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Abstract— The reliability of wireless sensor networks
(WSN) is affected by faults that may occur due to various
reasons such as malfunctioning hardware, software glitches,
dislocation, or environmental hazards, e.g. fire or flood.
A WSN that is not prepared to deal with such situations
may suffer a reduction in overall lifetime, or lead to
hazardous consequences in critical application contexts. One
of the major fault recovery techniques is the exploitation of
redundancy, which is often a default condition in WSNs.
Another major approach is the involvement of base stations
or other resourceful nodes to maintain operations after
failures. In this paper we present a survey of approaches to
fault tolerance and detection techniques in WSNs in both
theoretical and application driven research. We provide a
taxonomy of faults and classify the surveyed approaches
according to their ability of detecting and recovering from
faults.

I. INTRODUCTION

Advances in embedded systems technology have made
it possible to build wireless sensor nodes, which are small
devices with limited memory, processing power, and en-
ergy resources [1]. Due to the low cost associated to these
devices, it is possible to conceive the deployment of large-
scale wireless sensor networks (WSN) with potentially
thousands of nodes [7].

Recently, the usage of WSN to monitor storage reg-
ulations of hazardous materials in chemical plants was
investigated by the CoBIs project1. In this critical in-
dustrial environment a high degree of dependability is
required. In order to be considered dependable, WSNs
must offer characteristics such as: reliability, availability
and maintainability.

Availability to a large extend depends on fault tolerance
to keep the system working as expected. Availability on
the service level means that the service delivered by a
WSN (or part of it) is not affected by failures and faults
in underlying components such as single nodes or node
subsystems. In WSNs, the failure of such components is
almost unavoidable. Most detection and recovery tech-
niques therefore aim at reducing MTTR (the amount of
time required for detecting and recovering from a failure)
as much as possible.

We conducted an investigation on frequent faults that
occur on real world WSN deployments and the techniques
used to detect and overcome these faults. As indicated by

1http://www.cobis-online.de/

deployment reports [27][41][20][43][39], the installation
of large-scale sensor networks for real world applications
is not a trivial task and can lead to innumerous failures.
What works in theory not always performs as expected
in practice.

In these WSN deployments, it is common to have
a node providing functionality to its neighbors. Multi-
hop routing is a simple example of such a service,
where nodes forward messages on behalf of each other.
Often, nodes assume dedicated roles such as clusterhead,
which implies the responsibility for certain tasks. For
example, a clusterhead could aggregate sensor data before
it is forwarded to a base station, thereby saving energy.
Nodes with stronger hardware capabilities can perform
operations for other nodes that would either have to spend
a significant amount of energy or would not be capable
of performing these operations.

These services, however, may fail due to various
reasons, including radio interference, de-synchronization,
battery exhaustion, or dislocation. Such failures are
caused by software and hardware faults, environmental
conditions, malicious behavior, or bad timing of a legiti-
mate action. In general, the consequence of such an event
is that a node becomes unreachable or violates certain
conditions that are essential for providing a service, for
example by moving to a different location, the node can
no further provide sensor data about its former location.

In some cases, a failure caused by a simple software
bug can be propagated to become a massive failure
of the sensor network. This results in application trials
failing completely and is not acceptable in safety critical
applications. Hence, our aim is to clarify the requirements
for maintaining high level availability in WSNs, and to
investigate the tools and mechanisms utilized in WSN
research and engineering for fault detection and recovery.

In this paper, we concentrate on enhancements of
service availability in WSNs through the use of fault
tolerance techniques. We present a survey of approaches
to fault detection and recovery techniques in WSNs. We
provide a taxonomy of faults and classify the investigated
approaches according to their ability to detect and tolerate
faults.

This paper provides an overview of the relation of
fault tolerance with other areas of research, described in
section III, followed by section IV, which presents faults



reported on real world deployments and classifies the
events that cause disruptions in wireless sensor networks,
thus motivating the need for fault tolerance techniques.
Sections V and VI surveys approaches to fault detection
and recovery. In section VII, these approaches are classi-
fied and compared. Section VIII concludes this paper.

