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Free and mixed convection
boundary-layer flow of
non-Newtonian fluids

10.1 Introduction

It is well known that most fluids which are encountered in chemical and allied pro-
cessing applications do not adhere to the classical Newtonian viscosity postulate and
are accordingly known as non-Newtonian fluids. One particular class of materials
which are of considerable practical importance is that in which the viscosity depends
on the shear stress or on the flow rate. Most slurries, suspensions and dispersions,
polymer solutions, melts and solutions of naturally occurring high-molecular-weight,
synthetic polymers, pharmaceutical formulations, cosmetics and toiletries, paints,
biological fluids, synthetic lubricants and foodstuffs, exhibit complex rheological
behaviour which is not experienced when handling ordinary low-molecular-weight
Newtonian fluids such as air, water, silicon oils, etc. Due to the importance of the
applications of non-Newtonian fluids for the design of equipment and in industrial
processing, considerable efforts have been directed towards the analysis and under-
standing of such fluids. Non-Newtonian fluid behaviour has been the subject of
recent books by Astarita and Marrucci (1974), Schowalter (1978), Crochet et al.
(1984), Tanner (1985), Bird et al. (1987) and Siginer et al. (1999). Further, a fairly
large body of fundamental research on non-Newtonian fluid flow can also be found
in a number of excellent review articles, e.g. Cho and Hartnett (1982), Shenoy and
Mashelkar (1982), Crochet and Walters (1983), Shenoy (1986), Irvine, Jr. and Karni
(1987), Andersson and Irgens (1990) and Ghosh and Upadhyay (1994).

Real fluids and their mathematical models are classified into the following three
types, see Andersson and Irgens (1990):

(i) Time-independent fluids for which the properties are independent of time;
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(ii) Time-dependent fluids for which the properties change with time as the fluid
is deformed;

(iii) Viscoelastic fluids which exhibit both viscous and elastic behaviour, e.g. elastic
recovery after deformation, and stress relaxation.

The time-independent fluids may be subdivided into four types, depending on the
general nature of the viscosity function, as follows:

aw _T(H)
()= s (10.1)

where 7y is the shear rate and 7 () is the shear stress. The four types are as follows:
(i) Viscoplastic fluids (e.g. Bingham-fluids);
(ii) Pseudo-plastic or shear thinning fluids;
(iii) Dilatant or shear thickening fluids;
(iv) Newtonian fluids.

In dealing with the complexities of non-Newtonian fluid flows, methods that allow
the description, interpretation and correlation of fluids properties are required. A
number of mathematical models and techniques have been proposed to describe the
rheological behaviour of such fluids, see for example Rosen (1979) and Bird et al.
(1987). Some empirical models have been found to correlate the viscosity data
adequately for various types of material through the use of a limited number of
meaningful parameters. Despite the trend to develop constitutive theories through
the application of continuum theories, simple models have been developed which
describe the non-Newtonian behaviour of fluids which have useful applications in
industry, see for example Cramer and Marchello (1968). Ideally, a simple model
should give an accurate fit with all the available data and have a minimum number
of independent constants which can be easily evaluated and they have some physical
basis.

Such a model which has been most widely used for non-Newtonian fluids, and is
frequently encountered in chemical engineering processes, is the empirical Ostwald-
de Waele model, or the so-called power-law model, defined as follows:

7 (%) = po 4"t 4 (10.2)

where pg and n are material parameters, po is called the consistency coefficient
and n is the power-law index with n being non-dimensional and the dimension of
io depends on the value of n. The quantity po is not the viscosity in a classical
sense unless n is unity. The parameter n is an important index to subdivide fluids
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into pseudo-plastic fluids n < 1 (most macromolecular fluids are of this kind with
0.2 < n < 0.6, see Bird et al., 1987) and dilatant fluids n > 1. Clearly, the power-law
model described by Equation (10.2) reduces to the Newtonian model when n = 1
and then the consistency coefficient g is the dynamic viscosity. Details of this class
of fluids can be found in the review articles by Metzner (1965) and Andersson and
Irgens (1990).

Other important non-Newtonian fluids are those fluids which contain certain
additives and some naturally occurring fluids such as animal blood. Physically
these fluids may form suitable non-Newtonian fluid models which can be used to
analyse the behaviour of exotic lubricants, colloidal suspensions, liquid crystals,
etc. A mathematical model for the description of such fluids, which exhibit certain
microscopic effects arising from the local structure and microrotations of the fluid
elements is that of a microfluid, first introduced by Eringen (1966). As this model is
not easily amenable to theoretical treatment, a subclass, known as micropolar fluids,
was further proposed by Eringen (1972) and such fluids exhibit the micro-rotational
inertia. They can support couple stresses and body couples only, and may represents
fluids consisting of bar-like or sphere-like elements. The theory of micropolar fluids
has generated a considerable amount of interest and many flow problems have been
studied, see for example Ariman et al. (1973), Pop et al. (1998c) and Rees and Pop
(1998) for detailed references.

However, more theoretical and experimental work is still required in the area of
convective flow of non-Newtonian fluids for both power-law and micropolar fluids.

10.2 Free convection boundary-layer flow of power-law
fluids over a vertical flat plate

This problem has been studied rather extensively since the pioneering work of
Acrivos (1960). Because most non-Newtonian fluids are highly viscous and have
a large Prandtl number, Acrivos (1960) presented the concept of an asymptotic
boundary-layer for power-law fluids with large Prandtl numbers. He was the first
to obtain similarity solutions for free convection boundary-layer of power-law flu-
ids along a vertical flat plate. Subsequently, a large number of research papers
which deal with integral, numerical and experimental methods to yield solutions of
a vertical plate free convection boundary-layer with uniform wall temperature and
uniform surface heat flux conditions have been published. Tien (1967) obtained an
approximate integral solution for a vertical flat plate with constant surface temper-
ature assuming a velocity profile that does not attain a zero value at a well-defined
momentum boundary-layer thickness. This is a result of not using the appropriate
boundary and compatibility conditions when making the choice of the velocity and
temperature profiles. The average Nusselt number predicted by Tien (1967) is, how-
ever, correct as can be seen from Table 10.1 showing the comparison of the results
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Table 10.1: Comparison of the modified average Nusselt number, ———%, for
Rasn

Pr, — co.
Acrivos | Tien Shenoy and Kawase and Huang and
| n | (1960) | (1967) | Ulbrecht (1979) | Ulbrecht (1984) | Chen (1990)
0.5 0.63 0.6098 0.5957 0.6275 0.6105
1.0 0.67 0.6838 0.6775 0.6700 0.6701
1.5 0.71 0.7229 0.7194 0.6960 0.7012

of the four theoretical approaches. Emery et al. (1970) have experimentally investi-
gated the free convection boundary-layer of power-law fluids and they have also used
a composite fluid model to obtain numerical solutions. Shulman et al. (1976) have
solved this problem analytically using the method of matched asymptotic expan-
sions. Kawase and Ulbrecht (1984) have employed an integral method, assuming a
very thin thermal boundary-layer and using a velocity profile taken from the forced
convection analysis and hence the energy and momentum equations become decou-
pled. All these studies were based on the assumption of an infinite value of the
Prandtl number and this is, in general, a good approximation, e.g. 0.5% carboxy-
methylcellulose water solution has Pr = 85 — 500; 0.056% carbopal solution 934 has
Pr = 65 - 90. If we take into account the finiteness of the Prandtl number then
the governing boundary-layer equations for the free convection flow along a vertical
plate which is immersed in power-law fluids are in general non-similar. Wang and
Kleinstreuer (1987) and Huang et al. (1989) have employed the Keller-box method
to numerically solve the coupled system of non-similar equations for this problem.
We shall present here some of the results obtained by Huang and Chen (1990) for
the problem of free convection boundary-layer flow over an isothermal vertical flat
plate in a non-Newtonian power-law fluid using the method of local similarity.

