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Abstract - In this research, double-command control of a nonlinear chemical system is addressed. The system is a 
stirred tank reactor; two flows of liquid with different concentrations enter the system through two valves and another 
flow exits the tank with a concentration between the two input concentrations. Fuzzy logic was employed to design a 
model-free double-command controller for this system in the simulation environment. In order to avoid output chat-
tering and frequent change of control command (leading to frequent closing-opening of control valves, in practice) a 
damper rule is added to the fuzzy control system. A feedforward (steady state) control law is also derived from the 
nonlinear mathematical model of the system to be added to feedback (fuzzy) controller generating transient control 
command. The hybrid control system leads to a very smooth change of control input, which suits real applications. 
The proposed control system offers much lower error integral, control command change and processing time in com-
parison with neuro-predictive controllers. 
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INTRODUCTION 

Catalytic continuous stirred tank reactors (CSTR)s have been 
extensively used as a benchmark for testing different control sys-
tems. These systems are multi-input and multi-output and may be 
highly nonlinear. Self-tuning PIDs [1,2] robust controllers [3], adap-
tive-like control systems [4], and different kinds of nonlinear pre-
dictive controllers [5,6] have been successfully tested on this class 
of chemical systems. The CSTR is also known as an outstanding 
example for the application of neuro-predictive controllers [7], which 
are a sub-class of nonlinear predictive controllers. Moreover, fuzzy 
logic controllers are used in the control of CSTRs to generate either 
the control command directly [8,9] or control command increments 
[10,11]. As well as improving the performance; other aims achieved 
by the application of fuzzy control systems on CSTRs are stability 
guarantee [8,12] and disturbance rejection [13,14]. 

In this paper, at first, successful control of a non-thermic CSTR 
by neuro-predictive technique is reported. In this test, the flow mass 
rate of one of two entering flows is subject to adjustment in order 
to control outlet concentration of the tank Although, this problem 
is known as a good example for neuro-predictive control [7,15]. 
This technique worked both ineffectively (in terms of offering im-
proper performance) and inefficiently (in terms of needing heavy 
computation) when it was tried for double-command control (to 
adjust the mass rate of both inlet flows). This paper then presents a 
hybrid control system designed to adjust the flow rates of both en-
tering flows simultaneously. In the presented control system, the 
control commands are the sum of a transient control command whose 
increments are generated by a non-model-based fuzzy logic con-
troller and a steady state control command generated by a set-point 
dependent control law. Finally, the control system was tested in sim-
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ulation environment. In order that the results are applicable in prac-
tice, the "input constancy" is particularly addressed; that is, the pro-
posed control system is designed to reduce the change of control 
inputs as well as the error. 

THE UTILIZED FUZZY INFERENCE SYSTEM 

In this research, a non-weighted first-order Sugeno type fuzzy 
inference system, with AND connectors, is used as the fuzzy con-
troller. A schematic of such a system is shown in Fig. 1. Each fuzzy 
rule includes two main parts: antecedent and consequent. Anteced-
ents contain linguistic (fuzzy) values with membership functions. 
A 'membership function' is a function which receives the crisp (nu-
meric) value of a variable (e.g., 25 oC) and returns another number 
in the range of [0,1], namely 'membership grade'. As a result, in 
each rule, the number of membership grades equals the number of 
fuzzy values in the antecedent. All these membership grades (in 
the range of 0 and 1) pass through a function, namely T-norm The 
output of the T-norm is the fire strength of the rule: 

fire strength of rule (wi)=Tnorm (all membership grades), (1) 

The fire strengths of rules (wi) are the outcome of this step. In a 
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Fig. 1. A scheme of a Sugeno-type FIS. 
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Fig. 2. A schematic of the studied CSTR [7]. 

first-order Sugeno-type FIS, the consequents of rules aie linear crisp 
functions of the inputs, independent of antecedent fuzzy values. For 
an FIS with M inputs: 

tem is addressed in this paper. This control problem is a successful 
case study for neural or neuro-fuzzy predictive control [7]. In neuro-
predictive control, usually the low concentration flow (u2) is set to 
a fixed value (e.g., 0.1 liters/s) and the control algorithm adjusts the 
other flow (u1). 

