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Abstract--The use of feedforward neural networks for process modeling has proven very successful for steady- 
state applications, but suitable applications for dynamic systems are still being studied. A novel approach is 
presented in this paper which uses intrinsically dynamic neurons inspired from biological control systems as the 
processing elements in network architectures. This results in a network which incorporates dynamic elements 
with continuous feedback. Two case studies show that the recurrent dynamic neuron network (RDNN) does an 
excellent job of predicting nonlinearities such as asymmetric dynamic response. In addition, the RDNN 
significantly outperforms linear models and more traditional neural network models for open-loop simulations. 
Finally it is shown how this RDNN model can be used in model-based control architectures, such as internal 
model control. Copyright © 1996 Elsevier Science Ltd 
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I. INTRODUCTION 

The opportunities for novel process engineering meth- 

odologies inspired by biological control systems has 

received increasing attention. There remains a great 

incentive to exploit the highly efficient and robust 

computational mechanisms of natural neuronal process- 

ing systems in an effort to improve the tools of process 

modeling and control. The motivation for this goal 

follows from an analysis of the numerous parallels in the 

dynamic attributes of process and biological systems, as 

well as the parallels in the performance requirements 

(Henson et al., 1994; Stark, 1993). 

Although the details are not well understood, it is 

acknowledged that biological control systems provide 

robustly stable control of highly nonlinear plants 

(Henson et al,, 1994). Furthermore, these control 

systems function properly under such adverse conditions 

as major sensor damage and/or loss. It is observed that 

the control actions involve many regulatory mechanisms 

operating on different, but relatively short, time scales to 

achieve the desired response. The central nervous 

system (CNS) serves as the main control center for these 

regulatory mechanisms and coordinates the various 

control activities of biological systems. 

The fundamental component of the central nervous 

system is the neuron, which is responsible for the rapid 
and accurate transfer of information between the CNS 

and the other parts of the body. Hence, a detailed 

analysis of neuron functionality--how it encodes and 

transmits information--will lead to increased insight 

into the nature of these highly efficient biological 

computational systems, The coupling of these concepts 

with engineering principles can enable a reverse engi- 

neering of the biological computational elements tbr 

process modeling and control applications. 

1.1. Previous approaches to dynamic  neural  networks 

One of the more popular applications of biological 

understanding to engineering has been the artificial 

neural network. Static or feedforward artificial neural 

networks (FANNs) have emerged as useful tools in 

chemical engineering systems applications including: (i) 

steady state modeling; (ii) steady state planning and; (iii) 

steady state optimization (for representative references 

see MacGregor et al. (1991) on the connection to 

standard statistical regression tools; Pollard et al. (1991) 

on process identification and control). All of the above 

represent highly nonlinear but static (steady state) 

problems. In reality, chemical process operations are 

highly nonlinear as well as highly dynamic,  and thus 

networks structures must be modified in other to 

properly model dynamic systems. 

FANNs have been used as the static nonlinearity in 

Hammerstein and Wiener models (Montague et al., 

1991; Narenda and Parthasarathy, 1990) to model highly 

nonlinear, dynamic systems. The FANN is placed in 

series with a linear dynamic element to capture nonlinear 

dynamics. There are, however, processes in which the 

dominant nonlinearities cannot be separated as a distinct 

static element, thus there is a motivation to pursue a 

more general approach. 

One approach for introducing dynamics borrows from 

classical time series analysis (Morris et al., 1994). The 

idea is to replace static input/output data with appro- 

priate time histories over a window of discrete times. 
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One possible outcome is a constrained Volterra model, a 
temporal equivalent of a Taylor series expansion for 

spatial function approximation, which does not involve 

feedback of the output time history. The main deficiency 
of this approach lies in the fact that utilizing time 
histories to incorporate dynamics is, in this context, both 
awkward and arbitrary. The most important conse- 
quences are that 

1. the computational requirements become substantial 
and unwieldy; 

2. the resulting models are grossly overparameterized; 

and 
3. the reliability of such non-parsimonious models, 

obviously dependent on the arbitrary choice of the 
time history window, is questionable. 

There is also the so-called Memory Neuron Networks 

(MNN) (Sastry et al., 1993). Here, each neuron has 
associated with it a memory neuron whose single output 
summarizes the history of the past activations of the 

neuron. These memory neurons represent the trainable 
dynamical elements of the model. Since the connections 

between a neuron and its memory neuron involve 
feedback loops, the overall network is now a recurrent 
one. The overall network structure is similar to the 
FANN structure, and thus simple incremental learning 

algorithms based on backpropagation are possible. 

Another approach introduces a neuron model (Rao 
and Gupta, 1993) called the dynamic neural unit (DNU). 
The DNU is comprised of two distinct operations: (1) the 
synaptic operation, which determines the optimum 
feedforward and feedback synaptic weights controlling 
the dynamics of the neuron, and (2) the somatic 
operation which determines the optimum gain of the 
nonlinear activation function for a given task. The 
function approximation for a network of DNUs is done 
using linear and trigonometric operators. The develop- 

ment of the DNU is motivated by biological neuronal 
systems that function with feedback, but its dynamic 
structure is analogous to a reverberating circuit and does 
not represent any specific anatomical region within the 
biological nervous system. The dynamic structure, 
which is responsible for the synaptic operation, can be 
represented by a second order network structure with 

two poles and two zeros. 
The most popular approach for introducing dynamics 

in a network architecture is to connect a feedback path 
from the network outputs to its input. In feedback 
networks, the goal is to achieve an asymptotically stable 
solution that is a local minimum of the dissipated energy 
function (Zurada, 1992). To recall information stored in 
these dynamic networks, an initializing input pattern is 
applied to the network to generate a corresponding 
output. The initializing input is then removed and the 
initial output then becomes the new input. This sequen- 

tial updating continues until the network reaches its 
equilibrium. 