II. THE COBIS PROJECT

The project CoBIs develops a novel service oriented
approach to support business processes that involve phys-
ical entities (goods, tools, etc.) in large-scale enterprise
environments. Software systems that provide various ser-
vices for enterprise businesses are usually based on
highly decentralized, manual and thus often error-prone
data collection and a more centralized data storage and
business logic execution in so called ”backend” systems.
An important intention of this project is to apply recent
advances in the area of sensor networks, in order to
distribute business logic functionality to sensor nodes. In
this way, the status of enterprises, as it is represented
in business processes and in the supporting enterprise
software systems, can reflect more closely what is actually
happening in the real world.

In industrial scenarios where the CoBIs technology
is applied, the services proviced by the WSN must be
reliable to avoid major losses in the business processes
caused by failures in the sensor network. Figure 1 shows
one of these scenarios where CoBIs was applied in a real
world deployment. There, drums containing hazardous
materials were equipped with sensor nodes programmed
with information on their specific content, both chemical
composition and volume. These nodes were used to
control storage regulations of hazardous materials in a
chemical plant. This application trail was used to evaluate
the usage of this technology to prevent reacting chemicals
from being stored together (e.g. inflammable and oxidiz-
ing). The lessons learned from this application trial and
the critical scenario where CoBIs was applied motivated
the investigation on fault tolerance methods discussed in
this paper.

Fig. 1. Application trial at a chemical plant where storage regulations
of hazardous materials were monitored

III. BACKGROUND

The availability of the services provided by a WSN to
a large extent depends on fault tolerance, since usually
it cannot be assumed that all sources of error can be
eliminated, even through careful engineering.

By service availability, we understand the probability
with which a request will lead to a valid and useful
response. (Point) availability is defined as:

P (A) = MTTF
MTTF+MTTR

Where MTTF stands for Mean Time To Failure
and MTTR stands for Mean Time To Repair [3].

By analyzing this equation we can conclude that sys-
tems that constantly fail and require long repair time will
result in systems with very low availability. However,
systems that have a high MTTF and can be quickly
repaired are considered highly available systems.

Attacks on the availability of sensor nodes are analyzed
in [45]. This paper considers possible attacks on all layers
of the communication infrastructure. Examples include
jamming, which affects potentially a large number of
nodes, and sinkhole routing, where messages are diverted
to a node determined by the adversary. Such attacks
directly influence the availability of services.

Fault tolerant systems can overcome faults and system
failures, therefore increasing the MTTF and system
availability. Fault tolerance techniques especially crafted
for wireless sensor networks have not been extensively
studied so far. One of the most important one is repli-
cation, which is well-suited for sensor networks due to
their inherent node redundancy. Fault Tolerance has been
discussed in detail in the literature on distributed systems
(see, e.g. [40]). Although wireless sensor networks have
special characteristics that distinguish them from tradi-
tional distributed systems, many of the existing techniques
still apply. An introduction to the fundamental mecha-
nisms for implementing replicated services in distributed
systems is discussed in [11].

While the effects of faults and security breaches are
often similar, the underlying causes are fundamentally
different and often require different countermeasures.
Nevertheless, there is a overlap, which is demonstrated
by the concept of Byzantine failures [19], describing
arbitrary behavior of parties, which may be caused by
either unintentional faults in the system or malicious
behavior.

IV. FAILURES IN WIRELESS SENSOR NETWORKS

To comprehend fault tolerance mechanisms, it is im-
portant to point out the difference between faults, errors,
and failures. Various definitions of these terms have been
used [3], [40]. This paper refers to the definition given
in [40]:

• A fault is any kind of defect that leads to an error.
• An error corresponds to an incorrect (undefined)

system state. Such a state may lead to a failure.



• A failure is the (observable) manifestation of an
error, which occurs when the system deviates from
its specification and cannot deliver its intended func-
tionality.

Figure 2 illustrates the difference between fault, error, and
failure. A sensor service running on node A is expected
to periodically send the measurements of its sensors to an
aggregation service running on node B. However, node A
suffers an impact causing a loose connection with one of
its sensors. Since the code implementing node A’s service
is not designed to detect and overcome such situations,
an erroneous state is reached when the sensor service
tries to acquire data from the sensor. Due to this state,
the service does not send sensor data to the aggregation
service within the specified time interval. This results in
a crash or omission failure of node A observed by node
B.

Fig. 2. Failure cause by a loosely connected sensor

In the scenario explained above, the fault is the loose
connection of the sensor. The error is the state of the
service after trying to read the sensor data and the failure
occurs when the application does not send the sensor data
within the specified time interval. To provide resilience in
faulty situations two main actions must be performed:

Fault detection. To provide any countermeasures, the
first step a system must perform is to detect that a specific
functionality is or will be faulty.

