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ABSTRACT

A frictional perfect plasticity model based on
a yield criterion proposed by Matsuoka is
described. Two methods are proposed to derive
the plastic strain rates in such a way that the
dilation angle may be specified as an
independent parameter; each of these tvwo
procedures are described in detail. The

proposed frictional plasticity model is
suitable for use in one- two- or three-

dimensional numerical calculations but special
attention 1is paid to the use of the plasticity
model in plane strain finite element
computations. For each of the two methods used
to derive the plastic strain rates a set of

relationships are derived between the

parameters used 1in the proposed plasticity
model and the parameters generally specified in
plane strain calculations based. on. ' non-
associated Mohr-Coulomb plasticity models. A
comparison is also made between the well known
stress dilatancy rule proposed by Rowe and the
proposed plasticity model for the case of
triaxial compression. The proposed plasticity
model has been implemented in a plane strain
finite . element computer program and a

description is given of the salient features of
this formulation. The results of a typical

footing collapse problem are used to illustrate
the application of this numerical model.

INTRODUCTION

Frictional plasticity models of soil behaviour
are used extensively in the finite element
analysis of problems in soil mechanics. Many
of the constitutive models currently used 1n
the analysis of frictional soil are based on a
plasticity model in which yield is defined by
the Mohr-Coulomb yield criterion. This yield
surface, however, contains discontinuities at
vhich the yield function is not differentiable
which is a disadvantage if the plastic strain
rates are derived from a plastic potential of
the same form as the yield function. These
"singularities are physically unrealistic and

also give rise to constitutive models that are
difficult to implement numerically unless a
numerical procedure to round off the corners of
the yield surface is employed.

The development of a plasticity formulation
suitable for the constitutive modelling of
frictional material generally involves the
consideration of two separate issues, namely
the choice of a suitable yield surface and the
development of a procedure to calculate the
plastic strain rates. In this paper, a
frictional plasticity model based on a yield

criterion proposed by Hatsuoka1 is described.
The Matsuoka yield surface may be expressed as
a cubic function of the stresses in which no
singularities exist (except at the origin) and
is therefore well suited as the basis of a
plasticity model for use in finite element
formulations. A well accepted procedure to
derive the plastic strain rates in a model
based on the Matsuoka yield function, however,
has yet to be developed. This paper describes a
frictional plasticity model in  which two
separate procedures for the derivation of the
plastic strain rates are proposed. Both of
these approaches have been implemented in a
plane strain finite element computer program
but a detailed comparison with experimental
test data obtained for granular material has
yet to be carried out.

The proposed plasticity model is suitable for
use in one- two- or three-dimensional numerical
calculations but the application of the model
to two-dimensional plane strain finite element
calculations is described in detail. In order
to compare the results of plane strain
computations based on this proposed plasticity
model with results obtained from other plane
strain models it is necessary to relate the
parameters used in the proposed plasticity
model to the plane strain friction and dilation
angles. A detailed description is given of the
derivation of these correlations.
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Compressive stresses are taken to be positive
throughout the paper.

THE MATSUOKA YIELD FUNCTION

The Matsuoka1 yield function may be written as
a function of the principal stresses:-

2 2
(0'2 - 03) (Ul - 63)
f(dl.) = + +
3 L8 J,0q
2
(Ul - 02) - 8tan2¢tc (1)
919
wvhere ¢tc is defined as the triaxial
compression friction angle. An alternative

expression for the yield surface may be written
in terms of stress invariants:-

f(aij) = LI, - I3C (2)
C =9 + 8tan2¢tc and :-
I1 = 0, + 02 + 03
12 = 0203 + 0103 + 040,
13 = 0’1020'3

This yield surface 1is closely related to the
Mohr-Coulomb yield envelope; a comparison
between sections of these two yield loeci in the
'R’ plane for the special case that they

coincide at the ’corners’ of the Mohr-Coulomb
surface is given in Fig. 1.
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Fig.l Comparison between the Mohr-Coulomb
and Matsuoka yield surfaces

FRICTIONAL PLASTICITY MODEL - APPROACH 1

1. Derivation of plastic strain rates

Two methods are proposed to derive a method by
which a plasticity formulation may be
developed, based on the Matsuoka yield

function, in such a way that the dilation and
friction angles may be specified independently
of each other. In the ¢£first approach, a
procedure is used to interpolate between
plastic strain rates corresponding to two
limits of behaviour; case A’ in which the flow
rule is fully associated and case B’ in which

the flow rule 1is associated in the ’n’ plane
with zero plastic volumetric strain rate. |

For case 'A’, the plastic strain rates are
derived from the fully associated plastic
potential, g(oij):—

g(oij) = I1I2 - I3C (3)

The plastic strain rates are derived from the
flow rule:-

-p - a
ef' . = Xﬁﬁ, (f)

vhere A is a positive scalar multiplier and égj

are the plastic strain rates.

For case '"B’, the plastic strain rates are
derived from the deviatoric terms of the fully

associated plastic potential. In this case,
the plastic strain rates are given by:-

€ .
ij

S T P (5)

o B )
aaij 3 °ij L
wvhere the repeated suffices imply summation,
61j 1s the Kronecker delta and g(oij) 1s the

fully associated plastic potential.

The material behaviour for the case when the
dilation rate 1lies between these two extremes
1s obtained by taking a weighted average of the
plastic strain rates that give full and zero

dilation. The plastic strain rates derived in
this way are:- '

(L - v.) ~
"8, og (6)
h aakk

eP A 2
1] 3aij 3

The variable Y, 1s referred to as the ’'degree

of association'’ and is the independent
parameter that controls the dilation
characteristics of the model. For the case

when Y, is unity the behaviour reduces to the
fully associated case, and when Y, is zero, the

dilation rate is zero.