The majority of research on feedback neural systems 

stems from work published by John Hopfield in the mid- 
eighties (Hopfield and Tank, 1986), who originated the 
idea of recurrent networks. The continuous time repre- 

sentation of a single neuron in a recurrent network is 
given by the following nonlinear differential equation: 

n 
Ci dxi _ _ xi + 7"1 wiih(xj)+ui ( 1 ) 

dt Ri = 

Here wij, xi, and ui are the weights, states and inputs of 

the network, respectively and n the number of neurons in 
the layer. R~ and C~ are constants, and h(x) is a threshold 

function, typically the hyperbolic tangent function or the 

1 
sigmoidal function, h(x)= l+e,,m. A range of process 

dynamics can be captured with this structure because of 
its recurrent nature. However, it is important to note that 

the structure has a single nonlinearity, hence the gain and 
time constant of the individual neuron are inherently 
coupled. 

Like the Hopfield network, the proposed approach in 

this paper is motivated by biological neuronal systems, 
where the neurons themselves are inherently dynamic. 
The motivation for such an approach over the standard 
delayed recurrent approach has been voiced by several 
researchers in this area (Chappelier and Grumbach, 
1994; Scott and Ray, 1994): (i) the resulting models 
contain fewer parameters, and (ii) the resulting models 
are in a standard form for the application of model-based 
control synthesis schemes such as feedback lineariza- 
tion. 

2. DYNAMIC NEURAL N E T W O R K  S T R U C T U R E  

In an effort to enrich the dynamic behavior of the 
Hopfield network, it is proposed that an independently 
nonlinear gain and t ime constant  in a single neuron will 
give rise to rich network behavior with relatively few 
neurons. In fact, a biological counterpart to such 
dynamic behavior has been proposed to describe the role 
of autoregulation in a neuron cell played by intracellular 
calcium. A plausible mechanism for this autoregulation 
has been proposed by Abbott and co-workers (Abbott 
and LeMasson, 1993) which builds upon the Hodgkin- 
Huxley formalism for biophysical neuron models 
(Hodgkin and Huxley, 1952). In their model, the 
maximal channel conductances d; are proposed to be 
functions of intracellular calcium concentration [Ca]. 

The mathematical formulation of their mechanism 
involves modulation by [Ca] of both the time constant 
and gain of a simple first order rate law for the dynamics 
of the channel conductance: 
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r([Ca]) -~- = F([ Ca]) - G  (2) 

where F([Ca]) is the asymptotic value of G. This 
mechanism was found to maintain a constant average 
level of activity over a wide range of conditions with the 
intracellular calcium concentration acting as a feedback 

element linking maximal conductances to electrical 
activity. 

If one reformulates the dependence of the con- 

ductance signal on calcium concentration implicitly as a 
modification of the gain and the time constant, then one 
arrives at a simple empirical model: 

r(y)-5,= -y+k(y) .u  (3) 

This expression corresponds to a dynamical system with 

independent nonlinear gain and time constant. A similar 
representation has, in fact, been proposed for distillation 
column modeling (Chien and Ogunnaike, 1992). In that 
work the functions r(u) and k(y,u) were empirically 

identified. In the present study, we propose the use of 
this element in simple network configurations to elicit a 
richer range of dynamic response. 

2.1. Empirical neuron structure 

The structure described in equation (3) will be defined 
to be a first order dynamic neuron in the remainder of 
this paper. The nonlinear character of a network of such 
neurons is strongly influenced by the functional form 
chosen for the nonlinear dependence of the gain and time 
constant on the process state. Our initial studies employ 
a simple Taylor series expansion about the output, y, for 
these nonlinearities, leading to the specific structure: 

(ro+ fly+ "")) = - y+(ko+kff+'")u (4) 

The degree of nonlinearity is governed by the number of 
terms considered in the expansion. For example, input 
and output multiplicities can be induced through the 

correct choice of the neuron nonlinearity (Beer, 1994). 
The sigmoidal functional form was also investigated, as 
it is known to be displayed by biological systems and is 
commonly found in the nodal representations for FANNs 

and Hopfield networks. Here 7(y) and k(y) are repre- 
sented by: 

r(y) = (4) 
1 +exp( - a~y) 

~(y)= (5) 
1 + exp( - a,_y) 

This representation did not prove to be richer in 
modeling process systems than the Taylor series-based 
neurons. 

