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a b s t r a c t

Pandemic (H1N1) influenza poses an imminent threat. Nations have stockpiled inhibitors of the influenza
protein neuraminidase in hopes of protecting their citizens, but drug-resistant strains have already
emerged, and novel therapeutics are urgently needed. In the current work, the computer program Auto-
Grow is used to generate novel predicted neuraminidase inhibitors. Given the great flexibility of the
eywords:
nfluenza
euraminidase
rug design
seltamivir

neuraminidase active site, protein dynamics are also incorporated into the computer-aided drug-design
process. Several potential inhibitors are identified that are predicted to bind to neuraminidase better
than currently approved drugs.

© 2010 Elsevier Ltd. All rights reserved.
lu
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. Introduction

Influenza is caused by RNA viruses of the family Orthomyxoviri-
ae. While not generally life threatening in healthy adults, the virus
ccasionally mutates into more deadly forms and has been respon-
ible for several pandemics in the last century. Recently, a new
train of pandemic influenza (H1N1) capable of infecting humans
as been identified (Dawood et al., 2009), with a U.S. hospitalization
ate of about 9%. Additionally, a distinct strain of avian influenza
H5N1) arose in 1997 that may cause a similar global pandemic in
he future (Abdel-Ghafar et al., 2008).

In preparation for pandemic influenza, many nations have stock-
iled inhibitors of the influenza protein neuraminidase (Oxford
t al., 2004). Following formation, influenza viral particles remain
ound to cell membranes via sialic-acid residues. Neuraminidase
leaves these residues, releasing the virus and enabling viral prop-
gation (De Clercq and Neyts, 2007). Neuraminidase is the target of

everal FDA-approved drugs, including zanamivir and oseltamivir
Oxford et al., 2004), because it is essential for viral propagation
nd has a well-conserved active site (Kobasa et al., 1999). Unfor-
unately, drug-resistant strains have recently emerged (Kiso et al.,

∗ Corresponding author. Tel.: +1 858 822 0169; fax: +1 858 534 4974.
E-mail address: jdurrant@ucsd.edu (J.D. Durrant).

476-9271/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compbiolchem.2010.03.005
2004; Beigel et al., 2005; de Jong et al., 2005; De Clercq, 2006), and
the need for novel inhibitors is great.

Motivated by the urgent need for new influenza therapeutics,
we used AutoGrow (Durrant et al., 2009), a recently developed
computer-aided drug-design program, to guide the design of sev-
eral potential neuraminidase inhibitors predicted to bind better
than currently approved drugs.

2. Material and methods

2.1. Accounting for protein flexibility

To account for protein flexibility, we drew upon a molecular
dynamics simulation of neuraminidase that has been described
previously (Cheng et al., 2008). Protein conformations extracted
from this 40-ns simulation were clustered into 27 groups by root-
mean-square-deviation (RMSD) conformational clustering using
the gromos clustering algorithm, as implemented in the GRO-
MOS++ analysis software (Daura et al., 1999; Christen et al., 2005).
In brief, an RMSD distance was calculated for each pair of pro-

tein conformations extracted from the MD simulation. Those pairs
with associated RMSD distances greater than 1.3 Å were discarded.
The single conformation most frequently present in the remaining
pairs, together with the other corresponding conformation of each
pair, were merged into a list of conformations called the first cluster.

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
mailto:jdurrant@ucsd.edu
dx.doi.org/10.1016/j.compbiolchem.2010.03.005
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he conformations of the first cluster were subsequently removed
rom the pool of conformations extracted from the MD simulation,
nd the process was repeated until no conformations remained.
he centroid of each cluster was selected, producing an ensemble
f 27 unique protein structures representative of the many protein
onformations sampled during the simulation.