In spite of all the advantages of neuro-predictive control, formed 
by neural network models and derivative based control algorithms, it 
was observed that this method cannot be effectively used for dou-
ble-command control of this system. In neuro-predictive control, 
using both flows does not lead to any improvement in the perfor-
mance of the control system compared to a single-command one. 
Furthermore, in neuro-predictive control, an optimization problem 
should be solved to generate the control command. This process is 
highly time-consuming for double-command control, especially if 
the second order optimization algorithms, which are more reliable, 
are employed. In the next section, a brief explanation and the results 
for single command control of the studied CSTR system is presented. 

z, = 2,ajXj+&M+1. (2) 
j=i 

z,=output of ih rule, xj=j'h input. 
The total output of a Sugeno-type FIS, N having rules, is cal-

culated by using the following equation: 

output of FIS = - (3) 

i=1 

PROBLEM STATEMENT 

The case study is a catalytic continuous stirred tank Reactor (CSTR). 
A diagram of the process is shown in the following figure: 

Two flows of liquid enter the reactor with the concentration of 
CM=24.9 (kmol/m3) and Cb2=0.1 (kmol/m3). The flow rates of high 
and low concentration input flows are named u1 and u2, respectively. 
The reactor outputs another flow of liquid with the concentration of 
Cb and the flow rate of w. Another important variable is the height. 
A simplified mathematical model of the system, achieved by mass 
balance equations, is: 

ddt- = u1(t)+u*(t) - 0.2^(t), 

d C b ( t ) = [ C C ( u ^ A C ( t ) 1 U2 ( t ) k iCbf f l 

" I " = [ C b 1 - C b ( t ) ] h t ) + [ C b 2 - C b ( t ) ] hot) - 1+kA(t)~2 

(4) 

(5) 

where the concentration of outlet flow and the height of liquid are 
considered as the outputs (w=0.2,/h). 

The control of outlet concentration of the aforementioned sys-

SINGLE COMMAND NEURO-PREDICTIVE 
CONTROL OF CSTR (A BRIEF REVIEW) 

In nonlinear predictive control, nonlinear models are used to pre-
dict the behavior of nonlinear systems, and an optimization method 
generates the control command based on minimizing a performance 
function involving predicted errors (such as following function): 

J(k) = 2[y,(k+i) - yd]2+p[u'(k) - u( k -1)]2 (6) 

where ys and yd are the predicted and desired outputs of the sys-
tem, respectively, and u' and u are tentative and actual control inputs. 
Additionally, p is a factor defining the importance of the constancy 
of control input. 

Eq. (6) is a typical performance function (represented by J), which 
is usually used in neuro-predictive control. In discrete domain, at 
the instant of k, the output of the system is known (y(k)), and the 
tentative control command (u'(k)) is subject to optimization. 

If current output and previous output/input of the system and u' 
are known, all other arguments of J will be definitely known. Fig. 3 
shows how an estimated output is generated using tentative input 
and the current output of the system. However u' can be changed 
arbitrarily and freely from the recorded input/output data and this 
change affects other arguments of J, and, consequently, the perfor-
mance function itself. Therefore, in the optimization for control pur-
poses, it can be assumed that 

J=J(u). (7) 

Finding u' so as to minimize the performance function is the final 
stage at nonlinear predictive control. 

Fig. 3. Prediction of output values with the horizon of 4. 
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Fig. 4. Simulation results for different optimization methods. 

Table 1. Simulation results for different optimization methods 

Optimization EI IC Simulation time 
method (kmol/m3) (liters) (s) 

LM 0.3651 0.0939 225 
FSD 0.3729 0.0944 25 
SD 0.7738 0.2553 24 

Two design criteria are defined, being the error integral and the 
constancy of input (usually in the form of a flow rate): 

EI = -
fjeldt 

IC = -
fWt+At) - u(t)| dt 

(8) 

(9) 

The results are shown in Table 1 and Fig. 4. The initial height of 
the tank is 30 cm and the initial value of outlet concentration of tank 
is 20 kmol/m3. In Table 1, 'Simulation Time' is the time needed to 
simulate 100 seconds of operation of the closed loop system, with 
sampling time of 0.2 s, using a dual core processor (4,200 MHz) 
and MATLAB software. In this example, the reference changes very 
quickly to test the capabilities of the controllers. In optimization 
methods, "LM" stands for Levenberg Marquardt, "SD" stands for 
steepest descent and "FSD" stands for fuzzy steepest descent. More 
details about neuro-predictive control of CSTR are available in the 
appendices. Appendix A is about neural network modeling of the 
system (with one control command), and appendix B is about the 
utilized optimization algorithms. 