Fault Recovery. After the system has detected a fault,
the next step is to prevent or recover from it. The
main technique to achieve this goal is to replicate the
components of the system that are vital for its correct
operation.

A. Source of Faults in Real WSN Applications

Wireless sensor networks are commonly deployed in
harsh environment and are subject to faults in several
layers of the system. To analyze the faults that can occur
in real application scenarios we performed a research
on several application trial reports. The experience from
these expeditions can be used as guidance for future
application trials to avoid the same errors from happening.

Figure 3 presents a layered classification of components
in a WSN that can suffer faults. A fault in each layer
of the system has the possibility to propagate to above
levels. For example, a power failure of a node will cause
the entire node to fail. If this node is on a routing path, the
messages of other nodes relying on this routing path will

not be delivered making an entire region of the network
silent until the routing path is restored.

Ultimately, if the application in the back-end which
presents the WSN data to the users suffers a fault due to
some software bug or hardware failure the entire system
is considered faulty. In this paper, however, we will
concentrate on faults that can happen in the sensor nodes
up to the sink.

Fig. 3. Fault classification and propagation

1) Node Faults: Nodes have several hardware and
software components that can produce malfunctions. For
example, the enclosure can suffer impacts and expose the
hardware of the sensor node to the extreme conditions
of the environment. In [27][41][39] due to stress from
the environment and inadequate enclosures, the sensor
nodes were exposed to direct contact with water causing
short circuits. The report of a large-scale deployment in
a potatoes field [20] indicated that the antennas from the
nodes were quite fragile and would become loose when
inserting the node into the packaging.

When the battery of a node reaches a certain stage,
sensor readings may become incorrect. This has been
observed in [43] where many outlier readings were
generated in the network caused by imminent battery
failure. As demonstrated in Figure 3, hardware failures
will generally lead to software failure. A Data Acquisition
application will not perform properly if the underlying
sensors are providing incorrect readings. Nevertheless,
some hardware failures do not affect all the services in a
sensor node. In the example discussed, although the node
cannot be used to provide correct sensor readings it still



can be used to route packages in the sensor network.
Software bugs are a common source of errors in WSNs.

In [44], the researchers reported that a software bug
caused the longest continuous network outage taking the
system offline for three days until the nodes could be
reprogrammed manually.

Organizing a network in clusters is an approach used
in many applications, for example to extend the lifetime
of the network [15]. A small number of nodes are
selected to become clusterheads. They are responsible for
coordinating the nodes in their clusters, for instance by
collecting data from them and forwarding it to the base
station.

In case that a clusterhead fails, no messages of its
cluster will be forwarded to the base station any longer.
The clusterhead can also intentionally or due to software
bugs forward incorrect information. Depending on the ap-
plication case, the impact of such a failure can vary from
quality degradation of measurements to alarm messages
not being delivered to a back-end system.

While forwarding messages, nodes can aggregate data
from multiple other nodes in order to reduce the amount
of data sent to the base station. One common simple
approach is to calculate the average of correlated mea-
sured values such as temperature, humidity and pressure,
sending only one message to the back-end.

If a node generates incorrect data, the data aggregation
results can suffer deviations from the real value. Also,
if a node responsible for generating the aggregated data
is subject to a value failure, the base station will receive
incorrect information of an entire region of the network.

2) Network Faults: Routing is one of the fundamental
building blocks in a WSN. It is essential for collecting
sensor data, distributing software and configuration up-
dates, and for coordination among nodes. Additionally,
there may be application-specific routing protocols re-
quired, for example for tracking and ”following” moving
objects. Faults on the routing layer can lead to dropped
or misguided messages, or unacceptable delays.

In WSNs, communication links between nodes are
highly volatile. WSNs not always yield the same delivery
rate of messages in field trials as in lab trials. For instance,
in [38] a delivery rate of only 58% of the messages was
observed, in [36] the instability of the links between nodes
lead to constant changes in the routing paths.

In several scenarios of sensor networks nodes have a
certain degree of mobility. In a glacial expedition [27] the
experiment assumed a one hop network. The connection
of the nodes to the sink was calibrated during deployment
with a reliable link connection. Nevertheless, after some
time the nodes moved to a different location where the
node was unreachable resulting in complete loss of data
from this node.