.2. Initial AutoGrow runs

AutoGrow was run three times, once using a neuraminidase
rystal structure (PDB ID: 2HU4, Russell et al., 2006) as the template
rotein and twice using each of the top two ensemble structures
Cheng et al., 2008). In each of these three runs, AutoGrow ran for
ight generations, adding fragments to a core scaffold similar to
seltamivir. Each generation initially contained fifty ligands. For
ach generation after the first, 10 primary individuals were taken
rom the previous generation, based on both the score of the most
opulated docking cluster and successful active-site binding. An
dditional 20 “crossovers” and 20 “mutants” were created from
hese 10 primary individuals, subject to the requirement that all
ompounds contain fewer than 100 atoms. The first generation
nitially contained only the scaffold and 49 “mutants,” as no pre-
ious generation existed from which “parents” could be drawn for
rossover production.

To determine fitness, all AutoGrow-generated ligands were
ocked into their respective neuraminidase structures (the crys-
al structure or the two ensemble conformations) using AutoDock
.0.1 (Morris et al., 1998), a docking program with a physics-based
coring function that performs well relative to the scoring func-
ions of other similar programs (e.g. DOCK, FleX, and GOLD, Rarey
t al., 1996; Jones et al., 1997; Ewing et al., 2001; Bursulaya et al.,
003). Docking parameters were optimized for the positive-control
ocking of oseltamivir into the group-1 neuraminidase (N1) crys-
al structure. The initial AutoDock population size was set to 200
ndividuals, the maximum number of energy evaluations to 7 × 106,
he number of runs to 25, and the RMSD tolerance to 2.0. All other
utoDock parameters were set to the default values. The AutoDock-
redicted binding energy was taken to be the energy associated
ith the most populated AutoDock cluster. AutoDock grids were

alculated for regularly spaced points at intervals of 0.375 Å con-
ained within a cube 24.00 Å × 27.00 Å × 24.75 Å, centered on the
euraminidase active site.

.3. A novel fragment library derived from FDA-approved
ompounds

To generate novel compounds, AutoGrow drew upon a new frag-
ent library containing 37 637 redundant fragments derived from

DA-approved compounds using an in-house script called Frag-
entizer. To create this novel fragment library, we first obtained

he names of hundreds of FDA-approved compounds by searching
rugs@FDA, supplemented with a list provided by the laboratory of
aurizio Pellecchia. The PDB structures of these compounds were

ownloaded from drugbank.ca (Wishart et al., 2006) and filtered to
emove those with molecular weight greater than 700 g/mol. After
dditional processing, 1174 drugs remained.

For each compound, Fragmentizer first identified all single
onds that could be broken without altering the electronic or
eometric configuration of neighboring atoms. The program next
enerated a second list of all possible bond combinations. Each
ompound was then decomposed by simultaneously cutting all

he bonds of each combination and adding hydrogen atoms to
he resulting fragments as needed. Following compound decom-
osition, all fragments with mass greater than 150 Da were
emoved, leaving 37 637 fragments. Redundant fragments were
ot eliminated. Both Fragmentizer and the novel fragment library
iology and Chemistry 34 (2010) 97–105

derived from FDA-approved compounds can be downloaded from
http://www.nbcr.net/software/downloads/virtual lib/.

2.4. Post-processing of AutoGrow-generated compounds

As a beta version of AutoGrow was used to generate the ligands,
the compounds had to be further processed to correct occasional
structural errors. The top 10 ligands from each of the three Auto-
Grow runs were visually inspected. Where the atoms of two distinct
fragments were very close, those fragments were bound together
to form rings. Where two fragments were mistakenly added via
the same scaffold linker hydrogen, extra atoms were removed as
needed. Additionally, some sulfur atoms were bound to too many
hydrogen atoms. These were eliminated or replaced with oxygen
atoms as necessary. Following corrections, each ligand underwent
500 steps of Cartesian minimization in ICM (Molsoft), a molecular
modeling and docking program, prior to being evaluated for drug
likeness (Table 1 and Table S1).