DOUBLE COMMAND CONTROL OF CSTR 

In this section the design of a control system to command both 
inlet flows (valves) is addressed. The control command is the sum 
of a transient control command, whose increments are adjusted by a 
fuzzy inference system, and a steady state control command. Tran-
sient control command pushes the system towards the desired situa-
tion, and steady state control command maintains the desired situation. 
At first, the fuzzy controller, generating the increments of transient 
control command, is designed; then the steady state control law will 
be introduced. 
1. Fuzzy Controller/Transient Control Command 

In this sub-section, initially the architecture of the transient con-
trol system is proposed; then the fuzzy rules forming the fuzzy logic 
controller are addressed. The absolute value of error (E) and its dif-
ferential (dE) are the inputs to the fuzzy controller. 

dE=E(1- z-1) (10) 

where z-1 is unit delay. 
The maximum output of the fuzzy controller is set to 0.1 due to 

practical limitations of the valves. If the error is positive, that is, the 
concentration is lower than its desirable value, the output of fuzzy 
controller is added to u1, otherwise it is added to u2. This decision 
is made by f1 function shown in Fig. 5. After adding fuzzy con-
troller output to the delayed control commands, both control com-
mands pass through f2 function. In f2, if the error is positive, u2 is 
set to zero; otherwise u1 is set to zero. Also, if E>2, non-zero con-
trol command is set to four. Saturation functions guarantee that the 
generated control command (transient control command) is in the 
range of [0 4], the acceptable range for the control valves. 

Korean J. Chem. Eng.(Vol. 27, No. 1) 
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Fig. 5. Control circuit for transient mode of control. 

Before addressing fuzzy rules, the membership functions of E 
and dE are introduced. In general, a membership function should 
have the following characteristics: 

lim^rfu^E) = 0 
E —be 

lim^d™ (E) = 0 
E— 0 

lim,u%A( E) = 0 
E- 0 

lim fihigh(E) =1 
E—be 

l i m Hgood/bJk d E ) = 0 
dE—0 

l im fiSOOd(d dE) =1 
dE—bde 

lim HbaAdE) =1 
dE—bde 

l i m f lzero( E ) = 0 
E—ce 

lim^ze,o(E) =1 

(11) 

(12) 

(13) 

(14) 

where, be stands for big absolute error (E), ce stands for consider-
able absolute error (E), and bde stands for big error differential (big 
dE). 

These parameters are chosen by the designer based on knowl-
edge about the system. The selected membership functions, in this 
article, are shown in Figs. 6 and 7. 

Among E membership functions, "medium" is triangular, and 

Fig. 6. Membership functions of E (absolute error). 
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"high" and "zero" are Gaussian: 

MMA E ) = e x p ( - 2(E-f)3) 

Mzero(E) = e x p ( - 2 ( 0 I 1 ) 2 ) 2V 0.0V 

dE membership functions are shown in Fig. 7 and Eq. (17): 

dE > 1 ̂ ^bad( dE) =1 
dE <-1 ̂ MgoU dE) =1 

(15) 

(16) 

(17) 

Membership function "zero" is only used in the damper rule which 
will be introduced later in this section. Other membership func-
tions (two for E and two for dE) are used in the design at this stage. 
With two fuzzy values (membership functions) for any inputs to 
the fuzzy controller, four different compositions can be made for 
the antecedent part of fuzzy rules. These quadruple compositions 
need to be arranged in terms of the criticalness of the system situa-
tion. Table 2 presents such an order. For instance, the worst situation 

dE (kmol/m3) 

Fig. 7. Membership functions of dE. 

