1 .40586 .682451 .266197 15 
.5 1.0792 .384542 .657668 9 

.9 .I 4.5008 .253397 .616969 28 
.5 8.4454 .074820 .893420 13 

The number of jobs that becomes critical per unit of time should balance the 
number of critical jobs that leaves the system per unit of time. Hence 

(LMIMh -- L)O = 2 f  c,  (4) 

where L~/u/c is the mean number of jobs in an M/M/c system and f~ is the 
fraction of jobs that becomes critical. Note that f~ satisfies 

1 c 

where the sum at the right hand side is the number of c r i t i c a l  jobs leaving 
the system per unit of  time. We can use relation (4) to produce a lower (upper) 
bound for L from the upper (lower) bound for f~. In other words, with one 
bound model we are able to produce a lower bound as well as an upper bound 
for L. In Fig. 2 we show the lower bound for L (the dash-dotted line) obtained 
from the upper bound for fc which is produced by the upper bound model with 
T = 3. Clearly, this bound for L is much better than the one obtained from the 
lower bound model with T = 3. 

In Table 1 we list for several values of c, 2 and 0 the mean number of critical 
jobs L, the probability P(L = 0) and the fraction f~ of jobs that becomes crit- 
ical. In all examples in Table 1 we have set/~ = 1/c, so that 2 is equal to the 
occupation rate of the servers. The value of T indicates the minimal threshold 
needed to obtain the performance measures with the accuracy (i.e., the number 
of digits) listed. The computation of L is based on the upper bound model only. 

We see in Table 1 that the performance characteristics can be determined 
accurately for already moderate values of T. For  each example the computa- 
tion time on an ordinary 486 PC is at most a couple of seconds. 

We conclude this section by comparing the mean number of critical jobs in 
an M/M/1 system where jobs become critical after an exponential time with 
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Table 2. Comparison of the mean number of critical 
jobs for an exponential and deterministic deadline 

~. 0 Le Ld 

.5 .1 .1135 .0067 
.5 .4710 .3679 

1 .6559 .6065 
.9 .1 3.723 3.311 

.5 7.439 7.369 
I 8.168 8.144 

mean 1/0 with a system where jobs become critical after a deterministic time 
1/0. Let us denote the mean number of  critical jobs in the systems with an 
exponential and deterministic deadline by Le and Ld, respectively. By Litfle's 
law we have that 

Ld = ) ,C , 

where C is the expected time that a job is critical. Since the queueing time of  a 
job is exponentially distributed with parameter / t  - 2, it follows that 

C =  e -(~-a)/~ 1 
t ~ -  2 

Hence, 

Ld = e -(t'-~)/~ )" 
t l - -  2 " 

In Table 2 we compare Le and Ld for several values of  2 and 0. The results 
show that the mean number  of  critical jobs is f a i ry  insensitive to the distribu- 
tion of the critical deadline, except when 2 and 0 are both small. 
Note:  I f  0 is very small (0 < g/10),  it seems sensible to bound the number of  
critical jobs instead of the non-critical ones. This can be realized by refusing the 
transfer of  a job to a critical state, if due to that transfer the number of critical 
jobs would exceed a threshold T. Further, we have to bound the rate with 
which jobs become critical, the max imum rate is M O  say. It  can be proved 
(along the same lines as in Section 3) that this model produces a lower bound 
for the distribution of critical jobs. 
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We have seen that it is possible to derive tight lower and upper bounds for the 
distribution of  the number of  critical jobs by comparing the original system 
with two modified systems. The lower and upper bound system are much easier 
to analyze than the original one, because they have a matrix-geometric solution. 

It is straightforward to extend the analysis to the case where there is also an 
input stream of jobs which are critical from the beginning. As mentioned in the 
introduction, this model is considered in [12, 11]. Further it is also possible to 
derive bounds for the performance of  a system with phase-type deadlines and/ 
or service times. In this case, however, the state space is much larger than for 
the exponential system, since we have to include extra information of the status 
of the jobs and the service process in the state description. 