2.5. Relaxed complex docking

The relaxed complex scheme (Amaro et al., 2008a) was used
to rescore predicted inhibitors. All compounds were docked into
the 27 ensemble configurations using AutoDock 4.0.1 (Morris et
al., 1998). Additionally, six positive controls were included: sialic
acid, the natural neuraminidase substrate, in the boat, chair, and
twist conformations; zanamivir and oseltamivir, FDA-approved
neuraminidase inhibitors; and peramivir, a compound currently
in clinical trials. An ensemble-average AutoDock score was cal-
culated for each ligand by averaging the AutoDock scores and
weighting according to the cluster population size (Table 1 and
Table S1):

Ē =
∑23

i=1wiEi
∑23

i=1wi

(1)

where Ē is the weighted ensemble-average score, wi is the size of
cluster i, and Ei is the AutoDock score of the ligand docked into the
centroid of cluster i.

The docking parameters were unchanged, except that the max-
imum number of energy evaluations was decreased to 5 × 106, and
the number of runs was increased to 100.

2.6. Compound modification

The top predicted ligand from each of the three AutoGrow
runs (compounds 1, 2, and 3; Table 1 and Table S1), as judged by
the ensemble-average score, was selected for further examination.
Each of these three ligands was loaded into ICM (Molsoft), together
with the corresponding ensemble member that gave the best score,
and redocked using the ICM docking program (Molsoft). This ini-
tial docking established a baseline score that was subsequently
used to judge whether modifications to the compound improved
or reduced binding affinity.

Each of the three ligands then underwent a series of manual
modifications, producing 14 novel drug-like compounds. Modifica-
tions were made such that the ICM docking score was maintained,
drug-like metrics (molecular weight, number of hydrogen-bond
acceptors and donors, predicted Log P, etc.) were improved,

chirality was reduced, and molecular rigidity was increased. Fur-
thermore, visual inspection led to the addition of some novel groups
that AutoGrow had not suggested. These “modified compounds”
were rescored using the relaxed complex scheme, with the same
AutoDock and AutoGrid parameters used previously.

http://www.nbcr.net/software/downloads/virtual_lib/
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Table 1
The initial AutoGrow-generated compounds prior to modification, ranked according to the ensemble-average AutoDock score. The six positive controls are also included.

Ensemble-average AutoDock score Molecular Weight HBA HBD Log P

1 −12.83 503.24 12 10 −2.89

2 −11.13 337.19 6 5 −1.71

3 −11.06 335.18 6 4 −1.75

−8.24 284.17 4 4 2.03

−7.67

−7.39



100 J.D. Durrant, J.A. McCammon / Computational Biology and Chemistry 34 (2010) 97–105

Table 1 (Continued )

Ensemble-average AutoDock score Molecular Weight HBA HBD Log P

−6.20

−5.89

−4.94
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. Results and discussion

The influenza virus has caused several pandemics in the last
entury; recently, a new pandemic strain (H1N1) has been identi-
ed (Dawood et al., 2009). In preparation for pandemic influenza,
any nations have stockpiled inhibitors of the influenza protein

euraminidase (Oxford et al., 2004). Unfortunately, drug-resistant
trains have emerged (Kiso et al., 2004; Beigel et al., 2005; de Jong
t al., 2005; De Clercq, 2006), and the need for novel neuraminidase
nhibitors is great.

Neuraminidase has highly flexible loops adjacent to its sialic-
cid binding site. In the first crystal structures of group-1
euraminidase (N1), the so-called 150-loop adopted an open
onformation not seen in previous crystal structures of group-2
roteins (N2) (Russell et al., 2006). Under different crystallographic
onditions, however, the N1 150-loop adopted a closed conforma-
ion similar to that of N2 (Varghese et al., 1983; Baker et al., 1987).
he flexibility of this loop in N1, as well as implications for drug
esign, have been further characterized via molecular dynamics
imulations (Amaro et al., 2007; Cheng et al., 2008).