Consider a vertical flat plate which is at a constant temperature T, and it is
placed in a non-Newtonian power-law fluid of ambient temperature 75, (< Ty) and
pressure P, which obeys the Ostwald-de Waele power-law model, see Andersson
and Irgens (1990), namely

n—1
Tij = 2p0 (2e55€5:) 2 (10.3)

where 7;; is the stress tensor and

1 [Ou; Ou;

denotes the strain rate. The governing equations for the steady free convection
of non-Newtonian power-law fluids stem from those which are commonly used for
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analysing the continuity, momentum and energy equations and they are given by

6u+3v
or Oy
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where J is the Ostwald-de Waele power—law model parameter which, from Equa-
tions (10.3) and (10.4), is given by

J = [2 (%) +2(g;) 4 (%+—§-§-)2}% (10.9)

Equations (10.5) — (10.8) can be transformed further by using the following non-
dimensional variables

3:%’3 g %1 ﬁ:{%: a:"(]rﬂ: (1010)
— ! =~ i 8 "
p= pyﬁw , 0= Ag;" y Ue= (gﬁATI) 2

On substituting the variables (10.10) into Equations (10.5) — (10.8) we obtain

%+g—g=0 (10.11)
52 (20D S D)) o
e Geor [P (E D] (D)

ﬁgg+ﬁg§ = Iir Gr™ (329 ) (10.14)

where J = Ul~™""1J and Gr and Pr are the modified Grashof and Prandt! numbers
which are defined as

2-n 124n
Gr= WpaT) ~ 1 Pr= S (!':)0

(7 %

2
) (9BAT) 3 {20 (10.15)
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Next we introduce the boundary-layer variables

1 ~

i=1, 7=Grmmg, p=p, 6=0  (10.16)

1
T=2, y=Grinthy,

into Equations (10.11) — (10.14) and neglect terms which are asymptotically small
compared with the retained terms as Gr — oo. We then obtain, in dimensional
variables, the boundary-layer equations for the free convection flow over a vertical
flat plate which is immersed in a non-Newtonian power-law fluid of the form:

du v
ik B ;
g + By (10.17)
Ou du  py 8 [|Ou|™t Bu
—Fv— = —=—||= — T-T .
va t s =5 ( ol By + 98 ( o) (10.18)
HQE + vE =g BQ—T 10.19
dz dy f dy? (10.19)
and these equations have to be solved subject to the boundary conditions
u=0, v=0, T=T, on y=0, z2=20 (10.20)

u—r0, T2Ty as y—roo, 20

Following Huang and Chen (1990), we look for local similarity solutions of Equa-
tions (10.17) — (10.20) of the form

Y _ 4 _ T-Ty

where 9 is the stream function, defined by Equation (1.18), the thermal boundary-
layer thickness dr(z) is written as

5r(z) = —— (10.22)

Ra§n+l

and the modified local Rayleigh number is defined as

(.t%) gﬁ;ﬁTmm"'l

Rax =]
G

(10.23)

On substituting Equation (10.21) into Equations (10.18) and (10.19) we obtain the
following set of ordinary differential equations

n+1 3n+1
2n+1
n+1

2nt1) '
Py [9 + (|f""|n_1 f”) ] gt n—ﬂf’z =0  (10.24)

0" + f0=0  (10.25)
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which have to be solved subject to the boundary conditions (10.20) which become

f(0)=0, f(0)=0, 6(0)=1

ff—>0, 650 as np—oc L10-2)
where Pr; is the modified local Prandtl number and is defined as
2
n+l n— 3(n—-1)
. | (@) ! g (gBAT) HFD (10.27)
aj \ p
Finally, the modified local and average Nusselt numbers are given by
N Nu 3n+1
S o T Lo B (10.28)
RaF Ra®ia1  2n+1

where Ra is the modified Rayleigh number based on the length scale [.

Equations (10.24) — (10.26) have been solved numerically by Huang and Chen
(1990) using a finite-difference method in combination with a cubic spline interpola-
tion procedure proposed by Lee et al. (1986). This solution method has been found
to yield rapid convergence and results of high accuracy. The method is very effective
in dealing with the stiff Equation (10.24) which becomes

9+ (i e f”)’ —0 (10.29a)

when Pr; > 1. Equation (10.29a) has to be solved subject to the boundary condi-
tions

f(0)=0, f(0)=0, f"(c0)=0 (10.29b)

and therefore the numerical solutions are independent of Pr,.

Typical reduced fluid velocity and temperature profiles are shown in Figure 10.1
for the flow index n = 0.5, 1 (Newtonian fluids) and 1.5, when Pr; = 1, 10, 100 and
1000. It is seen that the fluid velocity profiles are strongly sensitive to the modified
local Prandtl number and the fluid flow index, while the temperature profiles are
clearly not influenced.

The effect of the modified local Prandtl number on the modified local Nusselt
number, as obtained by Huang and Chen (1990), is shown (by full lines) in Fig-
ure 10.2 and the integral solutions of Shenoy and Ulbrecht (1979), and Kawase and
Ulbrecht (1984) are also included in this figure. It is seen that the modified local
Nusselt number increases as Pr, increases for all values of n. It also increases mono-
tonically as n increases. In addition, for large values of Pr, (2 100), the modified
local Nusselt number reaches a constant value for all values of n because in this
case Equation (10.24) is approximated by the Equation (10.29) and thus its solution
becomes independent of Pr,. Further, we note from Figure 10.2 that the approx-
imate results of Kawase and Ulbrecht (1984) compare well with the exact solution
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Figure 10.1: Fluid velocity profiles, f'(n), for (a) n = 0.5, (b)) n = 1 and (c)
n = 1.5 and temperature profiles, 8(n), for (d)n=0.5, (¢)n =1 and (f) n = 1L.5.

of Huang and Chen (1990) for n > 0.9 and very large values of Pr,. However, the
approximate results of Shenoy and Ulbrecht (1979) deviate from those of Huang
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Figure 10.2: Variation of the local Nusselt number with the power-law indezx n.
The solutions of Huang and Chen (1990) are indicated by the solid line and the
integral solutions of Shenoy and Ulbrecht (1979) and Kawase and Ulbrecht (1984)
are indicated by the dotted and broken lines, respectively.

and Chen (1990) for all values of n, even at large values of Pr;. Consequently, we
conclude that the results of Huang and Chen (1990) are reasonably good for Pr,
ranging from 1 to 1000.

Finally, values of the modified average Nusselt number, Nu, as defined in Equa-
tion (10.28) and those obtained by some other authors are given in Table 10.1 for
n = 0.5, 1 and 1.5 when Pr; — oo. It is observed that the local similarity solutions
proposed by Huang and Chen (1990) give very good results for high values of the
modified local Prandt]l number.

10.3 Free convection boundary-layer flow of non-
Newtonian power-law fluids over a vertical wavy
surface

The prediction of the heat transfer from irregular surfaces is a topic of fundamental
importance for many practical problems. Surfaces are sometimes roughened in order
to enhance heat transfer, for example in flat-plate solar collectors and flat-plate con-
densers in refrigerators. The presence of roughness elements on a flat surface disturbs
the fluid flow and hence changes the rate of heat transfer. Yao (1983) was probably
the first who used the Prandtl transposition theorem, see Yao (1988), to analyse the
steady free convection boundary-layer of a non-Newtonian fluid over a vertical wavy
surface. A simple coordinate transformation was proposed to transform the wavy
surface to a simple shape, namely that of a flat plate. The gist of the theorem is that
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the flow is displaced by the irregularities on the vertical surface and the horizontal
component of the fluid velocity is adjusted according to the shape of the surface.
The form of the boundary-layer equations is invariant under the transformation and
the surface conditions can therefore be applied on a transformed flat surface. Moulic
and Yao (1989), Chiu and Chou (1993, 1994), Rees and Pop (1994a, 1994b, 1995a,
1995b), Chen et al. (1996), Yang et al. (1996), Kumari et al. (1996a), Kim (1997)
and Pop and Na (1999) have used the transformation proposed by Yao (1983) to
solve free convection problems associated with Newtonian fluids, micropolar fluids,
fluid-saturated porous media and non-Newtonian power-law fluids.

Consider the steady laminar free convection of a non-Newtonian power-law fluid
over a wavy vertical surface which is maintained at the constant temperature T,
where T, > T. The physical model and the coordinate system are shown in
Figure 10.3, where z and y are the axial and transverse Cartesian coordinates, a is
the amplitude of the surface wave and [ is a characteristic wavelength of the surface
waves. In particular, we assume that the surface profile is given by

y = o(z) (10.30)
where o(z) is an arbitrary geometric function.

g

A y = 0o(z)

Az
Y

Figure 10.3: Physical model and coordinate system.