Table 2. The order of possible situations of the system in terms of 
criticalness 

E dE 

1 medium good 
2 medium bad 
3 high good 
4 high bad 
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occurs when E is high and dE is bad, which means E is increasing. 
Four principal rules of the controller are defined based on the 

aforementioned situations of the system. 
If the absolute error is high, the two following rules make the 

system decrease the error very quickly. 
Rule 1: IF E is high AND dE is bad THEN du,=0.1 
Rule2: IF E is high AND dE is good THEN duJ=0.3E 

If the error is not very high, the following rules will be activated 
to moderate the approaching speed towards the setpoint/reference 
and to avoid overshoot. 
Rule3: IF E is medium and dE is bad THEN duJJJ=0.2E 
Rule4: IF E is medium and dE is good THEN duJF=0.1E 

Fig. 8 shows the control behavior of the system when a fuzzy 
controller containing the aforementioned fuzzy rules is applied. 

With the same initial values as the plot shown in Fig. 4, the error 
integral and input constancy of the system (Eq. (8) and (9)), are IC= 
0.0605 litres and EI=0.1772 kmol/m3. The results are acceptable 
compared to single-command neuro-predictive control in terms of 
having reasonable values of IC and EI, which are important from 
the viewpoint of implementation and accuracy, respectively. 

However, a chattering is observed when the system's output is 
close to the setpoint/reference. Fig. 9 shows control commands (in-
puts) versus time for the operation period, for which the response 
is shown in Fig. 8. It is observed that in time periods such as 50-
60 s or 90-100 s, changes in control input occur which lead to chat-

tering. Frequent opening and closing of the valve is problematic in 
practice. 

In order to avoid chattering in the vicinity of the setpoint, a damp-
er rule is added to the fuzzy controller: 
Rule5: IF E is zero THEN dur=0 (damper rule) 

This rule improves both design criteria, IC=0.0383 litres, and 
EI=0.1700 kmol/m3. Zero membership function is intentionally se-
lected very narrow; a wider zero causes a considerable loss in error 
integral. The main role of the fifth rule is the diminution of frequent 
changes of control inputs, and its consequent chattering, when the 
system's output is in the vicinity of the setpoint. 
2. Steady State Control 

The designed fuzzy controller is an error-based controller; that 
is, the only entering signal to the controller is the error. Considering 
Fig. 8-11, it is observed that even when the error is zero, or very 
close to zero, the system's output and consequently the control input 
is subject to change (consider, for example time periods of25-40 s, 
45-60 s or 85-100 s). In the designed fuzzy controller, if the error is 
zero, the transient control input is zero. The value of zero for the 
control input cannot maintain the desired situation (Figs. 8 and 10). 
As a result, a steady state control command is added to transient 
control command (generated by fuzzy controller); when the error is 
around zero, transient control command approaches zero and steady 
state control command maintains the desirable situation, that is, keeps 
the system's response fixed. 

Fig. 8. The response of system with fuzzy control (without damp-
er rule). 

Fig. 10. The response of system with fuzzy control (with damper 
rule). 

Fig. 9. Control commands generated by fuzzy control system of 
Fig. 5 (without damper rule). 

Fig. 11. Control commands generated by fuzzy control system of 
Fig. 5 (with damper rule). 
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Fig. 12. Control circuit. 

In total, at steady control situation: tions are the basis of stability discussion. 

u1= 
u2 = 0 

dC4(t) 
dt = 0 

(18) 

Cb(t) = r(t) 

where r(t)=reference. 
In order to find steady state control command, the physics-based 

model offered in Eq. (5) is used: 

d C b ( t - = [ C C ( t ) - , u 1 ( t ) + [ C C ( t ) ]
u 2 ( t ) k 1 C b ( t ) 

" d F = [ C b 1 - C b ( t ) ] h t ) + [ C b 2 - C b ( t ) ] h t ) - •̂kcO)2 (5) 

Considering the aforementioned conditions, Eq. (5) changes to: 

^ ( t ) k1C»(t) [24.9 - r(t)]-

uls(t) = 

h(t) 1+k2Cb(t): = 0, or 

(1+k2Cb(t)2)(24.9 - r(t)) 
(19) 

The obtained steady state control command, dependent on both 
level height and the reference (setpoint), is calculated in f3 function 
(Fig. 12). Having steady state control command, the first valve is 
always open (u1>0), so when error is negative (the outlet concen-
tration is higher than its desirable value), the performance decreases 
and it takes longer for the system to overcome negative error, since 
a positive u1 increases the concentration. In order to compensate 
for this drawback, f2 function sets u, (the steady state control com-
mand) to zero as error<-0.5 kmol/m3. Moreover, the final control 
command is generated in f2 by adding two control commands. 