Radio interference can also cause the link between
nodes to become faulty. For instance, in agricultural fields
the placement of the nodes must be carefully planned to
take into consideration that when plants start growing the
link range is considerably reduced, as discussed in [42].

Another source of link failure is the collision of messages.
In [39] researchers observed a potential for collision of
messages of nodes in close proximity due to a phase
change and overlap.

In other situations, however, nodes may have perfect
link connections but the messages are not delivered to
their destination due to path errors. A software bug in the
routing layer can generate circular paths or simply deliver
messages to the incorrect destination.

3) Sink Faults: On a higher level of the network a
device (sink) that collects all the data generated in the
network and propagates it to the back-end system is also
subject to faults of its components. When this device fails,
unless fault tolerant measurements are present, a massive
failure of the network happens given that the data from
the sensor nodes cannot be accessed.

The sink can be deployed in areas where no permanent
power supply is present, in such applications batteries to-
gether with solar cells are commonly applied [27][20][43]
to provide the amount of energy necessary. In the glacial
expedition reported in [27], this traditional technique has
proven to be inefficient. Although this worked perfectly
for other expeditions, in this glacial environment the sink
suffered a power failure due to snow covering the solar
cells for several days.

Network infrastructure is usually also not available in
the area where the sink is deployed, therefore alternative
solutions such as a satellite connection are used, which
can cause fluctuations in the back-end network interface.
In [24] researchers indicated that during periods of severe
thunderstorm activity the satellite connection becomes
unavailable.

Finally, the software that stores the data collected from
the network, processes it and sends it to the back-end
system, is subject to bugs that when present can lead to
loss of data within the period where the fault occurred.
In the first application trial realized by the CoBIs project,
the software of the gateway presented malfunctions that
prevented the back-end application from receiving the
data generated in the network during several periods.

B. Failure Classification

As discussed in Section IV-A, several faults could lead
to failures in wireless sensor networks: a node could be
moved to a different region, causing a link failure; nodes
can suffer power failure and stop responding to requests,
or they can start sending arbitrary values either intention-
ally (after a security breach) or due to a malfunction.

Here, we classify the failures that a WSN is suscep-
tible to, which are: crash, omission, timing, value and
arbitrary. These failures are the observable manifestation
of underlying faults presented on Section IV-A.

1) Crash or omission: A failure by omission is de-
termined by a service sporadically not responding to
requests. For instance, this could be caused by radio
interference that leads to occasional message loss. A
crash failure occurs when the service at some point stops
responding to any request. An omission degree f can be
defined which imposes a limit to the amount of omission



failures a node might have before being classified as
crashed.

2) Timing: Services might fail due to a timeout in
processing a request or by providing data too early. Such
timing failures occur when a node responds to a request
with the correct value, but the response is received out
of the time interval specified by the application. Timing
failures will only occur when the application specifies
timing constraints.

3) Value: A service is considered having failed due
to an incorrect value when the service sends a timely
response, however with lack in accuracy of the delivered
value. For instance, a service performing aggregation of
data generated by other nodes could forward a result value
to the base station that does not correctly reflect the input
data. Such situations could be caused by malfunctioning
software, hardware, corrupt messages, or even malicious
nodes generating incorrect data.

4) Arbitrary: Arbitrary failures include all the types of
failures that cannot be classified in previously described
categories. In [19], Lamport has introduced the Byzantine
Generals Problem in the context of distributed systems.
Recent work shows how to deal with this problem in
the domain of wireless sensor networks [16]. Byzantine
failures describe a type of arbitrary failures that are
in general caused by a malicious service that not only
behaves erroneously, but also fails to behave consistently
when interacting with other services and applications.
In sensor networks, an aggregation service could start
sending both incorrect and correct values to the sink, or
a node routing messages could not forward a message
despite sending an acknowledge back to the sender.

V. FAULT DETECTION TECHNIQUES

The goal of fault detection is to verify that the services
being provided are functioning properly, and in some
cases to predict if they will continue to function properly
in the near future. The simplest way to perform such a
task is through visual observation and manual removal of
incorrect values. This technique has obvious drawbacks:
human interaction leads to errors, it has a high cost and
it is not efficient. Hence, we investigated automatic fault
detection techniques for WSN.