The governing equations for this problem, in non-dimensional form, are Equa-
tions (10.11) — (10.14) and they have to be solved subject to the boundary (non-
dimensional) conditions

u=0, v
u—0, 70,

A%\)’

— CQ,

(10.31)

@) 2y
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where 7 (Z) = ﬂfl We now assume that the modified Grashof number is so large
that free convection takes place within a bounda.ry—layer, whose cross-section width
is substantially smaller than the amplitude @ (= {) of the waves on the surface.

Thus, invoking the boundary-layer scalings given by the transformations

=8, F=@F-8)GrTM, §=8 7=(-5,0)CrT=W, F=5 5=0

(10.32)
where 0, = 35, Equations (10.11) — (10.14) reduce, to leading order as Gr — oo, to
the following boundary-layer equations:

ou Oov

8 _du 8 op sy ou " ou
oA e ) P
s +v6§ a~+o,Gr 5 +(1432)" —= (‘ay ay) +6 (10.34)
_ _ (-.0u 01 op u|" " ou
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" e = —Grim 2 1 —
Ozzl —l—o,:(u +vay) r ay-i-orx( +0 ) ( %
(10.35)
ﬁae 4% _00 1+020% (10.36
Zt'% - Pr op -36)
and the boundary conditions (10.31) become
i=0, =0, =1 on ¥=0 >0
u—0, 60 as y—oo, >0 (10.37)

It is noted from these boundary conditions that the new variable 7, defined in
Equation (10.32), transforms the wavy surface into a flat surface. Also it should
be noted that this analysis is valid only within the framework of boundary-layer

theory with 7 = O (Gr_2(ﬂl+1)) anda = O (G*r_zl“lﬂ)) as Gr — oo, as obtained
from Equatmns (10.30) and (10.32). Further, Equation (10.35) indicates that Qﬂ =

0] (Gr T ), which implies that the lowest order pressure gradient along the T
direction is determined from the inviscid (outer) flow solution. However, for the

present problem this gives g—g = 0. In order to eliminate the term Gr¥a¥D 2 from
Equations (10.34) and (10.35), we multiply Equation (10.35) by &, and the resulting
equation is added to Equation (10.34). After a little algebra, we obtain

_ou _ou c;zou~2 n @ [|0T|"" BT 0
— + =(1+0o )a_g(a_g 5 +T+‘a—3 (10.38)

Equations (10.33), (10.36) and (10.38), along with the boundary conditions
(10.37), form the basic equations for the problem of free convection of a non-
Newtonian power-law fluid along a vertical wavy surface. These equations can
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be solved numerically using the Keller-box method as described by Kumari et al.
(1996a) for a wavy vertical surface which is subject to a constant heat flux rate.
However, Kim (1997) has solved Equations (10.33), (10.36) and (10.38), along with
the boundary conditions (10.37), using the finite volume method as proposed by
Patankar (1980). In order to do this Kim (1997) introduced the parabolic coordi-
nates

X=7 Y= y R U:-—-—uﬁ-——l, V:[z(n+1)ﬁ’)2(n1+1)§
2(n + 1)F] @D 2(n + 1)F] 2
(10.39)
so that Equations (10.33), (10.36) and (10.38) become
1 8 (n—1){2n+41)
L5 FR 1)X] é—% —Y [2(n+ 1)X] e O aV (10.40)
on+ x5 U2% 4 {2 X]F6ED — [2(n + 1)X
e n(n41 i
[2(n + DX]* U= + {[2(n + 1)X] 2(n +1) } o
1
n+1 l=n  0z0z[2(n+ 1)X]»
+{ — [2(n + DX] = + T3 72 (10.41)
o (lou|*tau 0
— o ALLE A e il
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which have to be solved subject to the boundary conditions

U=0, V=0 =1 on ¥=0 X220

U—-0, 6—=0 as Y 2300, X2=0 (20.43)

The local heat transfer coefficient may be determined from the expression
w = —kfn VT (10.44)

where

n:(_ 9 1 1) (10.45)
(1+352)7 (1+32)7

is the unit vector normal to the wavy surface. The local Nusselt number can then
be expressed as follows:

B

=—(1+32) gg(x, 0) (10.46)

(2(?’!. =S 1)X) 2tn1+1)
Ny| —————
Gr
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The numerical results reported by Kim (1997) were obtained for a sinusoidal
surface

5(X) = asin (2rX) (10.47)

in order to show the effects of the wavy surface to the free convection flow. The full
details of the numerical procedure can be found in Kim and Chen (1991) and Kim
(1997) and therefore we do not repeat them here.

Kim (1997) obtained the non-dimensional axial fluid velocity, U, and the tem-
perature, 6, profiles for Pr = 10, @ = 0.1, n = 0.8 (pseudoplastic fluids), n = 1
(Newtonian fluids) and n = 1.2 (dilatant fluids). He found that the maximum value
of U increases, but the boundary-layer thickness becomes thinner as the flow in-
dex n increases. However, the thermal boundary layers of pseudoplastic fluids are
thinner than those of dilatant fluids. Further, Kim (1997) investigated the axial
velocity profiles for Pr = 10, @ = 0.1 and n = 1 and showed that they are sinusoidal
along the X direction. The regular nodes along the X direction being at X = 1.5
and 2.0, and X = 1.75 and 2.25, which represent the troughs and the crests of one
wavy segment, respectively. The difference in the axial velocity at the crest and at
the trough are almost indistinguishable but the boundary-layer around the nodes is
thicker compared to that of the crests or the troughs. Further, it should be noted
that the computation domain is not paralleled to the physical surface.

Figures 10.4 and 10.5 show the profiles of the local Nusselt number, given by
Equation (10.46), for Pr = 10 and 1000 and for some values of the parameters @
and n. It can be seen from Figure 10.4 that for n = 1 the local Nusselt number
for a wavy surface decreases as @ increases. This is because the buoyancy forces
on an irregular surface are smaller than those on a flat plate (@ = 0), except at

2.5
@ = 0.05, 0.1, 0.15, 0.2, 0.25
~E 2.0
—
X
Tl& 1.9
N
= = £ r/’_""""
= 1.0 N =7 s =
Wavy Surface, @ = 0.1
0.5 r T T g r
0 1 2 3

X

Figure 10.4: Variation of the local Nusselt number with X for n = 1 (Newtonian
fluid) and Pr = 10.
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Figure 10.5: Variation of the local Nusselt number with X for @ = 0.1 when (a)
Pr =100 and (b) Pr = 1000.

the trough and crest points. On the other hand, Figure 10.5 shows that the local
Nusselt number increases as n increases. However, it decreases as the axial distance
X increases from X = 0 (flat plate).

10.4 Free convection boundary-layer wall plume in non-
Newtonian power-law fluids

Consider the problem of steady, laminar free convection from a line source of heat
positioned at the leading edge of an adiabatic vertical surface which is immersed in an
unbounded non-Newtonian power-law fluid with the following transport properties
as proposed by Shvets and Vishnevskiy (1987) and Gryglavszewski and Saljnikov
(1989),

2

i :
Tij = -ptsij + o ifz VT (10'48)

1
€ij, gs = —ky bfz

where §;; is the unit tensor, I is the second invariant of the strain rate tensor and
s is the heat transfer index. It can be shown that the boundary-layer equations in
non-dimensional form for this problem are given by, see Pop et al. (1993b),