Adding steady state control command improves input constancy 
significantly to IC=0.0305 liters, but the error integral increases to 
EI=0.1788 kmol/m3. As the main advantage, the control input changes 
very smoothly, so this combined control command is more suit-
able for real application. 

STABILITY REMARK 

Stability discussion is done based on two practical assumptions, 
rather than mathematical model, which are evident for the case study 
and can be paraphrased for a wide class of systems. These assump-

V ( C b1 > Cb > Cb2, 
A1: if (u1=4 litres/min & u2 = 0) ̂ C > 0(e<0) 
A2: if (u2=4 litres/min & u1= 0) ^ C < 0(e > 0) 

In the first-order systems which control input affect the first de-
rivative of the output (e.g. heat-related systems), there usually exists 
a value of control input that changes the sign of the first temporal 
derivative of the output immediately after application. As a result, 
two proposed assumptions can be restated for other similar sys-
tems. 

To address bounded-input bounded-output (BIBO) stability, it is 
proved that if error square or the absolute value of the error, is higher 
than a bounded value, this value definitely decreases. So, the error, 
and the output, always remains bounded if it is bounded in the be-
ginning. The decrease of error square means the derivative of error 
square is negative. Since(d/dt)e2=2ee as the stability criterion, it is 
needed to prove if the absolute value of error (or error square) is 
higher than a bounded value then: 

ee < 0 (20) 

In this section, the value of 3 kmol/m3 is considered as the bound-
ary of absolute value of error, and it is proved that as the absolute 
value of error is higher than 3 kmol/m3, error square decreases, and 
error will not be unbounded. 

3 f2 A1 
e> 3 kmol/m ^(u 1=4 & u2 = 0) ^ e < 0 ̂ e e < 0, 

3 f2 A2 e<-3 kmol/m ^(u 1 = 0 & u 2 = 4 ) ^ e > 0 ^ e e < 0 . 

SUMMARY OF RESULTS 

In this section, with a new set of setpoints/references and initial 
height (60 cm), all three control systems are checked again, includ-
ing fuzzy controller system (FC), fuzzy control system with damper 

Table 3. Simulation results for different control systems 

EI (kmol/m3) IC (litres) 

FC 0.6088 0.0819 
FCDR 0.6528 0.0743 
Hybrid 0.6043 0.0556 
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Fig. 13. The response of the system. 

Time (s> 

Fig. 14. The first control command during operation shown in Fig. 13. 

rule (FCDR) and hybrid control system (Fig. 13, Table 3). ulations shown in Fig. 13, the time needed for simulation is around 
As it is indicated in Fig. 14, the change of control input in the 5 seconds (compare with Table 1). There are two more relevant plots 

proposed hybrid control system is very smooth. Also, in all the sim- in Appendix C. 
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Fig. 15. The response of system to disturbances. 

DISTURBANCE REJECTION 

To check the capability of the hybrid control system in rejecting 
disturbances, four very severe disturbances were applied to the sys-
tem. First, 4 liters of low or high concentration liquid was poured 
suddenly into the reactor (in 0.2 second). Both disturbances (high 
and low disturbances) were successfully rejected as shown in Fig. 
15 (also, Fig. 19 in Appendix C offers some complementary infor-
mation). Then 4 liters of low or high concentration liquid was poured 
to the system in 10 seconds as a sinusoidal disturbance function. 

Table 4. Simulation results for hybrid system at different test co-
efficients 

Test coefficient EI (kmol/m3) IC (liters) 

0.5 0.6081 0.0608 
0.7 0.6090 0.0569 
1 0.6043 0.0556 
1.3 0.6523 0.0573 
1.5 0.6761 0.0609 

ROBUSTNESS AGAINST NOISES 
AND UNCERTAINTIES 

The feedforward controller is the only model-based part of the 
proposed hybrid control system. Feedforward controllers are usu-
ally more sensitive to noise and parameter uncertainties. High sen-
sitivity to uncertainties or noises, due to model-based feedforward 
controller, could be a serious defect of the proposed control sys-
tem. To address the aforementioned issue, the feedforward control 
command was multiplied by a 'Test Coefficient' before being added 
to feedback (transient) control command. This means that feedfor-
ward control command would no longer remain as accurate (this 
inaccuracy can be caused by noise or uncertainty, in reality). The ef-
fect of this situation on the control system was then checked. Table 
4 shows the values of design criteria for different values of 'Test 
Coefficient' (see Eq. (8) and (9), and Table 3). Even a considerable 
inaccuracy (50%) does not deteriorate control behavior significantly. 