We classified the techniques we investigated according
to the parties involved in the process. Through self-
diagnosis the node itself can identify faults in its com-
ponents. With group detection, several nodes monitor
the behavior of another node. Finally, in hierarchical
detection the fault detection is performed using a detection
tree where a hierarchy is defined for the identification
of failed nodes. Often in a hierarchical detection the
detection is shifted to a more powerful device such as
the sink.

A. Self-Diagnosis

In many cases, nodes can identify possible failures by
performing self-diagnosis. In [14], the authors propose an
approach where a node would perform a self-diagnosis

based on the measurements of accelerometers to deter-
mine if the node suffers from an impact that could lead
to hardware malfunctions.

Using a similar approach, nodes could detect when
they are being moved to a different location. Another
approach would be to keep track of the identities of the
nodes in the neighborhood. A considerable change in the
neighborhood could indicate that either the node itself or
some of its previous neighbors have been moved.

Faults caused by battery exhaustion can be predicted
when the hardware allows the measurement of the current
battery voltage [2][29]. By analyzing the battery discharge
curve and the current discharge rate, an algorithm can
determine an estimation of the time to death of the battery.

Nodes can also identify that their current connection
to surrounding nodes is unreliable by probing the link
connection therefore identifying that it is isolated.

B. Group Detection

The detection of services failing due to incorrectly
generated values is only possible if a reference value
is available. In [18] and [6], detection mechanisms are
prosed to identify faulty sensor nodes. Both algorithms
are based on the idea that sensors from the same re-
gion should have similar values unless a node is at the
boundary of the event-region. The algorithms start by
taking measurements of all neighbors of a node and uses
the results to calculate the probability of the node being
faulty.

Another approach proposed in the literature is to let
consumer nodes observe whether the service provider
is in fact performing the operations that it is supposed
to. In [26], a misbehavior detection algorithm to aide
the routing layer is proposed. The misbehavior detec-
tion mechanism is based on the idea of monitoring the
communication of the service provider to verify whether
messages are forwarded correctly.

Focusing on providing a fault-tolerant approach for
clusters in WSNs, in [12] it is proposed to support the
dynamic recovery of failed gateways (high-energy devices
that act as clusterheads). The proposed protocol assumes
that a gateway has failed only when no other gateways
can communicate with it. The fault detection mechanism
is based on constant status updates being exchanged be-
tween gateways and further use of a consensus algorithm.

C. Hierarchical Detection

The definition of a detection tree enables a scalable
fault detection algorithm in WSN. Memento [33] proposes
the usage of the network topology to forward the fault
detection results of child nodes to the parent nodes and
up to the sink. Each node forwards the status of the child
nodes that it is monitoring to its parent node. The parent
performs an aggregation (bitwise OR) operation on the
results of the child nodes together with its on results and
forwards it to the next level.

The approach proposed by Memento scales well with
the network size, however it consume resources of the
network. Shifting the fault detection task to a more



powerful device is an alternative that can help to increase
the lifetime of the WSN. In [37], the authors propose
an algorithm that puts the burden of detecting and tracing
failed nodes to the base station. At first the nodes learn the
network topology and send their portion of the topology
information to the base station. With this information the
base station learns the complete network topology which
is used to send route updates as soon as it detects that
nodes become silent.

This approach is not applicable to event-driven WSN
because in such a network sensors only send messages
when there is an event that should be reported, for
instance when the temperature goes above a certain limit.
In [35], the authors focus on providing a solution in
this context. The proposed mechanism uses a hierarchical
network topology where cluster heads monitor ordinary
nodes, and the base station monitors the cluster heads. To
perform the monitoring, the base station and the cluster-
heads constantly ping those nodes that still have battery
power left and that are under their direct supervision. If
a node does not respond, it is marked as failed.

Sympathy [30] is a debuging tool that also utilizes the
hierarchical detection approach. This tool instruments the
WSN with monitoring software on the sensor nodes that
generates metrics data that is forwarded to a centralized
sink location for analysis. With this information Sympathy
is able to detect crash, timeout and omission failures and
identify the fault that generated the failure.

SNIF [31] is another example of a debuging tool that
identifies the source of problems in WSN. Contrary to
Sympathy, this tool does not modify the software of
the sensor nodes nor requires additional traffic to be
transported through the WSN. To automatically identify
network failures this tool proposes a decision binary tree
based on the research performed by the authors on failures
in real world deployments.