Ju Ov

v g T N 4

%+ 7 0 (10.49)
ou 0 [|ou]*! bu
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* 06
B_y) (10.51)

du

9 80 1 8 (|ou
dy

‘U.E +U*3—y— = EEE

which have to be solved subject to the boundary conditions

u=0 v=0 0 = n
e Grb as __ on Y=V, Tz ¢
0=(T Ty T";_r or &y = 0 (10.52a)
u—0, 60 as y—oo, z2=0
together with the integral condition, see also Section 5.1,
(e o)
/ ufdy = Q (10.52b)
0
where the non-dimensional variables are defined as follows:
z = }E, y= ?G*r“, u= U%, g = U%G'r“, 0= T-—-ﬂf,rr‘; Gr®
1
_n(n+1 n-2 1 10.53)
_ o 4,?;.‘1’2 _ gs E!I’IGrﬂ—l n—2 (
Ue = ( Mo ) , @= peplTyep ( 1o )

where ¢ = 21 and b = (m—fﬁ’%:—%. The modified Grashof and Prandtl numbers

are now given by

Toee 150 1 (zts)
-n n{2+s
Gr = gﬁLz——, Pr=—[""yl-sgr- i (10.54)
P
1o
We now define the following variables
=it f(z,n), 0=z iih(z,n), n=a by (10.55)

and assume that the wall temperature depends on z in the following manner

2n41

Tw(z) = Too + GrTies ™ It (10.56)
Insertion of the variables (10.55) into Equations (10.49) — (10.51) leads to

mn=1 ' 2n+1 ., s 2 o Of nOf
(1 17Y 4 g g7 = s+ h= 2 (755 - 20 o)
n—l-s | 1S ot 2n + 1 ! ,3h ,3f
in+4+l — — i e st
g o (I H) + T (R =2 f'5-— k5 ) (10.58)
The boundary and integral conditions (10.52) become
F=0, f'= _
h=1 or h'=0 s B (10.59a)
f'=0, h—0 as nm—o0, z20
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[ " Phdn=Q (n, Pr, z) (10.59b)
1]

It is apparent that Equations (10.57) and (10.58) permit similarity solutions if
the exponent of z in Equation (10.58) vanishes, i.e.

s=n-—1 (10.60)

Under this condition, these equations reduce to the following ordinary differential
equations:

n— " ! 2 1 !
(If”} lf) +4:ilff"_4n11f2+hzo (10:810)
1 Hin— ;" 2 +].
B (17177 w) + 255wy =0 (1062

which have to be solved subject to the boundary and integral conditions

f({]) =0, ff(O) =0, h([}) =1 or h’([]) ==l
ff=0, h—>0 as n— oo (10.63a)

/ " f'hdn =Q (n, Pr) (10.63b)
0

It should be noted that for n = 1 (Newtonian fluids), Equations (10.61) and (10.62)
reduce to those derived by Afzal (1980) and Ingham and Pop (1990). Further, the
skin friction coefficient

Cf =2Gr~ 4_nl+_l z 43.11 (?_E) (10.64)
By y=0
can be expressed as
1
Cr (Gry) ™ =2]f"(0)|" (10.65)

if the variables (10.55) are used.
Equations (10.61) — (10.63) have been integrated numerically by Pop et al.
(1993b) using the Runge-Kutta-Gill method for several values of n and for Pr = 0.72,

10 and 100. For a Newtonian fluid (n = 1) the present results give for Cy (Grz)%
the values 2.62012 for Pr = 0.72 and 1.85964 for Pr = 6.7, whilst the corresponding
values obtained by Ingham and Pop (1990) are 2.6201 for Pr = 0.72 and 1.8596 for
Pr = 6.7. This shows that the agreement between the two sets of results is excellent.

The results for various transport parameters, which are important for represent-
ing some heat transfer correlations are given in Tables 10.2 and 10.3 for the flow
behaviour index n ranging from 0.2 to 1.5 and for Prandtl numbers 10 and 100, re-
spectively. It is noted from these tables that f”(0) decreases as the values of n and
Pr increase and this leads to a decrease in the skin friction coefficient as defined by
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Table 10.2: Numerical values of the computed perameters for Pr = 10 and the
values 0.2 < n < 1.5.

(o [ 7O [fmaxtm [ fleo) [ Q@ |
0.2 || 3.21309 | 0.70945 | 3.46476 | 14.67177
0.4 || 1.56230 | 0.56938 | 2.48399 | 9.05100
0.6 || 1.08804 | 0.45349 | 1.52345 | 5.18968
0.8 || 0.95063 | 0.43117 | 1.32087 | 3.96055
1.0 || 0.86123 | 0.39276 | 0.99482 | 3.00209
1.2 || 0.90450 | 0.49054 | 1.62756 | 2.87300
1.5 || 0.82903 | 0.40676 | 0.70861 | 2.12471

Table 10.3: Numerical values of the computed parameters for Pr = 100 and the
values 0.2 < n < 1.5. '

T 7O [ fmaxm | fleo) [ Q@ 1
0.2 || 1.23283 | 0.22884 | 0.90717 | 3.33278
0.4 || 0.73858 | 0.20504 | 0.73486 | 2.33788
0.6 || 0.50828 | 0.13315 | 0.19407 | 1.04260
0.8 || 0.41895 | 0.09548 | 0.08289 | 0.53576
1.0 || 0.48062 | 0.12145 | 0.12585 | 0.52386
1.2 || 0.54364 | 0.16156 | 0.19320 | 0.48404
1.5 || 0.53094 | 0.13440 | 0.12537 | 0.31474

Equation (10.65). It is also seen that the parameter I, which serves to determine the
reference temperature Ty through the Equation (10.56), decreases with an increase
in n and Pr.

Figures 10.6 and 10.7 display results for the fluid velocity and temperature pro-
files in the plume. It is seen from these figures that the maximum fluid velocity
decreases with increasing values of the flow behaviour index n and this maximum
moves closer to the wall as the value of n increases. We also see that the fluid ve-
locity and the thermal boundary-layer thicknesses decrease as n increases. Further,
as the Prandtl number increases, the thinning effect of the thermal boundary-layer
substantially affects the velocity boundary-layer region. Also, it can be noted from
Figures 10.6(a) and 10.7(a) that for n = 1 the solution appears to intersect more
curves for Pr = 100 than for Pr = 10. The reason for this appears to be the depen-
dence of the Prandt]l number on the index n, reference velocity U, and the reference
length [ of the plate.

The important quantities in this flow geometry are the fluid velocity level, the
surface temperature and the size of the boundary-layer region. As the flow proceeds
downstream from a heated element which is located on an unheated part of the sur-
face, it influences the cooling characteristics of any other element it may encounter.
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Figure 10.6: (a) The fluid velocity, f'(n), end (b) the temperature, h(n), profiles

for Pr = 10.
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Figure 10.7: (a) The fluid velocity, f'(n), and (b) the temperature, h(n), profiles

for Pr = 100.
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An element downstream is immersed in a flowing heated fluid whose temperature
and fluid velocity are determined by the distance between the two elements and the
heat flux input I. The values of f"(0), f1,.x(7), f(c0) and Q, as given in Tables 10.2
and 10.3, allow the evaluation of the temperature and the fluid velocity fields at a
downstream element.

10.5 Mixed convection boundary-layer flow from a hor-
izontal circular cylinder and a sphere in non-
Newtonian power-law fluids

Consider the mixed convection flow past a horizontal circular cylinder or a sphere of
radius a which are placed in a non-Newtonian power-law fluid of free stream velocity
U and temperature 7', see Figure 10.8. We assume that the surface of the cylinder
or sphere is kept at the uniform temperature T,,, where Ty, > T (heated surface)
or Ty < T (cooled surface). The analysis is also valid for downward flow and in
this case the z-coordinate is measured from the upper stagnation point. Using the
non-Newtonian power-law fluid model, the boundary-layer equations can be written
as

g ;
—, rzu +_..(?_ Tt'U — 0 10.66
oz dy
Ty
lg Thermal
Boundary-Layer
Velocity
3 oundary-Layer
r(z

ttt

Figure 10.8: Physical model and coordinate system.
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ou  du y, Qe o 0 (0ul" ' ou (T
i o T_7T o
Yoz + Uay Yedz p By ( dy By gl o) sin (a)
(10.67)
ar = ar T
ki B o RS il 10.
L +vay af 39 (10.68)
which have to be solved subject to the boundary conditions
u=0, v=0, T=T, on y=0, 20 (10.69)

U—U(z), T Te as y—oo, =0

where u.(z) is the fluid velocity outside the boundary-layer, with ¢ = 0 for the
cylinder and ¢ = 1 for the sphere, and the + signs in Equation (10.67) correspond
to assisting and opposing flows, respectively.