U - y ,,~-7-g-v-r- j 

k2 J 
Fig. 1. Dynamic recurrent network model. 
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2.2. Network architecture 

In this section, we consider the general behavior of a 
recurrent network arrangement of first order dynamic 

neurons. Consider, for example, a recurrent arrangement 

of two dynamic neurons in which the Taylor series 
functions for the gain and time constant are both 
truncated at order zero. This corresponds to the linear 
operator which represents the Jacobian of a network of 
more general nonlinear neurons. The network model is 

depicted in Fig. 1, and can be represented by the 
following equation: 

k.(r2s+ l) 
G(s)= rl r2s2 +( r. + r2)s + I - klk2 (6) 

where G(s) is the transfer function which relates the 
output y to the input u. This network architecture is a 
Hopfield type structure (Hopfield and Tank, 1986), 
which relies on its recursive nature for dynamic 
representation. This structure is general in that it can 
represent relative degree one linear systems with order 
less than or equal to two (excluding pure capacitance 
systems): 

• First order, relative degree 1 

K 
G(s)= - -  (7) 

r s+ l  

(k~=K, r~=r, k,.= r2=0) 

*Second order, relative degree 1 

K(sCs+ 1) 
G(s)= ~as2+2r(s+ 1 (8) 

~:2K sCr 2~:g'r- r ~ - ~:= 
(k,-  ( 2 ~ : -  r)r" r, = 2~---~r' k2= ~ K  ' 

r2=¢) 

(The singularities in the latter transformation correspond 
to the cases where the order is not two (r=0); the 
relative degree is not one (~:=0); a trivial gain (K=0); 
and the case where the sum of the poles is equal to the 
process zero.) 
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o ' r  ~ ,:'77-~-r ] [ k '  • ~" 

.[ k3 7 1  
Fig. 2. Generalized 3 neuron structure for dynamic neural 

network. 

For a system which contains more than two neurons, the 

level of  network connectivity is not as straightforward as 

in the two neuron case. For the three neuron case (Fig. 

2), several architectures are possible such as a pyramid 

structure where each neuron receives the external input, 

but only one (the neuron whose output is the network 

output) receives outputs from the other two. There is 

also the fully recurrent structure where each neuron 

directly receives outputs from the other neurons plus the 

external input. In the end the following structure was 

chosen: 

"rl (')~tl = - xl + kl (-)(u +x2) 

~'2(').t2 = - x2+k2(-)(x, +x3) 

7"3(.).~ 3 = -- X 3 + k3(')(x2) 

y =xl (9) 

where ~(') and k~(-) can be nonlinear and time-varying. 

This structure represents a natural extension (in terms of  

connectivity) of  the two neuron network above and 
generalizes in a straightforward manner to higher order 

networks. The Jacobian linearization of  this structure 

can be case in standard state-space form: 

coefficients in equation (11) from input/output data, and 

the set of  15 equations and 15 unknowns in equation (12) 

can be solved simultaneously to realize the elements in 

A, B and C. This linear identification problem will 

determine the starting point for a more general nonlinear 

network identification problem in Section 2.4. The linear 

transfer function relating the output y to input u in Fig. 
2 is: 

k1(7"2%s2 + ('r2 + 'r3)s+ 1 - k2k3) 
G(s)  = 

(~':+ 1)(~'zs+ 1)(7"3s+ 1) 

- (k2k37"l + k l k : 3 ) s  - k2k3 - klk2 (13) 

This structure is also general in that it can represent 

relative degree one linear systems with order less than or 

equal to three (excluding pure capacitance systems): 

• F i rs t  order ,  re lat ive  d e g r e e  1 

K 
G(s)  = - -  (14) 

7-s+l 

(k~=K,  r~ = ~', k2=7"2=k3=%=0) 

• S e c o n d  order ,  relat ive  d e g r e e  1 

K(~s+l) (15) 
G(s)= q 2 ~ l  

s~K ( r  2 ~ ( r - ~ - ~  2 
(k , -  ( 2 f f - r ) ~ '  r ' =2~-~ - - z '  k2= ~2 K , 

r2=~, k3= r~=0) 

• Th i rd  order ,  re lat ive  degree  l 

s2+b2s+b~ 
G(s)= alsa+a2s2+a3s+a4 (16) 

± = A x + B u  

y = C x  (10) 

1 
(kl = - -  

a2 - a tb2 '  

This system can be transformed into the contro l lab le  

c a n o n i c a l  form: 

±=/ lx  +Bu (10) 

y=dTx (11) 

using the following (invertible) coordinate transforma- 

tion: 

A = T - ~ A T  (11) 

B = T - ' B  (11) 

~=CT (12) 

where T is a nonsingular transformation matrix. In the 

case of  a network of  linear dynamic neurons, a linear 

identification procedure can be used to determine the 

k 2 = 

k 3 = 

a l  

TI= a l b 2 _  a 2  ' 

a~ - 2a]a3b I +aTb i - 2a2a3b 2 
,) ,) ") 1 ,) "~ 4 

+ 2a~a2b~b2 + a;.b~. + 2ala3b; " - aTblb;_ + aTb2 

a 4 - a 2 b  ~ - a 3 b 2 + 2 a t b l b 2 + a 2 b ~ - a l b  ~ ' 

a 3 - a l b  I - a 2 b 2 + a l b ~  " 

7",= a2b~ +a3b2 - 2a~b~b2 - a4 - a2bs +a~b5 

a] + a~b, - 2a2a4b, + albl - 2a,a3b ~ + a~b31 

- a3a4b2 - a,.a3b i b2 + 3a l a4b i b2 

- a t a 2 b T b 2  + a 2 a 4 b 2  + a la3blb;_  - a t a 4 b ; .  

(a4 - a,.bl +atblb2)(a3 - albl  - a,.b2+alb~) 2 " 
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which for n neurons generalizes mathematically to: 

~"~= \ a4-a'-b'+a'b'b2 J y= - u (17) 

The analysis in the following subsection is restricted to 
the two and three neuron cases, however higher order 
generalizations follow directly from these cases. 

