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Abstract: In this paper, one important 
architecture of neural networks named a 
generalized radial basis function (GRBF) is 
applied in order to model HEMT Transistor 
Noise Parameters dependence on bias 
conditions such as dc drain-to-source voltage, 
dc drain-to-source current, frequency and S-
parameters that can accurately predict 
transistor noise parameters in a wide 
frequency ranges for all bias points from the 
operating range including transistor S-
parameters. 
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I. INTRODUCTION 
 
Accurate and reliable noise models of microwave 
transistors are necessary for analyses and design 
of microwave active circuits that are parts of 
modern communication systems, where it is very 
important to keep the noise at a low level. Model 
development is basically an optimization process 
and can be time-consuming. Furthermore, 
measured signal and noise data for each new 
operating point are necessary for model 
development, which could take much effort and 
time, since these measurements require complex 
equipment and procedures [1, 2].  

In many of these cases, neural modeling could 
be a good alternative to the classical modeling. 
Neural models are simpler and retain the similar 
accuracy. They require less time for providing 
response, therefore, application of neural model 
can make simulation and optimization processes 
less time-consuming, shifting much computation 
from on-line optimization to off-line training. 

Neural networks have been applied in 
modeling of either active devices or passive 
components, in microwave circuit analysis and 

design, etc. It has been proposed in microwave 
MESFET and HEMT transistor signal and noise 
performance modeling [3- 5]. 

In this paper, a Generalized Radial Basis 
Function (GRBF) network for HEMT transistor   
noise modeling is proposed. This network   
receives bias such as dc drain-to-source voltage, 
dc drain-to-source current, frequency and S-
parameters as inputs and produces transistor   
noise   parameters at its output. Therefore, bias 
conditions and frequency are inputs and 
minimum noise figures, magnitude of optimum 
reflection coefficient, angle of optimum   
reflection coefficient and   normalized equivalent 
noise resistance are outputs of the neural 
network. A simplified overview of proposed 
ANN model is shown in Fig. 1.  
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Fig. 1 A simplified overview of ANN model. 

 
The  GRBF   network  is  a generalization  of  

the  RBF network, which allows to different 
variances for each  dimension of  the input  
spaces by  replacing  the  radial  Gaussian  
kernels  with  elliptical  basis  functions. The 
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number of nodes in the hidden layer of the 
generalized RBF network is M, where M is 
ordinarily smaller than the number of neurons in 
the hidden layer of RBF network. In GRBF 
network, the linear weights associated with the 
output layer, and the positions of the centers of 
the radial basis functions and the norm weighting 
matrix associated with the hidden layer, are all 
unknown parameters that have to be learned[6]. 
 

II. TRANSISTOR NOISE PARAMETERS 
 

A two-port noisy component can be 
characterized by a noise figure F [1, 7], 
expressed as 
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where minF  is a minimum  noise  figure, nR  is 

an equivalent  noise resistance, optΓ is the  
optimum  reflection coefficient,  and finally, oz  
is  normalizing  impedance. The optimum 
reflection coefficient refers to the optimum 
source impedance that results in minimum noise 
figure, minF F= . The noise parameters  minF  , 

optΓ  and nR  describe inherent behavior of the 
component and are independent of a connected 
circuit. 

 
III.   GRBF NETWORK 

 
Multilayer perceptron (MLP)   neural   

networks have been   applied   in modeling of 
microwave transistor noise, dependence on 
frequency and bias conditions [8, 9]. In this 
paper, first we describe radial basis function 
(RBF) and then concentrate on the application of 
GRBF networks. A radial basis function network 
is a neural network approached by viewing the 
design as a curve-fitting (approximation) 
problem in a high dimensional space. Learning is 
equivalent to finding a multidimensional function 
that provides a best fit to the training data, with 
the criterion for best fit being measured in some 
statistical sense.  

There are different learning strategies in the 
design of an RBF network depending on how the 
centers of RBF of the network are determined.      
There are three major approaches to determine 
the centers [6]: 

i- Fixed Centers Selected at Random: In this 
approach, the locations of the centers may be 
chosen randomly from the training data. 
ii- Self organized Selection of Centers: In the 
second approach, the radial basis functions can 
move the locations of their centers in a self-
organized fashion. 
iii- Supervised Selection of Centers: In the third 
approach, a supervised learning process is 
employed to obtain the centers of the radial basis 
function and all other free parameters of the 
network. In other words, the RBF network takes 
on its most generalized form.  

A natural candidate for such a process is error 
correction learning, which is most conveniently 
implemented using a gradient-descent procedure 
that represents a generalization of the LMS 
algorithm.  