VI. FAULT RECOVERY TECHNIQUES

Fault recovery techniques enable systems to continue
operating according to their specifications even if faults
of a certain type are present. As discussed in section IV,
there are many potential sources for faults in WSNs.
Fault tolerance techniques have been proposed in various
contexts that increase the reliability of the functionality
of sensor nodes in their specific domain. We attempt at
giving an overview of this scattered work.

The most common of these techniques is the replication
of components. Although redundancy has several advan-
tages in terms of high reliability and availability, it also
increases the costs of a deployment. As an alternative,
according to the specification of the project, the quality
required from the WSN can be downgraded to an accept-
able level.

In this paper we classify the recovery techniques for
WSN into two major approaches: Active and Passive
replication. Active replication means that all requests are
processed by all replicas, while with passive replication,
a request is processed by a single instance and only when
this instance fails, another instance takes over.

A. Active replication in WSN

Active replication in wireless sensor networks is nat-
urally applied in scenarios where all, or many, nodes
provide the same functionality. One example is a service
that periodically provides sensor data. Nodes that run this
service activate their sensors and forward their readings
to an aggregation service or to a base station. When
some nodes fail to provide that information, the recipient
still gets the results from other nodes, which is often
sufficient. Fault recovery in the presence of active replicas
is relatively straightforward. Nevertheless, for a consistent
survey we present some of these approaches here:

1) Multipath routing: Usually, it is desirable to avoid
that a single failing node causes the partitioning of a
sensor network. Thus, a network should be k-connected,
which allows k − 1 nodes to fail while the network
would still be connected [22]. Multipath routing [10]
can be used to actively replicate routing paths. In [4],
Bredin et al. proposes an algorithm that calculates the
minimum amount of additional nodes and their positions
to guarantee k-connectivity between nodes.

2) Sensor value aggregation: Sensor value fusion
[28][5] is a reasearch area that seeks to provides high-
level information derived from a number of low-level sen-
sor inputs. There, the inherent redundancy of sensor nodes
can be used to provide fault-tolerant data aggregation.This
is achieved through a tradeoff between the precision (the
length) of the resulting sensor reading interval and the
number of faulty sensors. This ensures that despite of
node failures, the resulting reading interval will contain
the correct sensor reading of a region.

3) Ignore values from faulty nodes: A simple but
efficient solution to not propagate a failure of one specific
node to the entire network is to ignore the data that it is
generating, as applied in [14]. The major challenge in this
case is the identification of the malfunctioning nodes.

B. Passive replication in WSN

When passive replication is applied, the primary replica
receives all requests and processes them. In order to
maintain consistency between replicas, the state of the
primary replica and the request information are transferred
to the backup replicas. Given the constraints of WSNs, ap-
plications should be designed to have only little or no state
at all, which minimizes the overhead for transferring state
information between nodes or eliminates it altogether.

The process of recovering from a fault when using
passive replication is illustrated in Figure 4 and consists
of three main steps: fault detection (discussed in Section
V, primary selection and service distribution.

1) Node selection: After it has been established that
a certain functionality is not available any longer due to
a failure in the primary replica, a new service provider
must be selected. After this selection phase, one or several
nodes become service providers. Several approaches to
how the selection is performed have been proposed. We
differentiate them according to who makes the decision
on which party should become a service provider.



Fig. 4. Steps to recover from a failure in a passive replication mode

Self-organization techniques have proven to increase
the reliability and fault-tolerance of distributed systems
(cf. [46]). In the extreme case, each node makes an
individual decision (possibly taking information from its
neighbors into account). Or, local groups of nodes work
together, coordinating their actions. On the other end,
hierarchical systems assign tasks in a top-down manner.
We discuss these options in turn.

a) Self election: In LEACH [15], nodes periodically
execute a probabilistic algorithm to establish whether they
should serve as clusterhead to their neighbors. In this
probabilistic rotation system, nodes keep changing their
role in the network. When a clusterhead node fails, it will
take only one rotation period until another node starts
providing the functionality of the failed or absent node.