2.3. Mathematical properties o f  the proposed network 
models 

In this section, we summarize some of the mathemat- 
ical properties of a network arrangement (Fig. 1) of the 
neurons proposed in equation (4). A network based on 

this structure will be subsequently referred to as the 

Recurrent Dynamic Neuron Network (RDNN). For 
purposes of comparison, a similar analysis will be 

applied to a simple arrangement of a FANN followed by 
a layer of first order linear dynamic nodes (as in 

Montague et aL, 1991). 
In Funahashi and Nakamura (1993 ), it was shown that 

a special class of Hopfield networks possess the property 
that it can approximate the finite time trajectory of an n- 
dimensional dynamical system. For the purposes of the 
present study, we compare the approximation properties 
of two different dynamic network architectures by 

examining the structural properties of their Jacobian 
approximation. 

2.3.1. Proposition 1 (single layer feedforward ANN) 
A single layer feedforward network consisting of 

weighted summing nodes and N linear-first-order- 
dynamic-filters yields an overall dynamic model with 
arbitrary order n<-N and arbitrary relative degree 
O<--r<-n - 1. However, the general model is restricted in 
the placement of the system eigenvalues to locations on 
the real axis. 

2.3.2. Proposition 2 (fully recurrent single layer 
RDNN) 

A single layer network consisting of weighted sum- 
ming nodes and N recurrent linear-first-order-dynamic- 
neurons yields an overall dynamic model with arbitrary 
order n<--N and relative degree r= 1. Furthermore, the 
general model can lead to arbitrary placement of the 
system eigenvalues in the complex plane. 

2.3.3. Resuhs for  single layer feedforward ANN 
Each output channel for this network structure 

consists of the summed outputs of the neurons (via linear 
dynamic filters) in the single hidden layer. If kn 

represents the Jacobian approximation of the static 

FANN, and ki and ~ are the elements in the layer of 
dynamic elements; then, for example, in the case of a 

two neuron network the output y is: 

k, u+k: .  k,. u 
y=k~ ~ - l"~s+ l 

II~( ~': + 1) 

This is a simple series representation of n linear filters 
and it clearly represents overdamped, high order linear 

systems with all of the poles on the real axis. 
Furthermore, it is straightforward to show that the 

relative degree of this equation will be less than or equal 
ton  - 1. 

2.3.4. Results for  fully recurrent single layer RDNN 
As seen in Fig. 2, the network output is equal to the 

output of the first neuron. For the two and three neuron 

cases, the transfer function from the input u to output y 
is given by the expressions, respectively: 

kt(r2s+ 1) y= u 
(r  s+ 1)(rls+ 1) - klk, " 

kl(r2s+ 1)('r3s + 1) -- ktk~_k 3 

y= (rls+l)(z2s+l)(%s+l) u 
- klk2(z.~s+ 1) - k2k3('rls+ 1) 

The generalization to n neurons is straightforward, but 
has a non-trivial series representation. By considering 
the coefficients of the highest order terms in s, in the 
numerator and denominator, y can be approximated 
mathematically by: 

k,IIT.,_r~r- ' + O~n- "-)(s) 

y= ilT=~z~.s,+O~,_~(s ) u 

where ki and z~ are the gain and time constants of each 
neuron in the layer, and O ~-  l) (s) denotes terms that are 
order ( n -  1) in s or less. Clearly this transfer function 
expression will always be rational and has relative 
degree at most one for any n. The unrestricted placement 
of eigenvalues is shown by the roots of the characteristic 

equation. For the two neuron network the roots of the 
characteristic are: 

- (~'t + "r2)--- [(7"1 + 72) 2 - 4zt'r2(1 - klk2)] 'a 
s,.2= 2 ~.i ,r_, (18) 

which can clearly have complex or real values. The 
characteristic equation for the three neuron network can 
be written as: 

where: 

s3 + 0,s2+ O~s + Oo 

Ot =(Tt + 7"2+ 7"3 - k2k3"l't - ktkzT"3)l'rl'r2"ra 

/90=(1 - k2k 3 - klk2)l,rl,r273 
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The arbitrary unrestricted pole placement is demon- 

strated by the fact that arbitrarily fixing any three 

parameters will realize the other three. For example 

setting: 

r~= r2=k3= l 

then 

- 2 +202 - 20, + O, 02+20o - 0002 

kt= 8 - 8 0 . , + 2 ~ + 2 0 ~ -  020,+0o 

k 2 --  
8 - 8~+202+20, - 020, + Oo 

( 0 2  - -  3 ) ( 0 2  - -  2 )  

1 

"(~- 82_ 2 
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F~i+l~----~i'(1 - -  g ' )  (21) 

where e is an appropriate factor. The algorithm ends 

after P,_ such interval reductions, which serve the 

purpose of increasing the probability of convergence to 

the global optimum. 

The values of P~, P2 and e chosen are dependent on 

the structure of the particular problem. From experience 

with the results in this paper, P~ can range between 100 

and 250 depending on the number of parameters to be 

identified. A good rule of thumb is that P~ should be 

approximately twenty times the number of parameters to 

be identified. As the optimization is done off-line, P2 is 

chosen large enough to ensure that an an adequate search 

is performed. An optimal parameter vector is normally 

returned within 2,000 P,_ iterations. The value of E is 

(19) fixed at either 0.03 or 0.05, as recommended in the 

original reference. 