Specifically, we consider an extension of the 
RBF network which allows a different variance 
for each input dimension. The relaxation of the 
radial constraint transforms the standard 
Gaussian kernels with circular symmetry into 
elliptic basis kernels, which can reduce the 
dimensionality of the input space. This scheme is 
denoted as GRBF network. 

The learning algorithm chooses the GRBF 
centers one by one in order to minimize the 
output error. After selecting each new center 
from the training set, the centers and variances of 
the global network are optimized by applying 
gradient descent techniques.  

The error function is given by  
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and the gradient equations for the variances and 
centers are 
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where p indexes the input patterns, k the output 
dimensions, pv is the pth input pattern , ( )pk vy  is 

the desired (measured) output, )( pk vg  is the 
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output of the network, 
)()()( pkpkpk vgvyve −=  is the network error 

and )( pi vo is the output of neuron i with 
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where i indexes the GRBF units, j the input 
dimensions and k the output dimensions. 

 
IV.    SIMULATION RESULTS 

 
In this section, the noise modeling of Hewlett 

Packard’s pHEMT ATF-36163 will be 
presented. The modeling is done in the frequency 
range (0.5-18) GHz. The noise parameters values 
used for the training data are taken from 
advanced design system (ADS) software. The 
training set was obtained by selecting 216 
samples. we used our database for training the 
ANN model with MATLAB 7.0.4 program. In 
order to check the generalization capability, a 
test set containing 45 remained samples was 
used. 

Test and training samples must be different 
and are selected randomly from the original 
database (ADS). In order to compare the 
accuracy of the model, the maximum, minimum 
and mean relative error for proposed ANN model 
was calculated. Table 1 shows the results for 
testing data, where the relative error for variable 
X is evaluated as  
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Where ‘sim’ and ‘pred’ stand for ADS 
simulation (exact values) and predicted values, 
respectively. Also, the Mean Relative Error is 
evaluated as  
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where NP is the number of points.  
 
 
 

Table. 1 The maximum, minimum and mean relative 
error for testing data 

 
Noise parameter Min Max MRE 

minF  0 0.6 0.087 
nR  0.0001 1.1 0.3 

( )optMag Γ  0.0001 1.6 0.33 
( )optAng Γ  0.87 5.87 0.31 

 
The comparison of average error (AE %) 

between the train and test data is shown in   
Table 2, where the average error for variable X is 
evaluated as 
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It could be seen that the value of AE% is less 
than 0.44 %. 
 
Table. 2 The average error for training and testing 

data 
 

  Noise parameter Training Testing 
 minF  0.05865 0.19186 

nR  0.10001 0.37765 
( )optMag Γ  0.074342 0.18842 
( )optAng Γ  0.11771 0.43132 

 
It is observed from Table 1 and Table 2 that 

there is a very good agreement between ADS 
simulation (exact values) and predicted data.  
Fig. 2  shows the plots of noise 
parameters(minimum noise figure minF , 
normalized equivalent resistance nR , magnitude 
of optimum reflection coefficient optΓ  and angle 
of optimum reflection coefficient opt∠Γ ) versus 
frequency and bias conditions, obtained by the 
chosen model, at two different state: (1)training  
of  samples (2)samples that does not belong to 
the training set  i.e., test set. 

The comparison between ADS simulation and 
predicted values of ANN model shows that there 
is an excellent agreement between the predicted 
outputs characteristics of the device based on our 
model and ADS simulation with least error.   
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Fig. 2a  Minimum noise figure minF   
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Fig. 2b Normalized equivalent resistance nR  
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Fig. 2c Magnitude of optimum reflection coefficient 

optΓ
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Fig. 2d Angle of optimum reflection coefficient 

opt∠Γ  
 

V. Conclusions 
 

In this paper, one important architecture of 
neural networks named a generalized radial basis 
function is applied to model HEMT transistor 
noise parameters such as minimum noise figure 

minF , normalized equivalent resistance nR , 
magnitude of optimum reflection coefficient 

optΓ  and angle of optimum reflection coefficient 

opt∠Γ dependence on bias conditions, frequency 
and S-parameters.  

An alternative learning procedure has been 
developed for the GRBF network. The GRBF 
network reduces drastically the number of units 
required to obtain an accurate model. This 
network can be designed in a short time. The 
comparison between ADS simulation and 
predicted values of proposed model shows that 
there is an excellent agreement between the 
predicted output characteristics of the device 
based on GRBF model and ADS simulation with 
least error, therefore, the proposed GRBF model 
can be used as an efficient tool for noise 
modeling of HEMT transistor. 
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