Equations (10.66) — (10.68), along with the boundary condition (10.69), were
first solved numerically by Wang and Kleinstreuer (1988). They assumed that

;‘m =0.92 (E) —0.131 (2)3 (10.70a)
for a cylinder in cross-flow and
;:; =15 (E) —0.4371 (5)3 +0.1481 (5)5 — 0.0423 (5)7 (10.70b)

for a sphere and it was considered that both these equations hold for 0.5 < n < 1.6.
In order to solve Equations (10.66) — (10.69) we introduce the following variables:

&= 5’ = (,?,)w (5;)m% (10.71)
b=r@) (& ) f&m), 6 n) =71z

where r(z) is given by

r(z) = asin (—E) (10.72)

Using the transformation (10.71), Equations (10. 66} - (10.68) take the following
form:

JE=s : " ,O0f' 0
(If”l 1f") + A" +11(¢) (1~f’2):|:,\B(§)9—_~,5(fa_'2_ a_é

C(G) " / 9 ., of
—220" 1 A(¢)f6 —5(1'_‘_935) (10.74)

) (10.73)

and the boundary conditions (10.69) become

F=0, =10, =1 on 9n=0, £E>0

fl—=1, 6=0 as n—oo, €20 (10.75)
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The coefficients A(£), B(£), C(£) and II(§) in Equations (10.73) and (10.74) are
defined as follows:

A(E) = abr + () ) for the cylinder
Tk dr
ﬁT + (2n+11) I1(¢) + %d—g for the sphere (10.76)
3(1—n)
i n n—1 ”
BO)=5m cO= () ™ ¥, me) = £
Ueo
where the mixed convection parameter )\ is now given by
A= (10.77)
Re?-n

and Gr, Re and Pr are defined as follows:
2
Gr= (%) " gﬁlAT|a§f_:, Re = (ﬁ) Ugo—“a", Pr = UmaRe‘n‘i'T
Lo

af
(10.78)
Finally, the skin friction coefficient, Cy, and the local Nusselt number, Nu, are
given by

27y agqy

Cy=—pa  Nu=gime (10.79)
and these can be expressed in the following form:
1 e —-n_ [ Ue wHT " n
L0yRertt = ¢+ (U ) [£"(6,0)]
e (10.80)
NuRe #H = g wit (5‘3—) [-6'(¢,0)]

Equations (10.73) and (10.74), subject to the boundary conditions (10.75), were
solved numerically by Wang and Kleinstreuer (1988) for n ranging from 0.52 to
1.6, Pr = 10 and 100, and A = 0 (forced convection flow), 1 and 2 using the
Keller-box method. Typical results for the skin friction coefficient and local Nusselt
number are shown in Figures 10.9 to 10.12. It is observed from Figure 10.9(a)
that for assisting flows pseudoplastic fluids (n < 1) generate higher, and dilatant
fluids (n > 1) lower, skin frictions than Newtonian fluids (n = 1). However, both
the power-law index n and the buoyancy parameter A are less influential on the
skin friction coefficient for a sphere than for horizontal cylinders, see Figure 10.9.
Further, Figure 10.10(a) shows that, as expected, for a Newtonian fluid the local
Nusselt number decreases monotonically along the surface of the cylinder. It reaches
a maximum for pseudoplastic fluids and then, similar to Newtonian fluids, decreases
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Figure 10.9: Variation of the local skin friction coefficient with ¢ for Pr = 100 in
the case of assisting flow for (a) a cylinder and (b) a sphere. The solutions for

A = 0 (forced convection), 1 and 2 are indicated by the dotted, broken and solid
lines, respectively.

Figure 10.10: Variation of the local Nusselt number with ¢ for Pr = 100 in the
case of assisting flow for (a) a cylinder and (b) a sphere. The solutions for A =0

(forced convection), 1 and 2 are indicated by the dotted, broken and solid lines,
respectively.
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(a) (b)
1.61
,_.E
&
Y 1.29
N

0.41

Figure 10.11: Variation of the local skin friction coefficient with ¢ for A = 0.5 and
Pr = 100 in the cases of assisting flows (solid lines) and opposing flows (broken
lines) for (a) a cylinder and (b) a sphere.

50 75
¢(°)

Figure 10.12: Variation of the local Nusselt number with ¢ for A = 0.5 and Pr =
100 in the cases of assisting flows (solid lines) and opposing flows (broken lines)
for (a) a cylinder and (b) a sphere.
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gradually. In contrast, for dilatant fluids, the local Nusselt number reduces very
rapidly in the vicinity of £ = 0 (the forward stagnation point) and then follows,
after a point of inflection, the general trend of the Newtonian fluids. This behaviour
can be explained as follows. From Equation (10.80) we have

NuRe™ 1 ~ g15n [~0/(€,0)] (10.81)
which implies that for £ = 0

0 for n<l

NuRe_";’rl ~
oo for n>1

(10.82)

provided that 6'(£,0) is well behaved at the forward stagnation point.

On the other hand, Figures 10.11 and 10.12 show that for opposing flows the skin
friction coefficient and the local Nusselt number have lower values than for assisting
flows. This trend is comparable to the effect of lowering the buoyancy parameter
A, cf. Figures 10.9 and 10.10. In these cases, forced convection (A = 0) is either
retarded by the opposing buoyancy forces (cooled cylinder/sphere) or relatively less
enhanced by decreasing the buoyancy forces (reduction of \). As can be expected,
the separation angle for opposing flows, see Figure 10.12, is similar to that of aiding
flows.

10.6 Free convection boundary-layer flow of a micropo-
lar fluid over a vertical flat plate

Convective flow over a flat plate which is immersed in a micropolar fluid has at-
tracted an increasing amount of attention since the early studies of Eringen (1966,
1972). Results for this generic problem have been reported by several investigators,
including Jena and Mathur (1982), Gorla and Takhar (1987), Yiicel (1989), Gorla
(1988, 1992), Gorla et al. (1990), Gorla and Nakamura (1993), Chiu and Chou (1993,
1994), Char and Chang (1995, 1997), Wang (1993, 1998), Hossain and Chaudhary
(1998) and Rees and Pop (1998). These latter authors have shown, based on work by
Rees and Bassom (1996) on the Blasius micropolar boundary-layer flow over a flat
plate, that much more information about the solution of free convection boundary-
layer flow of a micropolar fluid from a vertical flat plate can be found. A novel
feature of these problems is that the boundary-layer develops a two-layer structure
far from the leading edge, namely a mean layer and an inner, near-wall, layer. The
near-wall layer is of constant thickness and it is the region where the microelements
adjust from their natural free-stream orientation to that imposed by the presence
of the solid boundary. It should be mentioned that the papers by Rees and Bas-
som (1996) and Rees and Pop (1998) are the most complete papers in the area of
micropolar fluids and we shall therefore present here some results of these papers.
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Consider a heated semi-infinite vertical flat plate with a constant wall tempera-
ture T, which is immersed in a micropolar fluid of temperature T, where T}, > T
The governing equations for the steady free convection flow of an incompressible mi-
cropolar fluid subject to the Boussinesq approximation can be written in the form,
see Chiu and Chou (1993),

ou 0v

ol W 10.8
6E+8§ 0 (10.83)
(aa—?w@ gl
P\"5z"5) " o
"y _ (10.84)
) [ 22+ T8) 1w 4 pop(@ -1
KTk 07 | o Kag P9 c
v _ov\ _ Op % 0% ON
p (‘Ma—-E +v§§) = —Fy_-l- (1 + k) (—8%34‘ @) e N“a“%‘ (10.85)
(0N 0N\ _ — av  ou N 0°N
_oT _oT FT T
0o+ v = oy (5 + 28 (10.87)

where N is the component of the microrotation vector normal to the (Z,%)-plane and
j, k and -y are the microinertia density, vortex viscosity and spin gradient viscosity,
respectively. We assume that «y is constant and is given by

v=(p+ g) j (10.88)

and this is invoked in order to allow the field equations to predict the correct be-
haviour in the limiting case when microstructure effects become negligible, and the
microrotation, N, reduces to the angular velocity, see Ahmadi (1976). The boundary
conditions appropriate to Equations (10.83) — (10.87) are as follows:

=0, v=0, —j—ng—g, T=T, on =0 =T
T

0
u—0, 7290, N—=0, T—->Tx as 73— o0, 0 \8.59)

2
2

where n is a constant. On using Equation (10.86), and the boundary conditions
(10.89), when n = 0 we obtain that N = 0. This represents the case of concentrated
particle flows in which the microelements close to the wall are not able to rotate. The
case of n = %— results in the vanishing of the antisymmetric part of the stress tensor
and represents weak concentration. Ahmadi (1976) suggested that in this case the
particle spin is equal to fluid vorticity at the wall for fine particle suspensions. Then,
the case of n = 1 is representative of turbulent boundary-layer flow, see Peddieson,
Jr. (1972).