The great flexibility of the N1 active site defies traditional
omputer-aided drug-design efforts, which typically focus on static

rystal structures and at best account for only limited protein
exibility. To aid future drug-design efforts, Cheng et al. recently
erformed a 40-ns molecular dynamics simulation of the N1
olo enzyme (Cheng et al., 2008). 1.6 × 104 protein conforma-
ions were extracted at regular intervals and clustered into 27
groups using root-mean-square-deviation (RMSD) conformational
clustering. The set of the corresponding 27 distinct centroids, rep-
resentative of all conformations sampled, is said to constitute an
ensemble.

3.1. Initial compound generation

In some fragment-based drug-design strategies, weakly binding
molecular fragments, identified experimentally via X-ray crys-
tallography or NMR, or computationally via computer docking,
are linked to generate potent composite inhibitors (Rees et al.,
2004). An alternate computational fragment-based growing strat-
egy, exemplified by programs like LUDI (Bohm, 1992, 1993, 1994)
and AutoGrow (Durrant et al., 2009), adds small molecular frag-
ments to initial scaffolds known to bind the target protein, with the
goal of improving binding affinity. Because fragment-based strate-
gies are combinatorial, a far greater diversity of compounds can
be synthesized and tested than would be possible with traditional
high-throughput assays.

To generate predicted ligands, we used a beta version of the
computer program AutoGrow (Durrant et al., 2009), an evolution-
ary algorithm that automates fragment addition to core scaffolds.

Each member of a population of AutoGrow-generated compounds
was evaluated for binding using AutoDock; the best predicted
binders became the founding members of the next generation,
wherein fragments were again added/modified. Generation after
generation, ligands eventually evolved that were well suited to the
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Table 2
The most common fragments from the library derived by decomposing FDA-
approved drugs.

Rank Compound Percent of library

1 CH4 11.71%
2 H3C-CH3 4.79%
3 H2O 4.28%
4 CH3-CH2-CH3 2.49%
5 H3C-OH 1.93%
6 H3C-NH2 1.64%
7 H2C O 1.40%
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sitions as they twist about their rotatable bonds. Upon binding,
8 CH3-CH2-OH 1.31%
9 CH3-NH-CH2-CH3 1.29%

10 benzene 1.28%

emplate protein structures specified. AutoGrow was initially run
gainst an N1 crystal structure (PDB ID: 2HU4) (Russell et al., 2006).
o account for neuraminidase flexibility, the program was run twice
ore against the top two representative ensemble conformations.
AutoGrow drew upon a fragment library derived from FDA-

pproved compounds. The library was generated by decomposing
pproved drugs into their constituent fragments using an in-house
cript. As AutoGrow selects fragments from the library at ran-
om, redundant fragments were maintained to bias the program
owards those fragments most commonly found in FDA-approved
rugs. For example, the most common fragment (methane) con-
tituted 11.71% of the library. The 10 most abundant fragments
f this new library are listed in Table 2. Thirty compounds, 10
rom each AutoDock run, were considered candidates for further
nalysis.

.2. Relaxed complex rescoring

To further account for N1 flexibility, these compounds were
eranked using the relaxed complex scheme (Amaro et al., 2008a).
n a traditional virtual screen, a docking program is used to pre-
ict the ligand energy of binding to a static structure, usually
btained from X-ray crystallography or NMR. The relaxed complex
cheme builds upon this traditional methodology by docking can-
idate ligands into multiple protein conformations extracted from
molecular dynamics simulation. Compounds are then ranked by

he ensemble-average predicted binding energy, rather than by the
core associated with a single static structure alone. The relaxed
omplex scheme has been used to identify inhibitors of FKBP (Lin
t al., 2002), HIV integrase (Schames et al., 2004), and Trypanosoma
rucei RNA editing ligase 1 (Amaro et al., 2008b).

In addition to rescoring the 30 AutoGrow-generated com-
ounds, we also scored six positive controls: sialic acid, the
atural neuraminidase substrate, in the boat, chair, and twist
onformations; zanamivir and oseltamivir, FDA-approved neu-
aminidase inhibitors; and peramivir, a compound currently in
linical trials (Table 1 and Table S1). The measured IC50 values of
seltamivir, peramivir, and zanamivir are 0.33 ± 0.27, 0.37 ± 0.26,
nd 0.57 ± 0.46 nM, respectively (Malaisree et al., 2008). These
C50 values are roughly three orders of magnitude smaller than
he ensemble-average AutoDock-predicted inhibition constants of
.25, 5.01, and 8.58 �M, respectively. However, there is a clear
orrelation between prediction and measurement (R2 = 0.92), and,
mportantly, the relaxed complex scheme ranked the known neu-
aminidase inhibitors correctly.