2.5. Modified identification procedure 

The following procedure is proposed to increase the 

computational tractability of the random search proce- 

dure for network parameter identification. The key 

feature that is exploited is the fact that the first term in 

the Taylor series expansion for 7-and k is exactly equal 

to the Jacobian approximation of the network function. 

These parameter values can be estimated from a linear 

identification of the process (using a low amplitude 

excitation). Thus, a two step procedure is proposed, 

where the nonlinear random search procedure is warm- 

started with estimates of these linear parameters: 

1. The true plant' is excited with small input perturba- 

tions to produce local (linear) fluctuations in the 

output. Linear identification starts with using an 

autoregressive moving average with exogenous input 

model (arx function in MATLAB) to create a discrete 

time transfer function. This discrete transfer function 

was then converted to a continuous time transfer 

function (d2cm function in MATLAB). The order of 

this resulting transfer function determines the number 

of dynamic neurons in the network. 

2. The linear parameters are then used as an initial guess 

(nonlinear terms set to zero) to ¢varm start' the 

random search procedure. After the initial P, itera- 

tions, if the squared error is sufficiently small, the 

current solution vector can be used as the initial guess 
for a gradient-based method to improve the accuracy. 

If the error is not sufficiently small, then this step is 

repeated with the number of P2 iterations modified. 

Similar generalizations follow for higher order systems. 

2.4. Network parameter identification 

The identification problem for this network involves 

the calculation of an optimal parameter vector (the 

values of ~ and kl) which minimizes the squared error 

between the predicted network output @) and the actual 

process output (y). The structure of the proposed 

dynamic elements precludes the use of efficient gradient 

descent techniques because of the presence of local 

minima in the solution space. Consequently, a random 

search technique is employed to improve the possibility 
of finding a global solution. Random search techniques 

have the relative advantage that they are not as easily 

'trapped' in local minima as the more common gradient 

based methods. This is because their search directions 

and moves are determined randomly and thus will 

eventually move out of any 'well'. This improvement is 

achieved at a considerable computational expense in 

many situations. The random search procedure used here 

is an adaptive random search algorithm which contains 

modifications to improved its performance over existing 

random search algorithms, especially for such problems 

as sensitivity to initial parameter estimates, the initial 

search interval, the compression factor, and the random 
number generator (Salcedo and Azevedo, 1990). The 

algorithm used can be summarized by two main steps: 

• Execute iteration j for P~ trials to update the 

parameter vector, O: 

0= ff +Zr ~ (20) 

where O' is the current optimum, Z is a square matrix of 

dimension n consisting of random numbers between 

- 1/2 and 1/2, and r(j) is the search region for iteration 

j .  
• After PI iterations (Luus and Jaakola, 1973), replace 

/9* by the best value of O, then contract the search 

region r: 

The purpose of the linear identification is to determine 

the underlying dynamic order of the process. This is a 

critical step as the determined dynamic order is exactly 
equal to the number of neurons which is to be employed 

in the RDNN architecture. In the results that follow, the 
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following normalized fit metric was used to compare 

various models: 

F-- 1 1~i=l(Yi-Yi) 100 (22) 
Y,y~ 

This quantity ranges from minus infinity (poor model) to 
100 (perfect model). 

. . . .  x ex,(x2) 

3. S IMULATION RESULTS 

3.1. Case study I 

In this case study we consider a first order, exo- 
thermic, irreversible reaction carried out in a well mixed 

stirred tank reactor (Uppal et al., 1974). The fresh feed 
of pure reactant (A) is mixed with a perfect (undelayed) 
recycle stream with recycle flow rate (1 - A)F. The mass 
and energy balances are described by the following 

equations: 

.cA 
V ~ 7  =AFcA:+F(I - A)cA/- Fc A - Vkoex p ~ -  c~ 

(23) 

dT =pC?F(AT:+(1 - A ) T -  7") 
VpCp dt~-7 
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(25) 

dx~=-x2+BDa(l -xOexPdt  " ~ - f l ( x 2 - u )  

(26) 

where x, is the conversion, x2 is the dimensionless 
temperature, Da is the Damk6hler number, g is the 

dimensionless heat transfer coefficient, y is the dimen- 
sionless activation energy, B is the dimensionless 
adiabatic temperature rise, t is the dimensionless time, 
and u is the dimensionless cooling jacket temperature. 
For this case study, the following values of the system 
parameters were used: B=209.2, Da=7.2EiO, 8=2.092, 

and T=8750.0 The nominal operating point considered 

is defined by: X.o=0.09341, x2o= 385.0, and uo=311.1. 
The identification problem consists of modeling the 

reactor temperature response as a function of the cooling 
jacket temperature. The identification procedure 
described in the last section was carried out using a 

linear second order system for step 1. The input 
sequence used for this linear identification is shown in 
Fig. 3 and the following linear transfer function was 

identified (F=96.51 ): 

+ V( - AH)koexp ~ cA - hA(T-  T,.) 

(24) 

where the last term in equation (24) accounts for the heat 
removed from a cooling jacket maintained at tem- 
perature To. Using the dimensionless variables defined in 
Table !, these balances can be rewritten as follows: 

Table I. Dimensionless variables for case study I 

C'A! - -  c',~ 
Xl 

C~ 

t"FA 

Da k°e~'V 
FA 

~ ha 
FApC. 