Appendix 

P r o o f  o f  L e m m a  3.2. The proof  proceeds by induction. Since w0 = 0 the 
inequalities are trivially satisfied for k = 0. Suppose that (i)-(iii) hold for k. 
Then we will establish them for k + 1. The induction step is only worked out 
for (i), the other two inequalities can be treated similarly. 

Case a: m < T + 1, n > c. We have 

Wk+l(m,n + 1) = c (m,n  + 1) + A2wk(m + 1,n + 1) + zlmOwk(m -- 1,n + 2) 

+ ACltWk(m, n) + (1 -- A(2 + cla + mO))wk(m, n + 1),  

Wk+l (m, n) = c(m, n) + z]~.wk(m + 1, n) + f l m O w k ( m -  1, n + 1) 

+ ZlCltWk(m , n -- 1) + (1 -- A(2 + clt + mO))wk(m, n ) .  

Comparing the right sides of the equations above we see that (i) for k + 1 fol- 
lows from the induction hypothesis (i). 

Case b: m < T + 1, n < c, m ~ c - n. Then 

wk+~ (m, n + 1) = c(m, n + 1) + A2wk(m + 1, n + 1) + ztmOwk(m -- 1, n + 2) 

+ ,4nltwk(m, n) + Altwk(m, n) 

+ J ( c  -- n -- 1)lawk(rn -- 1,n + 1) 

+ (1 - A(2 + cla + mO))wk(m, n + 1),  
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Wk+l(m,n) = c(m,n) + d2wk(m + 1,n) + dmOwk(m -- 1,n Jr 1) 

+ ztnl~wk(m,n -- 1) + ztltWk(m -- 1,n) 

+ A(c - n - 1)ltWk(m -- 1, n) 

+ (1 -- A(2+  Cl.t+mO))wk(m,n). 

So from the induction assumptions (i)-(ii) we obtain w k + l ( m , n + l ) >  
wk+l (m, n). 

Case c: m < T +  1,n < c,m < c -  n. From 

Wk+l(m,n q-- 1) = c(m,n + 1) + A2wk(m + 1,n + 1) + dmOwk(m -- 1,n + 2) 

+ Amlzwk(m -- 1, n + 1) + dnltwk(m, n) + dlZWk(m, n) 

+ (1 -- A(2 + (rn + n + 1)# + mO))wlc(m, n + 1), 

Wk+ 1 (m, n) = c(m, n) + A2wk(m + 1, n) + AmOwk(m- 1, n + 1) 

+ Aml~wk(m -- 1, n) + Anltwk(m, n -- 1) + A~wk(m, n) 

+ (1 -- A(2 + (m + n + 1)p + mO))wk(m, n) ,  

we get that Wk+l(m,n + 1) ~ Wk+l(m,n). 
The proof of the three cases above with m = T + 1 only needs obvious 

changes and it is therefore omitted. 

Proof of  Lemma 3.3. The proof is again by induction. For k = 0 inequality 
(2) is trivial. Suppose that (2) holds for k. In order to prove (2) for k + 1 we 
have to distinguish between the cases m < T and m = T, but the latter is the 
only interesting situation. For m = T and n > c we have (recall that Vk has 
threshold T), 

Vk+l(T,n) = c(T,n) + AAvk(T,n + 1) + A T O v k ( T -  1,n + 1) 

+ Aclavk(T, n - 1) + (1 - d(2 + c# + r o ) ) ~ ( r ,  n) 

Wk+l (T,  n) = c(T, n) + A2wk(T + 1, n) +  Jr0wk(r - 1, n + 1) 

+ AClZw~(T, n - 1) + (1 - A(2 + ClZ + TO))wk(T, n) .  
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Ok+l (T,  n) - Wk+ 1 (T, n) > zlA(Vk(T, n + 1) - Wk(T + 1, n)) 

> AA(vk(T,n + 1) - Wk(T,n-.[- 1)) > 0 ,  

where the first and third inequality follow by induction; the second one follows 
f rom L e m m a  3.2(iii). The  case m = T and n < c follows in the same way. 
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