358 CONVECTIVE FLOWS

Next, we introduce the following non-dimensional variables

_z ¥y w0V PP , T-Ty _IN
TT YT tTme Toe PR uEe YT Tar Nh(lg‘éo)

where U, = (gBAT I)% and we assume that the length scale is given by 7 = [2. On
using the expressions (10.90) in Equations (10.83) — (10.87), we obtain

%+% o (10.91)
ot~ o ot (5 ) T ooy e

8*0 0%
u% 4= v-é; = ——Pr Gr% (5-3:—2 + E‘E)'_Q-) {10.95)

where K = E is the micropolar parameter and Pr and Gr have been defined in the
same way as for a standard Newtonian fluid; non-zero values of K cause coupling
between the fluid flow and the microrotation component N.
We now invoke the boundary-layer approximation, namely
T =Gr%, =1, u-——-Gr%B—w, i —Gr%@—, N =Gr:iN (10.96)
dy oz

which when substituted into Equations (10.91) — (10.95) and formally letting Gr —
co leads to the following boundary-layer equations:

op Oy 0ot 8y ON
spoz0y omopp Mg titiyg

-+ + - 2 2 A7
Q‘!ja‘f\i _ 6_183_]\{ el (2N + 3_) 'S (1 4 %}C) 3_N (10.98)

(10.97)

dy 0z Oz 9y 8y? oy?
op o8 o 00 1 6%
—_—— === 5 10.99
dydr 0Ty Proy? ( )
and the boundary conditions (10.89) become
=0, ¥ —_—0 N=-n% g=1 T z>
=0 % =0 nog o V=0 =220 0
335—>0, N—-0, 650 as y—oo, 220
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As a prelude to obtaining numerical solutions, the governing Equations (10.97)
- (10.99) and boundary conditions (10.100) are first transformed into a local non-
similarity form. In order to do this we introduce the following variables:

~

$=X3f(X,n), 0=g(X,n), N=Xin(X,n), X=73, n=% (10.101)

where the functions f, g and h are given by the following set of partial differential
equations

(1+K) "+ 355"

(10.102)
1 2 ' . 1 }'8}” _ frﬂ
—pf Ttk e =X\ fax I ax

l n _3: r_l 1 __ 1 :_C?_}l_ r_?_.t_ n

(1+2}C)h +4fh 4hf = 2X faX haX + KX (2n+ f") (10.103)

]. " 3 I 1 lag faf
. Yooad = k- A s 10.1
B9 179 2X( ax Jax (10-104)

where primes denote differentiation with respect to n. The boundary conditions for
these equations are given by

f=0, f'=0, h+nf"=0, g=1 on n=0X3>0

10.105
ff—=0, h—0, g—0 as n—oo0, X220 ( )

At this stage we draw attention to the one case when Equations (10.102) -
(10.105) reduce to a similarity form. The last term in Equation (10.103) may be
regarded as the forcing term in this set of equations and if it were absent then it
is possible for the resulting equations to have an X-independent solution. This one
possibility for a similarity solution to exist is that the term (2h + f) is identically
zero. However, it can easily be shown that even when n = % then h = —-% " does
not give a consistent set of equations. Therefore, one cannot obtain a similarity
solution in this way. The second possibility is that £ = 0 and in this case the Equa-
tion (10.103) is decoupled from the Equations (10.102) and (10.104). The resulting

similarity solutions satisfy the following set of ordinary differential equations

e 3 ]‘
f +fo”_§f’2+g=0 (10.106)
B + %fh’ - ihf =0 (10.107)
1 4 3 r_
=g 4 4fg =0 (10.108)

which have to be solved subject to the boundary conditions

f(0)=0, f(0)=0, R(0)+nf"(0)=0, g¢(0)=1

ff—=0, h—>0, g—0 as n—ox (10.109)
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and hence the fluid flow and the temperature fields are unaffected by the microrota-
tion of the fluid. It should be noted that Equations (10.106) and (10.108) represent
the equations which govern the free convection boundary-layer flow of a Newtonian
fluid over an isothermal vertical flat plate and are well known, see Section 1.3. On
the other hand, Equation (10.107) has been solved numerically by Rees and Pop
(1998) for n = 1 and when Pr ranges from 0.1 to 10 and the profiles of the angular
velocity h are presented in Figure 10.13. As expected, these profiles remain negative
and increase from the value f"(0) to zero as 7 increases from zero to infinity, see the
boundary conditions (10.109). On the other hand, we can see from this figure that
h increases with the increase of Pr for 0 < n < 2 and decreases for > 2 when Pr
increases.

f Pr=0.1, 0.2, 0.5,
/ 1, 2, 5, 10

Figure 10.13: Profiles, h(n), of the reduced angular velocity for K =0 and n = 1.

Further, the full boundary-layer equations were solved numerically by Rees and
Pop (1998) using the Keller-box method and full details of the numerical procedure
can be found in this paper. A selection of some of the numerical results for the non-
dimensional skin friction, f”(X,0), and the rate of the wall heat transfer, ¢/(X,0),
are presented (by full lines) in Figures 10.14 and 10.15, respectively, for Pr = 6.7
(water) and KC = 0, 0.25, 0.5, 0.75 and 1 for the respective cases n =0, 0.5 and 1. It
should be noted that all these curves are plotted against X 3 in order to more easily
resolve the rapid variation near X = 0 (singularity) and the slow approach to the
asymptotic solutions, which we will develop further.

Figure 10.14 shows that the curve corresponding to K = 0 is a straight line, a
result which is in accord with our earlier observation that K = 0 represents the only
similarity solution. When the micropolar parameter /C # 0 then the form of the
skin friction variation depends very much on the values of n and K. It is always
less than the K = 0 value for sufficiently small values of X but when n = 0 its
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Figure 10.14: Variation of the skin friction, f"(X,0), with X% for Pr =6.7 when
(e)n=0, (b)) n=0.5, (c)n=1 and (d) a close-up view of (¢) near X =0. The
numerical solutions are indicated by the solid lines and the asymptotic solutions

- (10.133a) for n # % and (10.135a) for n = 3 at large values of X (> 1) are

indicated by the broken lines.
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value decreases further as X increases, whereas when n = 1 it eventually attains an
asymptotic value above the K = 0 result. However, for low values of n the spread
of the curves for different values of K is much greater than when n = 1.

The detailed evolution of the wall heat transfer shown in Figure 10.15 is a little
more complicated than the skin friction curves. If we refer to the wall heat transfer
in terms of its absolute value then the K # 0 values are always less than the £ =0
value and increase monotonically when n = 0, implying that the presence of the
microstructure reduces the wall heat transfer. However, when n = 1 the variation
is not monotonic; the wall heat transfer generally remains below the uniform £ =0
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Figure 10.15: Variation of the wall heat transfer, g'(X,0), with X% for Pr = 6.7
when (a) n = 0, (b) n = 0.5, (¢) n = 1 and (d) a close-up view of (c) near
X = 0. The numerical solutions are indicated by the solid lines and the asymptotic
solutions (10.138b) for n # 3 and (10.135b) for n =} at large values of X (> 1)
are indicated by the broken lines.

value but can become slightly greater locally when K is sufficiently small. The
variations of f”(X,0) and ¢'(X,0) for Pr = 0.7 (air) and the same values of the
parameters n and K can be found in the paper by Rees and Pop (1998). It was
found that there is little qualitative difference between the results for water and for
air, although the detailed quantitative results are quite different.