The experimentally measured Ki of sialic acid suggests that
inding to the natural substrate is much weaker. The measured

i of 50 �M (Colman, 1994) corresponds well with the ensemble-
verage AutoDock-predicted inhibition constants of 33.67, 68.02,
nd 375.48 �M for sialic acid in the boat, twist, and chair conforma-
ion, respectively. When the lowest predicted sialic-acid inhibition
iology and Chemistry 34 (2010) 97–105 101

constant is considered, the overall correlation between prediction
and measurement is further strengthened (R2 = 0.97).

This strong correlation demonstrates that, while the ensemble-
average predicted binding energies and inhibition constants are
not numerically accurate, the relaxed complex scheme can be used
to accurately rank candidate neuraminidase inhibitors. Notably, all
30 AutoGrow-generated compounds ranked better than currently
approved neuraminidase inhibitors when the relaxed complex
scheme was used; the score of the best novel compound was
−12.83 kcal/mol, compared to −8.24 kcal/mol for the best FDA-
approved inhibitor, oseltamivir.

3.3. Compound modification

Despite the use of fragments derived from FDA-approved drugs,
the AutoGrow-generated compounds were not particularly drug
like. Consequently, the top ligand from each of the three Auto-
Grow runs (compounds 1, 2, and 3; Table 1 and Table S1), as judged
by the ensemble-average score, was selected for further examina-
tion. Fourteen drug-like compounds were subsequently generated
by making manual modifications to the three lead ligands. Man-
ual modifications were guided by six rules: satisfy Lipinski’s rule
of five (Lipinski et al., 2001), conserve the predicted binding affin-
ity, remove buried unpaired hydrogen-bond donors and acceptors,
increase molecular rigidity, and reduce chirality.

Lipinski’s rule of five. The AutoDock-generated compounds were
generally too large, leading to multiple Lipinski violations (Lipinski
et al., 2001). Lipinski’s rule of five, developed in 2001, states that
compounds generally have poor absorption or permeation if they
possess two or more of the following properties: more than 5
hydrogen-bond donors, more than 10 hydrogen-bond acceptors, a
molecular weight greater than 500 Da, or a ClogP greater than five.
As the AutoGrow-generated compounds were generally large, most
contained too many hydrogen-bond donors and acceptors and too
large a molecular weight. Manual modifications reduced the size
of the candidate ligands so they would better conform to Lipinski’s
rule of five.

Predicted binding energy. The reduction in size was generally
accompanied by a mild drop in the predicted binding affinity.
Some interacting groups had to be removed in order to reduce the
molecular weight. Additionally, most steps (i.e. chemical modifica-
tions) away from the AutoGrow-generated ligands, which had been
“optimized” for binding energy, naturally reduced binding affinity.
Nevertheless, the compounds were redocked with each manual
modification, and modifications that caused precipitous drops in
the predicted binding energy were rejected.

Hydrogen bonds. Some of the docked AutoGrow-generated
compounds had hydrogen-bond donors and acceptors that were
buried but unpaired (i.e. “unsatisfied”). The hydrogen-bond donors
and acceptors of a fully hydrated ligand are typically satisfied
via interactions with the water solvent. A large energy penalty
occurs upon binding if unsatisfied hydrogen-bond donors and
acceptors are positioned in solvent-inaccessible regions along
the protein–ligand interface because a hydrogen bond with the
water solvent is lost without the compensatory creation of a
protein–ligand hydrogen bond. Some of the manual modifications
made served to remove these unpaired hydrogen-bond donors and
acceptors.