Error integral remains reasonably small. Furthermore, the value of 
input change remains low, as a crucially important advantage in 
terms of implementation, at all values of test coefficient shown in 
Table 4. 

CONCLUSION 

After disappointing results of using neuro-predictive technique 
in double command control of the outlet concentration of a nonlin-
ear CSTR, a hybrid control system was designed in this research to 
adjust simultaneously both entering flows of a nonlinear CSTR. 
The proposed hybrid includes a model-free error-based fuzzy con-
troller and a model-based, but very robust against model uncertain-
ties, non-error-based steady state control law, The fuzzy controller 
pushes the system towards the reference. A fuzzy rule (damper rule) 
is deliberately added to the fuzzy controller to reduce the control 
input's frequent change and consequent output's chattering. Steady 
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state control maintains a desirable situation. The input to steady state 
control law is the reference (setpoint) and measurable states of the 
system which are not subject to control (height, in this case study). 
The performance, efficiency and input constancy, achieved by the 
proposed hybrid control system, are significantly higher than those 
of single-command neuro-predictive controllers which have already 
been designed by the authors and known as a successful method in 
this case study. The proposed method particularly suits real application 
in terms of trifling computations and control input change. Further-
more, it is proved that the proposed control system is BIBO stable. 

NOMENCLATURE 

a : parameters of consequent part of fuzzy rules 
A : assumption 
BIBO: bounded input-bounded output 
Cb : outlet concentration of CSTR [kmol/m3] 
CM : the concentration of the first inlet flow to CSTR [kmol/m3] 
Cb2 : the concentration of the second inlet flow to CSTR [kmol/m3] 
CSTR : catalytic stirred tank reactor 
d u ^ : consequents of fuzzy controller rules [litres/min] 
e : error [kmol/m3] 
E : absolute value of error [kmol/m3] 
EI : error Integral [kmol/m3] 
F, f : function 
FC : with fuzzy controller 
FCDR : with fuzzy controller having damper rule 
FSD : (with) fuzzy steepest descent method 
g : defined in (34) 
G : defined in (35) 
h : level height (cm) 
IC : input constancy criterion [litres] 
J : performance function 
Kj_ 2 : CSTR parameters relevant to resistance of valves 
LM : (with) Levenberg-Marquardt method 
PAN : prediction accuracy for N next instants [kmol/m3] 
r : reference [kmol/m3] 
SD : (with) Steepest Descent 
t : time [s] 
Time : time needed for the simulation of control system for 100 

seconds [s] 
u : control input [litres/min] 
u' : tentative control input [litres/min] 
u1 : volume rate of high concentration input to CSTR [litres/min] 
u2 : volume rate of low concentration input to CSTR [litres/min] 
w : weight of a fuzzy rule 
x : input to a fuzzy rule 
y : output of the system 
z : output of a fuzzy rule 
z-1 :unit delay function [1/s] 
p : a factor defining the importance of the constancy of con-

trol input 
H : membership grade 
T : time period of operation (s) 

Superscript 
A : estimated 

Subscripts 
d : desired 
k : numerator 
s : predicted 
ss : steady state 
tr : transient 
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APPENDIX A: NEURAL MODELING OF CSTR 
(WITH SOLE CONTROL COMMAND OF u1) 

The modeling was performed particularly for the purpose of pre-
dictive control. The studied CSTR has two control inputs, u1 and 
u2. One control command is used in predictive control, so the flow 
rate of the second input flow (with the concentration of 0.1 kmol/ 
m3) is set to the constant value of 0.1 liters/s. As a result, this value 
is not considered in modeling as an input signal anymore. More-
over, the order of two is assumed for the model. This model (pres-
ented in Eq. (21)) is used to find the first estimated value of Cb: 
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[C b(k+1), h (k+1)] 