Figure 10.16 illustrates the contour plots of the function (h + % f") for the case
Pr=0.7,n=1and K = 1. It shows the gradual development, as X increases, of
a thin, near-wall layer embedded within the main boundary-layer. Indeed, for the
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Figure 10.16: Contour plots of the function (h(X,n) + 1f"(X,n)) for Pr = 0.7,
K=1landn=1.

micropolar Blasius boundary-layer flow, discussed by Rees and Bassom (1996), it
was found that (A + 1 f”) = 0 when n = £, and that (h + ") = 0 except in a thin
layer near to the flat plate when n # 1. However, for the present problem, h # — 1 ST
even when n = 2, but Figure 10.16 shows a similar development of a near-wall la.yer
as X increases. In order to examine this near-wall layer in more detail, for K # 0,
we make the substitution

¢=h+ %f” (10.110)

into Equations (10.102) — (10.104). Then we have

1 mn | A 1 " 1 af ) o af
(1+§!C)f +g+Kd = 2f ff +2X( =, “ax) (10.111)
w1 - 1y ,Bqﬁ 2
(1+K)¢ + 59 —2KXg = —¢f = —f¢> +3 (f X 3X) (10.112)
n, 3, o 39 » Of
B9 t1fd = X( X BX) (10.113)

and the boundary condition (10.105) becomes

f=0, f'=0, ¢=(%_n)f"1 g=1 on n=0, X 20

f'=0, ¢6—0, g—0 as m—o0, X=0 (10.114)

It is readily seen that for X > 1, the term 2KX¢ from Equation (10.112) domi-
nates this equation, unless ¢ is small, since ¢’ is O(1) as X — oo. Therefore, the
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asymptotic forms of the solution of Equations (10.111) - (10.113), for X > 1, are
given by

1
T aKx

where Fyy and Gy are given by the following ordinary differential equations

f~Fy(n), g~Gon), ¢ Go(n) (10.115)

1 3 1
(1 + §.'c) F'"+ ZFOF{,’ == 0+ Gy =0 (10.116)
L + gFOG’ =0 (10.117)
pr 07 4770 '

which have to be solved subject to the boundary conditions

Fo(0) =0, Fp(0)=0, Go(0)=1

Ff—0, Go—0 as np— oo (10.118)
We note that Equations (10.116) — (10.118) can easily be written in terms of the
classical vertical free convection equations using the transformation

FD=(1+%K)%ﬁ(ﬁ), Go =G (@), n=(1+%»‘C) 7 (10.119)

where F and G satisfy equations which are identical in form to Equations (10.106)
and (10.108), but where the Prandtl number is replaced by (1 + 1K) Pr.

Further, it is seen from Equation (10.115) that the boundary conditions (10.114)
for ¢ are not satisfied since the highest derivative in Equation (10.112) was neglected
when forming the solution for ¢ in Equation (10.115), and hence this is a singular
perturbation problem. Even without the numerical evidence presented earlier, it is
clear that there must exist a thin layer, a near-wall layer, which is embedded within
the main boundary-layer. However, it should be pointed out that the value of n
plays an important role in determining the size of ¢ in this near-wall layer. When
n= %, we have ¢ =0at n =0, so that ¢ is O (X‘l) in order to match with the form
given in Equation (10.115), but when n # % the boundary conditions (10.114) for ¢
state that ¢ is O(1) at n = 0. Therefore these cases should be treated separately.

First, we introduce the near-wall layer variable ¢ as follows:

¢ =nXi (10.120)

which results from the balancing of the terms 2K X ¢ and ¢" in Equation (10.112).
It is worth pointing out that the comparison of the definition of ¢ given by the
Equation (10.120) with the definition of 7 given in Equation (10.101), shows that
¢ = v, and therefore the near-wall layer has a constant thickness. Equations (10.111)
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- (10.113) then become

(1 + -;—,'C) IS PEY o qut S

_Ll n Losl ,Of' nOf
xd (g -F0r) 5% (% - '5%)

(1+K) 6" + %X*%g B

(10.121)

(10.122)
<2 Y o 3. af
X*(;ihf—th) (f——¢ )

1 oy Bpaliey 1oi Eg___ of
B 3xee = x4 (1 e g 5r ) (10.123)

where primes now denote differentiation with respect to (. The boundary conditions
appropriate to Equations (10.121) — (10.123) at ( = 0 are given by

f=0, f'=0, g=1, ¢= (% —n) ' (10.124)

and the matching conditions as obtained from the small 5 (< 1) limit of the main-
layer solutions, are used to complete the specification of the boundary conditions.
1

These matching conditions depend on whether or not n = 5.

10.6.1 n# 3

In this case the asymptotic solution of Equations (10.111) - (10.113) for X > 1 is
sought in the following form:

f= Fo(n)+X‘%lF1(n)+...
9= Go(n) +X72Gi(n) + ... (10.125a)
¢ = X"1®(n) + X" 281(n) +...

in the main layer, and the asymptotic solution of Equations (10.121) — (10.123) has
the form: .
f=X"fol@)+X A0+
g=1+X"2go(¢) + X "gu(Q) +... (10.125b)
¢ = $o(Q) + X" 11(¢) +
in the near-wall layer. It should be noted that the equations and boundary conditions

for Fy and Gy are precisely those given by Equations (10.116) — (10.118), while the
functions F; and G, satisfy the following ordinary differential equations:

1 1
(1 - 5&) F'+G, = 45 (FoF{ — FoFy) — —Fg'F, (10.126)

1 3 1 1

17160 =10 (10.127)
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which have to be solved subject to the boundary conditions

Fi(0) =0, G1(0)=0

F{")(]a Gi1—0 as 7 — 00 (10128)

and the boundary condition for F{(0) is obtained using the matching procedure. In
order to do this, we observe that for X > 1 and 5 < 1, the functions f and g may
be expanded as follows:

I= F0+X_%Fl s S
1 1 1
= [~F5’(0)n2 + = 6 F'(0)n® + . ] +X2 [F{(U)n+ —F/(0)n* +] +

= Ao+ ro] +xd [+ froe - +

ol 4 SN (10.129a)
g="04o 20

= [Go(0)n + ]+X 2 (GO +..] +...

= 'E[GO([])C—{—,..]+X [GlO)¢+...] +... (10.129b)

and these expressions give the required large ¢ (>> 1) behaviour for the near-wall
layer solution (10.125b).

Further, on substituting the series (10.125a) into Equations (10.121) — (10.123),
we obtain a system of ordinary differential equations for the functions fo, fi, go, a1,
¢o and ¢y, which can easily be solved analytically, see Rees and Pop (1998). Hence,
we have

f=x"1 [%F{,’(O)Cz — ag Ao FY(0)C + .. ]

. ; ; (10.130)
+X2 [—m@ + S F(0)¢C +
for ¢ > 1, where
1
g = (-1-—23%) % e ;%1;”’%8 i’:;; (10.131)
On comparing expression (10.130) with Equation (10.129a) we obtain
F{(0) = —agAgFy'(0) (10.132)

and therefore we now have all the boundary conditions in order to be able to solve
Equations (10.126) and (10.127).
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From these results we can now determine the skin friction and the wall heat
transfer as follows:

ﬁJ;(X,D) = (@3+X*%_ai+...)
aﬂ (=0

2 2
Caix 1 (10.133a)
~ 2(I+K(1-n) (F" (0)+X™3F; (0)+...)
dg _ {990 —%991 . N

where the values of Fj(0), G;(0), F;'(0) and G(0) are given in Table 10.4.

Table 10.4: Variation of Fy'(0), G,(0), F{'(0) and G} (0) with K for Pr =6.7.

[ K [ F@©) [ Go0) [ Fr(0) [ Gi(0) |
0.00 || 0.64312 | —0.73597 | 0.65886 | 0.97683
0.25 || 0.59216 | —0.71827 | 0.58101 | 0.90901
0.50 || 0.54984 | —0.70265 | 0.51886 | 0.85253
0.75 0.51418 | —0.68868 | 0.46725 | 0.80107
1.00 || 0.48355 | —0.67608 | 0.42582 | 0.76234

The asymptotic solutions (10.133) are also included in Figures 10.14 and 10.15
(shown by broken lines). It can be seen that the agreement between the numerical
(exact) and the asymptotic approximate solutions is very good.