Compound rigidity. Additional manual modifications were made
to increase compound rigidity. In the unbound state, non-rigid,
“floppy” compounds undergo many different conformational tran-
however, the ligand is stabilized, resulting in a large entropic
penalty of binding. For rigid compounds, the difference in entropy
between the bound and unbound state is not as great, and so the
penalty is less.
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Table 3
The top four modified compounds, as judged by the ensemble-average AutoDock score.

Ensemble-average AutoDock score Molecular Weight HBA HBD Log P

4 −11.05 353.24 6 3 2.72

5 −10.96 309.25 4 3 4.65

6 −10.72 351.26 5 3 4.02

7 −10.68 311.23 5 3 3.09
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These modified compounds were rescored using the relaxed
omplex scheme (Table 3 and Table S2). Ten of the 14 modi-
ed compounds ranked better than FDA-approved neuraminidase

nhibitors; the ensemble-average score of the best modified
ompound was −11.05 kcal/mol, compared to −8.24 kcal/mol for
seltamivir.

.4. Analysis of the top four modified compounds
The top four modified compounds are all similar, in part because
hey are built on the same cyclohex-1-enecarboxylate scaffold.

hile similar to oseltamivir, the novel compounds are decorated
ith different molecular fragments that, in theory, serve to enhance

he binding affinity.
All four compounds have a carboxylate group in the one posi-
tion, similar to the known neuraminidase inhibitors oseltamivir,
paramivir, and zanamivir. An examination of an oseltamivir-
neuraminidase crystal structure (Russell et al., 2006) reveals that
this carboxylate group participates in hydrogen bonds with R371
and Y347 (distance cutoff, 3.0 Å; angle cutoff, 30◦). In addition, an
analysis of the top four modified compounds docked into the 27
ensemble conformations suggests that the carboxylate group also
forms hydrogen bonds with R292 and, on rare occasions, with R118

(Fig. 1).

All four modified compounds have an (aminomethyl)amino
(aminal) group at the five position instead of an amino group, as in
oseltamivir. The crystal structure demonstrates that the oseltamivir
amine forms hydrogen bonds with D151 and E119. In contrast, an
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ig. 1. The top four modified compounds docked into the ensemble conformation
ome portions of the protein have been removed to facilitate visualization. (A) Com

nalysis of the top four modified compounds suggests that binding
etween the aminal fragment and residues D151 and E119 occurs
nly occasionally. Rather, the distal amine binds instead with E227
nd, less frequently, with E277 and the backbone carbonyl of W178.
n the case of compounds 5 and 7, the proximal amine is predicted to
ind occasionally with E227 as well. Crystal structures indicate that
he analogous guanidine groups of peramivir (Zhang et al., 1992)
nd zanamivir (Xu et al., 2008) likewise form hydrogen bonds with
he backbone carbonyl of W178 (Fig. 1).

Unfortunately, aminal groups are unstable and subject to
ydrolysis. Initial efforts to find alternative groups failed; for
xample, when the aminal was changed to a urea, the ensemble-
verage predicted binding energy was significantly reduced (data
ot shown). Another solution may be to replace the aminal with
guanidino group, which is essentially a rigid aminal with an

dditional amine bound to the bridging carbon atom. We again
ote that zanamivir and peramivir, neuraminidase inhibitors with

C50’s comparable to that of oseltamivir (Malaisree et al., 2008),
ave guanidino groups at the analogous location. Alternatively,
he proximal aminal nitrogen atom could be replaced with a
arbon atom, though such a change may make synthesis more

hallenging.

The top four modified compounds contain a 2-methylpropyl
roup at the four position instead of the acetamido group character-
stic of oseltamivir, peramivir, and zanamivir. The crystal structures
f oseltamivir, peramivir, and zanamivir bound to neuraminidase
ave the best predicted binding energy. Hydrogen bonds are shown as black lines.
d 4. (B) Compound 5. (C) Compound 6. (D) Compound 7.