Role assignment algorithms determine which of a cer-
tain role, such as coverage, clustering, and in-network
aggregation, should be assumed by a node. In [9], a
deterministic algorithm for autonomous role assignment
is proposed that takes into account properties of the
node such as battery status and location, but also its
neighborhood and the roles chosen by neighboring nodes.
This facilitates the localized self-configuration of a sen-
sor network and can reestablish service provisioning if
executed after some nodes have failed.

b) Group election: In [12], a reallocation of nodes
that were part of a cluster that suffered a clusterhead
failure is proposed. The clusterhead, called gateway, is
considered to be a resourceful node. The solution pre-
sented considers that all the gateways in the network
maintain a list of the nodes that are currently in their
cluster and another backup list of nodes that could become
part of their cluster. When a gateway fails, the nodes from
its cluster are reallocated to the other gateways that have
the nodes in their backup lists. If more than one gateway
has a specific node in its backup list the node is assigned
to the clusterhead that has the smallest communication
cost.

c) Hierarchical election: In a hierarchical election,
a coordinator selects the new primary node. This applies
to the rebuilding of routing paths [37] as well as the
selection of a new clusterhead [13]. The former describes
an algorithm to select the node that is closest to the base

station. The latter approach applies fuzzy logic in the base
station to select which node will become a clusterhead.
This algorithm makes use of a fuzzy descriptor, the node
concentration, energy level in each node and its centrality
with respect to the entire cluster.

Although these centralized algorithms could perform a
better selection of the nodes than a local algorithm due to
its global view of the network, such approaches require
that nodes send periodically messages to the base station.

2) Service Distribution: During this phase, nodes
elected to become service providers must activate the
service. In some cases the service is already available on
the nodes and a simple configuration change to inform
the node that this service should be activated is required.
However in some cases, for instance when nodes do not
have enough memory to store the code of all potential ser-
vices, it is necessary to inject code into the node through
some technique. There are different techniques that can be
used for service distribution: completely reprogramming
the node, sending entire blocks of executable code, or
sending small pieces of code such as scripts.

a) Pre-Copy: Pre-copying as described in [9], con-
sists in making the code of all services available on all
nodes before deployment. This allows nodes to change
their behavior according to the role that they are assigned
to.

b) Code distribution: Several approaches have been
proposed for disseminating code throughout the network.
Maté [21] is an example for a bytecode interpreter for
TinyOS where code is broken into capsules of 24 in-
structions. These capsules can be distributed through the
network and installed on nodes, which start to execute the
new code. Agilla [8] is a Maté-based mobile agent mid-
dleware for programming wireless sensor networks. These
mobile agents can be programmed to move through the
network or replicate themselves to other nodes according
to changes in the environment.

Impala [23] is a middleware for sensor networks that
supports software updates and on-the-fly application adap-
tation. Unlike Maté, the focus of Impala is networks that
have a high degree of mobility, which can lead to long
delays until an update is finished. While Maté stops the
execution of an application until the update is finished,
Impala processes ongoing software updates in parallel.

c) Remote Execution: On the one hand code migra-
tion is an approach that reduces the amount of memory
required in the entire network since not all nodes need
to have the application pre-installed, on the other hand
it consumes energy on the nodes exchanging the code
and is susceptible to link failures, which could cause
long delays until the code update is completed. Remote
Execution [34], [32] is an alternative approach where low-
power devices transfer tasks to more powerful devices
without transferring the entire application code. Instead,
only the required state information is transmitted. Such
an approach is especially suited for heterogeneous sensor
networks with at least some resourceful nodes.

A hybrid approach between code migration and remote



execution is proposed in [25], where the application code
is copied to another node when the battery level reaches
a first threshold. As soon as the battery reaches a critical
level, the execution state is transferred and control is
handed to the remote node. This allows for the full usage
of the available energy resources, since control is handed
over right before a node fails.

VII. CLASSIFICATION AND EVALUATION

As presented in sections IV, V and VI, the work that
deals with the unreliable nature of sensor networks is
quite scattered. For the successful application of such
techniques, it is necessary to understand in which cases
they can be applied and what their shortcomings are. We
therefore give an overview of the existing techniques in
Tables I and II.

We classify them according to the types of faults they
are able to detect and to recover from. This classification
is intended to provide a lookup table for future applica-
tions that search for detection and recovery techniques to
specific types of faults in WSN.

Each of the detection methods has its advantages and
drawbacks: on the one hand self-detection mechanisms,
as proposed in [25], involve no communication costs
except for announcing that a fault has been detected. On
the other hand, sudden crash failures cannot be detected
in this way. Group detection mechanisms, where nodes
monitor each other, allow the detection of crash failures.
Such mechanisms impose higher costs due to the coor-
dination of nodes. Additionally, the use of encryption is
often impracticable, since this would hamper other nodes
observing the contents of messages [26]. Finally, in a
hierarchical detection approach, such as [37], most of the
communication and coordination costs can be shifted to a
more powerful device, nevertheless this approach requires
a heterogeneous network which is not a valid assumption
in all applications.