= F[u1(k-1), u1(k), Cb(k -1), Cb( k), h(k-1), h(k)] 

or 

C b(k+1) = F1[u1(k -1), u1(k), Cb(k -1), Cb(k), h(k-1), h(k)] 

h (k+1) = F2[u1(k-1), u1(k), Cb(k -1), Cb(k), h(k-1), h(k)] 

After very first instants of the prediction: 

[C b(k+1), 1I (k+1)] 
= F[u1(k-1), u1(k), C b(k-1), C b( k), h (k -1), h (k)] 

or 

Table 5. Prediction accuracy for different trained models 
(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

C b(k+1) = F1[u1(k-1), u1(k), C b(k -1), C b(k), h (k -1), li (k)] 

h (k+1) = F2[u1(k-1), u1(k), C b(k -1), C b(k), h (k -1), h (k)] 

where variables with a hat are the estimated ones. 
Although often only one predicted value is used in predictive 

control (i.e. Cb), all the outputs should be estimated, because most 
of systems are dynamic and the outputs are usually coupled (in this 
problem, h, as the representative of liquid volume, affects the value 
of Cb). Therefore, the estimated values of all the outputs are needed 
to predict any of them, for a period of time in the future. 

After the definition of the model's order, the training data should 
be normalized and arranged. 8,000 set of data (including u1, h and 
Cb) with the sampling time of 0.2 second are utilized in training. 
The normalized data are arranged as below: 

Inpu' 

u1(1) u*(2) Cb(1) 

u1(7998) u1(7999) 

Cb(2) h(1) h(2) 

Cb(7998) Cb(7999) h(7998) h(7999) 

Output 

Cb(3) h(3) 

Cb(8000) h( 8000) 
(27) 

A four-layer recurrent perceptron is trained by using the pre-
pared data (Eq. (27)). The input layer of the utilized perceptron has 
six neurons (equal to input signals). This ANN has one nonlinear 
(with sigmoid activation functions) and one linear (with linear acti-
vation functions with slope of 1) hidden layers. Both hidden layers 
have 13 neurons. The output layer also has two neurons with linear 
activation functions with a slope of 1. A linear hidden layer may 
seem useless at first glance, because a linear combination of the 
outputs of nonlinear hidden layer neurons is generated at the output 
layer, even without this linear hidden layer. In other words, the struc-
ture of mathematical relation between input and output of ANN is 
the same with or without the linear hidden layer, however, adding 
a linear hidden layer improves the accuracy, in practice. It seems a 
wider variety of adjusting parameters let the model be trained more 
successfully. The training method is the Levenberg-Marquardt error 
back propagation. The (batch) training has been performed in 100 
epochs and the performance function is sum of squared errors (MSE). 

In this research, two different series of checking data were used. 

Criterion PA10 (kmol/m3) PA30 (kmol/m3) 

Checking data 1 s' series 2nd series 1s' series 2nd series 

Complete perceptron 
(double output) 

0.018 0.022 0.051 0.033 

Both series are entirely different from training data. 
A criterion is defined for the predictive accuracy of models, name-

ly PAN: 

PAN = 21C b(i) - Cb(i)| (28) 

Table 5 shows PA10 and PA30 (the sum of absolute error of predic-
tion for 10 and 30 future instants or next 2 or 6 seconds), for two 
different series of checking data. 

APPENDIX B: OPTIMIZATION 

From section IV, it is found that for nonlinear predictive control 
purposes: 

J=J(u). (7) 

Now, u' should be so determined that J has its minimal value. To 
do so, Taylor's series is written for performance function up to the 
first and second order: 

J(u'+Au')=J(u) + J u ) ( A u ' ) , 

J(u'+Au-)=J(u) + J u W ' ) + 1-^^l|lU:}(Au')2 

(29) 

(30) 

Based on these expansions, two different methods are used for 
optimization in this paper: Levenberg-Marquardt method, based on 
Eq. (30), which is a very good derivative based optimization method 
[16,17], it is currently used for neuro-predictive control [7]. The 
second method, based on Eq. (29), is a combination of steepest de-
scent and fuzzy logic. 
1. Levenberg-Marquardt (LM) 

In this method, after derivation, Eq. (31) will be obtained: 

9J(u'+AuQ„ J O + 92J(u') 
9(Au) " 3u' + 9u'2 l ). 