(Russell et al., 2006; Xu et al., 2008) suggest that a hydrogen bond
may form between the acetamido carbonyl oxygen atom and R152,
though in the case of oseltamivir the hydrogen bond is strained (D-
H-A angle of 54◦) (Russell et al., 2006). Additionally, the acetamido
methyl group may contribute to the overall binding affinity via
hydrophobic interactions with W178. We note, however, that the
acetamido amine hydrogen, a hydrogen-bond donor, is buried and
unpaired. Like the acetamido group, the 2-methylpropyl group of
the top four modified compounds is likewise predicted to form
hydrophobic interactions with W178, but without the need for a
buried but unpaired hydrogen-bond donor (Fig. 1). We note, how-
ever, that, in addition to facilitating a hydrogen bond between the
carbonyl oxygen atom and the receptor, the amide linker may also
simplify chemical synthesis, and so may be necessary on those
grounds.

Compounds 4, 5, and 6 have (3-ethyl-2-oxopentan-3-yl)oxy; 2-
ethylbutyl; and 2,2-diethyl-3-oxobutyl groups, respectively, at the
three position, instead of the pentan-3-yloxy group of oseltamivir.
An analysis of the binding poses of the top four modified com-
pounds suggests that the bridging oxygen atom of the oseltamivir
pentan-3-yloxy fragment does not contribute significantly to the

energy of binding. The crystal structure of oseltamivir bound to
neuraminidase reveals no hydrogen bonds with this oxygen atom
(Russell et al., 2006); additionally, an ensemble-wide analysis of
compounds 4 and 7, which include the bridging oxygen atom, like-
wise revealed no hydrogen-bond formation (Fig. 1).
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The importance of the bridging oxygen atom can be fur-
her assessed by comparing the predicted binding energies of
ompounds that differ only at this location. For example, the
nsemble-average predicted binding energies of compounds 5 and
(Table 3), which differ only in the presence or absence of the

ridging oxygen atom, are nearly identical. A comparison between
ompounds 4 and 6 gives a similar result (Table 3). Though the
ridging oxygen is likely energetically unnecessary, we again note
hat it may greatly facilitate chemical synthesis.

The top four compounds all mimic oseltamivir at the three
osition in that they contain multiple aliphatic chains. However,
ompounds 4 and 6 also contain a carbonyl group, a potential
ydrogen-bond acceptor. An analysis of these compounds docked

nto the 27 ensemble conformations revealed that the carbonyl
xygen atom is predicted to form occasional hydrogen bonds with
152. Additionally, the carbonyl oxygen atom of compound 4 forms
ccasional hydrogen bonds with R292, and the carbonyl oxygen
tom of compound 6 forms occasional hydrogen bonds with N294
Fig. 1).

. Conclusion

Pandemic influenza (H1N1) poses an imminent threat, and
rug-resistant strains have already emerged (Kiso et al., 2004;
eigel et al., 2005; de Jong et al., 2005; De Clercq, 2006). In the cur-
ent work, the computer program AutoGrow (Durrant et al., 2009)
as used to generate novel predicted neuraminidase inhibitors.
iven the great flexibility of the N1 active site, protein dynamics
ere also incorporated into the computer-aided drug-design pro-

ess. Several potential inhibitors were identified that are predicted
o bind to neuraminidase better than current FDA-approved drugs.

The neuraminidase inhibitors oseltamivir and zanamivir, both
DA approved, have similar binding poses (Russell et al., 2006; Xu
t al., 2008). Despite these similarities, these two compounds have
ery different resistance profiles. As of 2005, no virus resistant to
anamivir had been isolated from an immunocompetent patient,
ut resistance to oseltamivir was then emergent (Moscona, 2005).
he principal difference between oseltamivir and zanamivir, and
he difference likely responsible for their disparate resistance pro-
les, is the set of molecular fragments used to decorate the central
ix-member ring. We are therefore hopeful that the novel inhibitors
uggested here, with their unique decorating fragments, may like-
ise serve as scaffolds for future neuraminidase inhibitors against
hich resistance has not yet developed.
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