Table I shows that most of the solutions discussed
in the literature focus on individual types of faults. To
our knowledge, the approach proposed in [26] is the
only one that currently detects the five types of faults
used in our classification, with the restriction that the
detection of value faults is limited to forwarded messages.
Content analysis, as described in [18], could extend its
applicability, e.g. to aggregation.

Table II presents the classification of the solutions with
respect to the fault recovery mechanism applied. The fault
recovery mechanisms analyzed can be divided into two
main branches: passive and active replication. In the case
of active replication the common approach is to remove
the node from the route path or ignore its data as in
[26][25][14][37]. Nevertheless, this implies that nodes
must run the same applications, which imposes higher
energy consumption on the network. Passive replication
on the other hand only initiates a backup copy when nodes
suffer failures, thereby reducing the energy costs during
normal operation but with potentially high cost if a code
is updated or if many messages have to be exchanged to
select a new primary node.

VIII. CONCLUSIONS

In this paper we provided a thorough investigation
of faults that occured in real WSN deployments. This
concise investigation provides a valuable knowledge input
for future application to prevent the same kind of issues
from happening. By focusing only on the faults, the
lessons learned from the different deployments can be
used by any application even if the investigated trial had
a different research focus.

We proposed a taxonomy to classify faults and failures
that occur in WSN. We also studied the problem of fault
detection and recovery, surveying the different techniques
currently applied in WSN research. A classification of
the available fault tolerance techniques for wireless sen-
sor networks has been proposed considering the various
mechanisms adopted by the solutions. To our knowledge
this is the first work that provides a concise survey and
classification in this area.

Through the classification proposed it is possible to
compare the different solutions identifying the strong
and weak points of each of them. This allows for a
correct selection of the techniques that are more suitable
to specific applications. By applying our classification
we were able to verify that current approaches provide
mechanisms for overcoming faults in sensor networks
only in specific scenarios and applications. However,
no approach provides extensive fault tolerance support
covering all types of faults that a node is exposed to.

We identified that link and path faults are a common
problem in real WSN deployments. Hence, a routing
mechanism must be able to react quickly to changes
in the local network topology in order to efficiently
forward messages. Nevertheless, most routing algorithms
for sensor networks assume a success rate for message
delivery (under “normal” operating conditions, i.e. not un-
der heavy load), acknowledging that “perfect” reliability
is not achievable. Therefore applications must analyze the
tradeoff between reliability and battery consumption.

We also identified that a common problem in real WSN
deployment is the selection of packaging. Although the
packaging does not play an active role in data gather-
ing and processing future applications should consider
investing more in the selection of the cases to guarantee
a successful trial.

In order to apply sensor networks in safety critical
applications, security threats must be addressed during all
operational phases of a fault tolerant system. Most current
approaches do not include security measures, which opens
an opportunity for further research in this field.
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TABLE I
CLASSIFICATION OF FAULT DETECTION MECHANISMS

Detect Faults Fault Detection Mechanism

Crash Omission Timeout Value Arbitrary Self- Group Hierarchical
Detection Detection Detection

X X X
[26] X X Forwarded Forwarded X Eavesdropping

packages packages
X X

[25] Battery Battery lifetime
exhaustion estimation

X X
[14] Impacts Detects impacts

X
[37] X X X Base station detection

X X
[8] High Detects fire

temperature reaction
X

[18] X Bayesian
algorithm

[35] X X X X
X X X X

[12] Gateway Gateway Gateway Consensus
between Gateways

X
[33] X X X In network detection

X
[30] X X X Base station detection

X
[31] X X X Base station detection

TABLE II
CLASSIFICATION OF FAULT RECOVERY MECHANISMS

Fault Recovery

Active Replication Passive Replication
Node Selection Service Distribution

Mechanism Self Group Hierarchical Pre- Code Remote
Election Election Election Copy Distribution Execution

[26] X X
[25] X X

X X
[14] Discard information

from failed node
[37] X X

X X
[8] Node with mobile

code makes the
selection

X
[17] Heterogeneous

backup scheme
X

[9] Set of rules X
[18] - - - - - - -
[35] - - - - - - -
[12] X

Allocation of nodes to X X
the gateway that has the

minimum communication cost