10.6.2 n=1

It may be shown in this case that the appropriate expansions for X > 1 of f, g and
¢ take the form

f=Fon)+X"3F(n) + X Fa(n) +...
9 = Go(n) + X~1G1(n) + X 'Ga(n) + ... (10.134a)
¢ = X"1®y(n) + X*%‘I’l(ﬂ) + X 2%5(n) + ...

in the main layer, and

f=X"folQ) + XTEHEQ) + X200 + ...
g=1+X"2g0(¢) +3X_191 Q)+ X7 292(¢) + ... (10.134b)
¢ =X"o(0) + X721 (C) + X %62(0) + ..

in the near-wall layer, where Fy, G and ¢y are again given by Equations (10.116) —

(10.118); Fy = Gy = ¢1 = 0; and F>, G, and ¢, are given by a system of ordinary
differential equations, see Rees and Pop (1998).
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Following the same procedure as that described previously for the n # % case, it
can be shown that the skin friction and the wall heat transfer are now given by

& :
T,;(X,U) = Fy(0) + X" | F5(0) + 2(2%)5 +une (10.135a)
%%(X,U) = Gp(0) + X 1G3(0) + ... (10.135b)

where the numerical values of F3'(0) and G5(0) are given in the paper by Rees and
Pop (1998).

Using these values then the asymptotic solution (10.135) for n = § is also in-
cluded in Figures 10.14 and 10.15 (shown by broken lines). We can see that the
agreement of this asymptotic solution with the full numerical solution is very close
and they are indistinguishable for X > 100.

10.7 Gravity-driven laminar film flow for non-
Newtonian power-law fluids along a vertical
wall

The theory of fluid flow in thin films has received considerable interest in recent
years due to its importance in numerous technological applications. Examples of
particular interest are in chemical engineering, where the mass or heat transfer
associated with many falling film concepts such as coolers, evaporators and trickling
filters are very important. This problem has attracted a great deal of interest from
many investigators over the last three decades and much of the earlier work on this
topic for both Newtonian and non-Newtonian fluids has been reviewed by Andersson
and Irgens (1990), but recent contributions have been made by Pop et al. (1996c,
1997), Andersson and Shang (1998) and Shang and Andersson (1999). We shall
present here some results developed by Andersson and Irgens (1988) for the steady
laminar film flow of non-Newtonian power-law fluids down a vertical wall.

Consider the steady laminar film flow of non-Newtonian power-law fluids down a
smooth vertical wall, see Figure 10.17, due to Andersson and Irgens (1988). Accord-
ing to this flow configuration the accelerating film can be divided into the following
three distinct regions:

(i) the boundary-layer region, which consists of a developing viscous boundary-
layer and an external free stream;

(ii) the fully viscous region, in which the boundary-layer extends to the film sur-
face;

(iii) the region of developed flow, in which the streamwise gradients vanish.
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Figure 10.17: Physical model and coordinate system.

10.7.1 Boundary-layer region

In the boundary-layer region, the governing equation of the two-dimensional motion
is, see Andersson and Irgens (1988), given by

ou

dy

and this equation has to be solved subject to the boundary conditions

U+ V7 =Ue—F— + — 75—

ou du due | po a
dz dy ¢ dg p Oy

" Ou (10.136)
dy ’

u=0, v=0 on y=0, >0 (10.137a)
u—>ulz) as y—d(z), z>=0 (10.137b)

where the boundary-layer thickness §(z) is smaller than the corresponding film thick-
ness h(z). The one-dimensional equation of motion for inviscid flow gives

due N
dz =9

which on using the boundary condition that u.(z) = 0 at the entrance z = 0, we
obtain

Ue

(10.138)

ue(z) = (292)7 (10.139)
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Next, we introduce the similarity variables

A _1 v
Y= (i@uﬁ"“) fm), 7= (Cug (%}9) u;“) Yy (10.140)

cog p

where cg is a non-dimensional constant. Equation (10.136) then reduces to the
following ordinary differential equation:

2n+1

L= "=l (10.141a)

con Ifrr[n—l fm 4
and the boundary conditions (10.137) become
f(0)=0, f(0)=0, ff=1 as nooo (10.141b)

It is worth noting that for n = 1 the problem defined by Equations (10.141) re-
duces to the corresponding Newtonian problem as studied by Andersson and Ytrehus
(1985).

10.7.2 Fully developed flow region

In this region the viscous force due to the wall skin friction, namely

n—1 @f-—
oy

du

= (10.142)

Tw = Ho

exactly balances the gravitational force. Therefore, after integration of the force-
balance equation, Andersson and Irgens (1988) obtained

n+l
u(y) 2n+1 y\ "
= 1—(1—--—— 10.143
= () - (- 10:149)
where hy, and Uy, are given by

[l (a1 V)R, 9 (lw) (6 ),
“ lgp \ n ’ ® T he \gp m+1)

(10.144)

with @ being the total volumetric flow rate in the film.

10.7.3 Fully viscous flow region

In this region there is no external inviscid flow and the boundary-layer interacts
directly with the free surface. Equation (10.136) applies throughout the film, but
the boundary condition (10.137b) must be changed into a free surface condition. To
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obtain the detailed flow behaviour in the fully viscous region one alternative is to
use the integral form of Equation (10.136), namely
d h(z) g o l:au n—1 du

u? dy = —| 5| +gh 10.145

and the appropriate boundary an integral conditions for this equation are as fol-
lows:

u(z,0) =0, i =0 (10.146a)
%Y ly=h(z)
and
h(z)
/{, il ) By =0 (10.146b)

Andersson and Irgens (1988) used the following fluid velocity profile

u(z,y) = h?z) (1 + ni - }i‘;")) 1 (1 - h—aj)(lﬁ)%&l (10.147)

which satisfies the boundary conditions (10.146a) and the continuity constraint
(10.146b). On substituting Equation (10.147) into the Equation (10.145), leads
to the following ordinary differential equation

d _ 4(1+ 1) 2 +8(1+ 1) (21 4 (22
W R+ D)+ {0+ 1) ¢+1]" - 2+ DT}
which has to be solved subject to the boundary condition
£=&% on (=G (10.148b)

where £ and ( are the non-dimensional streamwise coordinate and the local flow
depth ratio which are defined as follows:

(10.148a)

_ =z h(z)
= T Re’ ¢=—2 he (10.149)
with Re being the modified Reynolds number which is given by
=1 2 3 n—1
o h
re=q (%) (ﬂ) 10.150
P Q ( )

The values £y and (p, which are the values of £ and ( at z = ¢, are given by, see
Andersson and Irgens (1988),

-
n{2n—1) —o(n 2nl
21{3 ) (n)z(“)]

+
‘—lr[ 2n+1)n 2 ] D)

(10.151)
Co = Ms¢y
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where ns is the value of n at the outer edge of the boundary-layer. Thus, the
similarity fluid velocity profiles in the boundary-layer region can be written as

w(éo,m) _ n+1 m+1\" 1%,
u(00,hoo)  2n+1 [2( = ) 60] f(n) (10.152)

where the similarity fluid velocity profiles, f'(n), were obtained by Andersson and
Irgens (1988) by solving numerically Equation (10.141) for several values of n with
=2

In Figure 10.18, the comparison between the similarity profiles (10.152) at ¢ = &,
(shown by different lines for n = 0.5, 1 and 1.5) and the asymptotic solution (10.143)
(shown by circles) indicates the adaptation in the fluid velocity that must take place
in the fully viscous region in Figure 10.17 before the film is fully developed at
z = zg. Further, Figure 10.18 shows that the similarity solution for the dilatant
fluids (n = 1.5) at z = z does not yet correspond to the fully developed flow
conditions. The fluid velocities are lower than given by the asymptotic solution
(10.143), and the liquid film must therefore be subject to a further acceleration
downstream of the boundary-layer region. However, for the pseudoplastic fluids
(n = 0.5), the velocity field at z = z¢ is rather undeveloped and a considerable
amount of adaptation is required in order for it to reach the asymptotic solution.
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Figure 10.18: Fluid velocity profiles at £ = &, obtained from the similarity solution
(10.152), and for € — oo. The solutions forn = 0.5, 1 and 1.5 are indicated by the
broken, solid and dotted lines, respectively, and the asymptotic solution (10.143)
at each value of n is indicated by the symbols o.
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Further interesting results on this topic may be found in the recent publications
by Andersson and Shang (1998) and Shang and Andersson (1999).