~, Eler: 

" r: I ~ !  

0. I s + 1.076 
G(s)= 0.054s2+0.14s+ 1 (27) 

which gave the linear parameters shown in Table 2. The 
Taylor series expansions for the expressions, k(y) and 
r(y), in equation (3) were truncated after two terms, 
resulting in the following network structure: 

k~= - x t  kto+kt~xl 
- -  + - (x2+u) (27) 
7"~o+ 7"1 tX I 7"to+ 7"uXl 

- x2 k2o + k2 tx2 
Jc2= + x I (27) 

7"20+ T21X 2 '7"20+ 7"21X 2 

y=xl (28) 

where there are eight parameters to be identified. Using 
the values from the linear identification step as the initial 
guess for the linear terms, and zeroes for the nonlinear 
terms, the random search routine was implemented to 
determine the nonlinear parameters shown in Table 3. 
The parameters used for this search were P~= 150, 
P2=500, and e=0.05. The corresponding fit for these 
parameters was quite good (F=94.01), thus it was 
unnecessary to use a gradient based method to improve 
the fit. The performance of this dynamic neural network 
was compared against a linear model and a traditional 



378 A. SHAW e t  al.  

0.6  to  
O~ 

0.4 

~¢ 0 ,2  

~---0.2 i i i i i , i 

1 2 3 4 5 6 
TIME (SEO) 

I I 

7 8 10 

i 0.3 

o.,9. 
o .  

0.1 

v 

0 

.I i I i i i 
1 2 3 4 5 6 7 8 

TIME (SEC) 

Fig. 3. Input/output data for linear identification. 

I 

0 10  

neural network. The input/output set for the nonlinear 

identification procedure is shown in Fig. 4. The Jacobian 

approximation of  the nonlinear model derived from this 

data is: 

Table 2. Linear parameters for case study I 

r_, 0.094 
~-~ -0.124 
kl - 0.232 
k2 - 5.251 

Table 3. Nonlinear parameters for case study I 

kto 
k l l  

71o 

7"11 

k2o 

k2~ 

7"21 

- 2.33E-01 
1.25E-03 

- 1.17E-01 
I. 116E-03 

- 5.25 
6.159E-03 
9.039E-02 
1.109E-03 

0.071s+ 1.079 
G(s)= 0.046s2+0.121s + 1 (29) 

which is slightly different than the linear model 

identification in equation (27). 

The feedforward artificial neural network had one 

hidden layer with five neurons. From the literature it is 

known that input sets which contain both auto-aggres- 

sive and moving average terms results in better FANN 

performance. Coupled with the knowledge that the 

apparent 'best-fit' linear model is a delay-free, relative 

degree one, second order transfer function, it was 

decided to employ an A R M A  structure with memory 2 in 

both the past inputs u and past outputs y: 

U,,,,j,, = [ u ( k  - 2), u ( k  - 1 ) ,  y ( k  - 2), y ( k  - 1 )] 

Y,,,,, ,  = [y(k)] (30) 

The network was trained via standard batch back- 

, , ,20 re 

~o 
~ - 10  

~.2o I I I I I I I I I 
1 2 3 4 5 6 7 8 9 10  

TIME (SEC) 

10 
I/J 

~o 

I I I 

TIME ( ~ C )  

Fig. 4. Input/output data for nonlinear identification. 
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propagation. For validation, a recursive method was 

employed using backpropagation with each predicted 

value of the output used as an input for the next 
prediction. 

A simple evaluation of the predictive ability of the 
three models is illustrated for a random input sequence 
in Fig. 5. The corresponding fits for the three are as 
follows; RDNN = 98.91, Linear = 96.89 and the FANN 
= 88.47. The response to + 3 and - 3  step changes in 

cooling temperature is shown in Fig. 6. As expected, the 
linear model cannot capture the nonlinear behavior in the 
system. In addition, the traditional neural network was 
unable to capture this behavior. This is attributed to the 

fact that the FANN is essentially class of ARMA (Auto- 
Regressive Moving Average) models, which are not 
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known to perform well for prediction horizons of more 

than one-step-ahead in time (Morris et al., 1994). On the 

other hand, the proposed dynamic neural network 

accurately predicted the dynamic output. For larger 
inputs, which correspond to incipient instability in the 
CSTR, none of the models were able to accurately 
represent the true nonlinear behavior (Fig. 7), although 

the dynamic neural network outperformed the other two 
models. 

3.2. Case study H 

The second application considers the production of 
cycolpentenol (B) from cyclopentadiene (A) by acid 
catalyzed electrophilic addition of water in dilute 
solution (Engell and Klatt, 1993). The unwanted by- 
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Fig. 5. Model comparison for random input sequence. Actual reactor (solid), linear (dotted), FANN (dash-dot), RDNN (dashed). 
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Fig. 6. Model comparison for ±3 step changes in input. Actual reactor (solid), linear (dotted), FANN (dash-dot), RDNN (dashed). 
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I 
9 

Fig. 7. Model comparison for - 5 step change in input. Actual reactor (solid), linear (dotted), FANN (dash-dot). RDNN (dashed). 

products are dicyclopentadiene (D)-a side product, and 

cyclopentanediol (C)-a consecutive product. The reac- 

tion mechanism can be written as follows: 

kl k2 
A ---* B---* C 

coefficient k~, k 2 and k3 depend on 

temperature via an Arrhenius expression: 

the reaction 

k(T) = ko.exp R( T+ 273.15 ) (35) 

k~ 

2A ---, D 

For constant density and ideal reactor residence time, the 

balance equations for the concentrations of cyclopenta- 

diene, CA, and cycolpentenol, c8, are: 

N C A  ~l 
dt  V,. 