(31) 

In order to minimize J(u'+Au), its derivative is set equal to zero. 
Consequently, 

Au' =- -a2J(u')-
. 9u'2 . 

" J V -
3u' . (32) 

The right-hand side of Eq. (32) is called Newton's direction [17] 
Since Eq. (32) is an approximate relation, in order to guarantee 

that the performance function decreases at any stage, Eq. (32) is 
written in the form of Eq. (33): 

Au' =- a2J(u') 
. 9u'2 + 1 ^ J u ) 

9u' . 
(33) 
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In practice, the following relation is used: 

A u ' = u'new - uOld = - ( 
a^u1} 
. 9u'2 + 1 u---' . (34) 

where; X = d x 
u---'--2 . (35) 

An initial value is assigned to d (e.g. 0.001), then Sis generated: 

9J(u1 
u---' 

( d + 1 ) 3 J -du' 

Then: if E(u'+^)<E(u') then d=d/10; otherwise d=dx 10; 
(10 is a modification factor, it can be of another value) 

(36) 

(37) 

As the value of d is repeated, the algorithm stops. 
Eq. (34) represents the Levenberg-Marquardt method for the opti-

mization of a single variable function [17]. In this method, g is nu-
merically considered as performance function gradient: 

J u ' ) = J(k) - J(k-1). 
9u' Bk u'(k) - u(k-1)' 

moreover, Gt is defined as: 

J u T 
L 9u'2 . 

G u'(k)-u(k-1) = G t :—• (gt -
 g t - 1 ) 

So Eq. (34) can be rewritten in this form: 

Au'=un„-uOd=- n(1+d)Gigi. 

Using Eq. (40), we will have: 

J(unew)=J(u0id-n(1+d)Gigi), 

(38) 

(39) 

(40) 

(41) 

or: Argument of J=uOd- ((1+d)Gtgt. (42) 

Both U'M and (1+d)Gtgt are known in this stage; then, with chang-
ing argument of J moves along a line. There is an optimum point 
on this line that minimizes J. Such an optimization problem is clas-
sified as a linear search. Backtracking method, introduced by Den-
nis and Schnabel [18], is selected for linear search. The modified u' 
(u'new) is used as a new control input. 
2. Fuzzy Steepest Descent (FSD) 

A fuzzy-derivative optimization method is specially designed to 
suit optimization tasks for predictive control purposes. 

In Eq. (29), if Au' is replaced by - ( ^ Jp^ then J(u'+Au') 

• J < u ' > - J ) ' 

If n>0, it can be concluded (approximately) J(u+A u)<J(u), 

(43) 

(44) 

Any positive value can be used for ( For nonlinear predictive 
purposes, ( can be generated by a fuzzy inference system (FIS) to 
reduce the alteration of the control system's response when it is ap-
proaching the setpoint/reference. This FIS has two rules: 
Rule 1: if |e| is low then (=0 
Rule 2: if |e| is high then (=1 

Fig. 16 shows the membership function of high and low. 
The designed FIS can be simplified to a simple function of |e|. 

M'HIGH | e | 

For |e|<0.5: MW=-2|e|+1, 

(45) 

(46) 

a + tt ™ [0x(-2je|+1)] + [1xjej] -e-Acoadmgt° Eq. (3), ( = ^ ^ +1)+N
 j j = ^ ( 4 7 ) 

For |e|>0.5: MW=0 (48) 

S 

- 1 

Fig. 16. Membership functions of high and low fuzzy values in fuzzy steepest descent optimization method. 
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According to Eq. (3), n 

In summary: 

|e| < 0.5 ^ 

|e| > 0.5 

[0X0M1XH] =1 (49) 

(50) 

For nonlinear predictive control purposes, the proposed fuzzy steep-
est descent method leads to much better control performance in com-
parison with classical steepest descent methods. In terms of control 
performance, fuzzy steepest descent is comparable with Levenberg-
Marquardt method with around ten times less computation (Moham-
madzaheri and Chen, 2008). 

APPENDIX C: COMPLEMENTARY PLOTS 

Time (s) 

Fig. 17. The second output versus time, for the operation shown in Fig. 13. 
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Time (s) 

Fig. 18. The level height versus time, for the operation shown in Fig. 13. 
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Fig. 19. Level height and control inputs during operation shown 
in Fig. 15 (instantaneous disturbances). 
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