- -  _ - - ( c a o - c A ) - k l ( T ) C A - k 3 ( T ) c ~  

dca f" 
dt  - - Vr %+kl(73ca - k,.(T)cB 

The system parameters for this study are found in Table 

(31) 4 and the standard operating conditions are in Table 5. 

Following the treatment in the original reference (Engell 

and Klatt, 1993), the coolant dynamics will be neglected, 

yielding a third order nonlinear dynamical system. 

Following the identification procedure which was 

outlined earlier, a linear model was identified from a low 

amplitude input signal. These results indicated that the 
(32) third order approximation (Fig. 8) was only slightly 

better than the second order approximation. This implies 

that the dynamic neural network structure should contain 

(33) at most three dynamic neurons, but that a two neuron 

Table 4. System parameters for case study II 

where V R is the volume of the reactor, and f' is the k, .... 

volumetric flow through the reactor. The energy balance k0 .... 

yields the differential equation for the temperature T in E~.~. Ea~ 
the reactor: E, .... 

Vr 

__dT = -  1 (k,(T)caAHR+k,(T)cnAHRs,. .+k~(T)c]AHR,,,) 
d t  pCp 

f' ~ ( r ~ -  T) + ~(r0-T)+ R 

(33) 

(34) 

Cp 

H R ~  

HR~ 

where AHRi j are the various reaction enthalpies, T O is the HR,,, 

temperature of the inlet stream, T x is the temperature of 

the reactor coolant, kw is the heat transfer coefficient, and Qks 

AR the surface area of the cooling jacket. The rate 

1.287EI2 h 
1.287E12 h 

9.043E9 (mol .h)  
9758.3 K 
9758.3 K 
8560 K 

101 

0.9342 kg 
I 

kJ 
4.01 - -  

kg.K 

kJ 
4.2 - - - -  

molA 

kJ 
- l l . 0 - -  

molB 

kJ 
- 41.85 molA 

kJ 
- 4496 h- 
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structure may be able to properly represent the system. 

The second order transfer function from this linear 

identification procedure is found to be: 

- 0.1805s + 57.6514 
G(s)= s2+69.8s+4385. 2 (36) 

and the third order model is: 

Table  5. Nominal  operat ing point  for case study II 

C,L 

Ts 
% 
k~.2 

k~ 

V~R 

Cp 

H~L~ 

Hr~ 

HR~o 

Qks 

mol 
5 . 1 - -  / 

tool 
1.235 - -  

/ 

mol 
0 . 9 - -  / 

134.14°C 
130°C 

50 .6  h 

/ 
6 .74 - - -  

mol.h 

18.83 h 

kJ 
4.01 - - -  

kg.r 

kJ 
4 . 2 - -  

molA 

kJ 
- l l . 0 - -  

molB 

kJ 
- 41 .85 

molA 

kJ 
- 4496  

hr 

381  

- 0.3776s 2 - 51.6338s+41656.0 
G(s)= ~ , (37) 

s- + 560.2s- + 52207.2s + 2553000 

Based on the observations from the linear identification 

step, the second order structure was first studied. 

Following the procedure employed in the previous case 

study, the linear parameters were found (Table 6). The 

random search procedure was then employed to identify 

the nonlinear structure given by the parameters in Table 

7. The parameters used for this search were P~=150, 

P.~= 1,500, and E=0.05. 

The performance of the RDNN for this system was 

compared to a linear model and a traditional FANN. The 

data used for the linear model estimation and traditional 

FANN training was larger in magnitude than that used 

for the linear fluctuations in Step 1. The FANN structure 

was similar to that used in the previous case study, and 

the linear model employed was a third order transfer 

function which was found to be: 

- 0.8s2+78.25s+ 7595.6 

G(s)= s3+210.0s2+ 13520.0s+433880.0 (38) 

As before, the models were evaluated with respect to 

their predictive ability for various sequences of input 

flow rate. For the random input sequence (Fig. 9), all the 

models performed relatively well in predicting the 

process output; Linear = 91.51, RDNN = 92.65, FANN 

= 70.00. In Fig. 10 are shown the responses for the _+6 

(tool/l) input step change in input. For the - 6  (tool/l) 

step the RDNN model yielded the highest accuracy. 

whereas for the +6 (mol/l) step the RDNN and the linear 

model performed equally well, while the traditional 

FANN was less accurate. 

~ 2  
5 
0 

10 ~ 
i 

! 

"~ o12 oi~ o16 o18 ~ ~i~ ,i, ~i~ ~:8 
TIME (HR) 

Fig. 8. Comparison of second and third order linear models to small input perturbations. Actual (solid), second order (dotted), third 
o r d e r ( d a s h e d ) .  
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Table  6. L inear  parameters  for ( two neuron) case  study II 

r_, - 3 .129E-03  
r, 2 .568E-03  
k~ - 4 . 6 3 3 E - 0 4  
k 2 - 2 .234E03  

Table  7. Nonl inear  parameters  for ( two neuron) case study II 

k., - 4 .6330E-4  
ku - 3 .6293E-5  
rLo 2 .5682E-3  
r,~ 3 . 4 4 8 8 E ~  

k20 - 2 . 2 3 4 E + 3  
k,_~ 9 .5473E-4  
r., o - 3 .1290E-3  
r_,j 1 .4639E-6  

The procedure was repeated for the case of a third 

order RDNN model. The low-amplitude training set in 

Fig. 8 was used to identify the six linear parameters in 

Table 8. The fit for these linear parameters for the linear 

training data was reasonable (F=89.90). These values 

were used to warm start the random search procedure to 

identify a nonlinear model based upon the training set 

shown in Fig. 11. The parameters used for this search 

were Pj =200, P2=3000 and 6=0.05, The best solution 

obtained from the random search procedure (F=92.05) 

is shown in Table 9. For validation, the model was 

subjected to _+6 (mold) step changes in the input (Fig. 

12). It can be seen that the performance of the three 

neuron model does a better job of capturing the 

overshoot behavior than to the two neuron model. 
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0 

-0.1 

-0.~ '  

- 0 . 3  

-0.4 
0 

"; 

~ :,~ : ' .  
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t :. 
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I ~ .."i l; ~ [ ,'b 

! i 

dt & o', o, 
TIME IHRI 

Fig. 9. Model comparison for random input sequence. Actual reactor (solid), linear (dotted), FANN (dash-dot), 2 neuron RDNN 
(dashed). 
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Fig. I0. Model comparison for ±6 (mol/l) step changes in input. Actual reactor (solid), linear (dotted), FANN (dash-dot), 2 neuron 
RDNN (dashed). 
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Table 8. Linear parameters (three neuron) for case study 11 4. MODEL-BASED CONTROLLER DESIGN 
kl~ ~ - 8.9153E-04 
r,, 2.3612E-03 The biologically motivated dynamic network (RDNN) 
k~ - 8.289E-02 
r_,, -2.9915E-03 model proposed in this paper can be implemented in 

k~(~ -3.61129E-04 model-based control schemes such as Internal Model  
r~ 2.123E-03 

Control (IMC) or Model  Predictive Control (MPC). 

Table 9. Nonlinear parameters (three neuron) for case study I1 

k~ - 8.94000E-04 
k,, 1.4336E-04 
~'.) 2.35772E-03 
r~ 2.46439E-03 
k_,o - 8.289E-02 
k_~b 8.76978E-04 
r,o - 2.99372E-03 
~'~, 3.48682E-06 
k3o - 3.61923E-04 
k~ - 5.40545E-04 
~0 2.13113E-03 
r~ 1.26467E-03 

These schemes normally rely on a model inverse for 

control move computations and recent results for 

Volterra-series-based models (Doyle et al., 1995) 

describe a method for constructing a nonlinear model 

inverse which only requires linear model inversion. The 

control structure is displayed in Fig. 13 and is composed  

of  two parts: 

1. the dynamic model (RDNN) which contributes to a 

feedback signal representing the difference between 

the true process and the modeled output; and 

2. a model inverse loop which contains the RDNN 
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5 o =E o 
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! 
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TIME (HR) 
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Fig. 11. Nonlinear training set. 
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Fig. 12. Asymmetric Model response for ±6 (mol/1) step changes in input. Actual reactor (solid), linear (dotted), 3 neuron RDNN 
(dashed). 
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Fig. 13. Closed-loop control structure. 
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Fig. 14. Closed-loop setpoint response. Reference trajectory (solid), RDNN controller (dotted), linear controller (dashed). 

model, a linear approximation to the RDNN model 

and a linear IMC controller. 

Simulations were carried out for two control schemes: 
(i) a standard l i near  IMC controller which utilizes a 
linear model and its inverse; and (ii) the nonlinear 
controller depicted in Fig. 13. In both cases, the IMC 
filter time constant is equal to 0.5 sec. The closed-loop 
response for a step change in the setpoint from 385 to 
400 K at t=0 and back down to 380 K at t=25 is shown 

in Fig. 14. The dashed line represents the response of the 
linear controller, the dotted line represents the response 
of the nonlinear controller, and the solid line the ideal 
reference trajectory that would be achieved with perfect 
control. The nonlinear controller achieves vastly supe- 
rior trajectory following than the linear controller which 

is unstable for the lower setpoint change. This demon- 

strates the improved performance that can be attained 
with a more accurate nonlinear model, such as RDNN. 

5. CONCLUSIONS 

In this paper, a simple dynamic element was presented 

for use in network architectures to model process 
systems. This dynamic neuron is motivated by biology, 
and was shown to be capable of capturing a rich range of 
nonlinear dynamic behavior. A formal identification 
procedure was outlined for this model, which consisted 
of three steps: (i) linear (low amplitude input) identifica- 
tion for initialization purposes, (ii) random search 
identification for the nonlinear parameters, and (iii) a 
gradient descent search to find the local minimum. In 
addition, it was shown that the proposed architecture can 
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be readily implemented in a standard model-based 

control methodology (IMC) to yield a nonlinear model 

based controller. Two process case studies were pre- 

sented to illustrate the superior performance of  the 

proposed approach over both simple linear models and 

traditional feedforward artificial neural networks. 

Future research directions will include the application 

of  gradient descent algorithms to train the network 

models. In addition, more complex process applications 

are currently under investigation and synthesis of input/ 

output feedback linearizing controllers are being formu- 

lated. 
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