2. Correlations with Plane Strain Parameters

If this frictional plasticity model is used as
the basis of a plane strain finite element
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formulation then it 1is highly desirable to In general, it is necessary to correlate the

relate the parameters used in the proposed plane strain friction and dilation angles with
plasticity model to the plane strain friction the plasticity parameters used in the proposed
and dilation angles. These correlations are model for the case where the degree of
necessary 1in order to compare the results of association lies between the limits of zero and
calculations made using the proposed model with full dilation. This correlation 1s, again,
those based on material models for which plane derived by setting the out-of-plane plastic
strain parameters are specified directly. strain rate to zero which, from equation (6),

gives the expression:-
The plane strain friction angle, ¢ps’ and the -

‘ ; 1 - v,) '
plane strain dilation angle ¢y  are defined:- g ( a (igg g d )
s . e (EEE)
2 1 2 3
(0, - 0)° . N
- 1 3 (7) In order to obtain the required relationships
- 40103 | between the plasticity parameters and the plane
strain angles, 1t 1s necessary to solve
) . simultaneously equations (1), (/), (8) and
e{ + eg (8) ~ (13). In this general case it is not possible
sin wPS = ) D ' to express the correlations as a closed form
€1 - €3 solution; it is instead necessary to derive
consistent sets of parameters using a numerical
vhere o, and ¢, are the in-plane principal method. Some selected correlations are given
‘ 1 3 in Table 1

stresses and él and 53 represent the in-plane _ o

/ Table 1 Correlations between frictional

plastic strain rates. In order to find the
relationship between the triaxial compression
and plane strain friction angle for case ’'A’,

i1t i1s necessary to consider the limiting case $ = 30° Y ¢
for which the elastic strain rates are PS a tc PS
negligible in comparison with the plastic

plasticity model -parameters and plane
strain parameters.

strain rates. This 1implies that the out-of- 0.0 27.15° 0.0°
plane plastic strain rate is zero. An 0.2 26.87° 6.24°
expression for the out-of-plane plastic strain 0.4 26 .64° 12.19°
rate may be derived from equation (4) which, if 0.6 26.46° 18.02°
set to zero, gives the relationship:- 0.8 26.34° 23.89°
1.0 26.29° 30.00°
o, = (oy03) % (9)
2 173 -
vhere o, is the out-of-plane principal stress. = 40°
2 _ ° P P pPS 40 Ta ¢tc: wps
If equations (7) and (9) are substituted into
the Matsuoka yield function then the following . o
relationship is obtained:- 0.0 37.02 0.0
0.2 36.55° 8.45°
2 y) 0.4 36.13° 16.33°
2sec ¢t = sec ¢ + Sec ¢ (10) 0.6 35.77° 73,960
c pPS pPS '
4 0.8 35.51° 31.69°
For case ’'B’, the out-of-plane stress for the 1.0 35.39° 40.00°

limiting case of full plasticity may be shown

to be:-
FRICTIONAL PLASTICITY MODEL - APPROACH 2
2 2
2 919 1. Derivation of plastic strain rates
9% = T3 (11) ' |
°1 * 9 An alternative approach 1is proposed in which
the plastic strain rates are derived from the
The triaxial compression and plane strain flow rule:-
friction angles in this case are related by the
expression: - ] %
- 298 (14)
1) 00, .
2 1 1)

- 2
sec ¢ps 1 + = ZJsec ¢tc (12)

i 1/2
[1 + sin ¢pS]
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whefe g*(aij) 1s the plastic potential:-

g (o) = LT, - I, (15)

and: -

+ ké

1]

This plastic potential function is of a similar

form to the Matsuoka yield function: the
triaxial friction angle 1is replaced by the

triaxial dilation angle, Veo? and the apex of

the surface is moved from the origin to the
point in principal stress space with the
coordinates (-k,-k,-k). The parameter k is
calculated on the basis that the plastic
potential and the yield function must coincide
at the current stress state. This condition is

used to derive a cubic equation in k from which
the required root may be selected.

2. Correlations between Triaxial and Plane
Strain Parameters

It 1S of interest to consider the
relationships between ¢tc

used under conditions of plane strain.
Firstly, it is instructive to consider the tvo

and q’tc and the

limiting cases, i.e. full association and zero

dilation, for which it is possible to derive

closed form expressions for these
relationships.

The case of full association (where the yvield

function and plastic potential are identical)
corresponds to case ‘A’ described in the

previous section; the plane strain and triaxial
compression friction angles in this case are
therefore related by equation (10).

The case of zero plastic volumetric strain rate
is obtained in the limit as k tends to infinity

in equation (15). 1In this case, in the limit
that the elastic strain rates are negligible in
comparison with the plastic strain rates, the

out-of-plane principal stress may be shown to
be: -

9 7 (16)
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The triaxial and plane strain friction angles
are related by the expression :-

2 | 3 2
tan ¢tc = 7 tan ¢ps (17)

In the general case, for a  triaxial dilation
angle intermediate between zero and the
trlaxial compression friction angle, it 1is
necessary to resort to a numerical method to
correlate the plane strain and triaxial
compression friction and dilation angles. Socme
selected correlations are given in Table 2.

Table 2 Correlations between frictional
plasticity model parameters and plane
strain parameters.

$ = 30° Vv

pPs (cC tc pPS
0.05° 26.56° 0.06°
4.78° 26.48° 5.52°
10.01° 11.54°
26.34° 18.21°
19.72° 22.62°
26.29° 30.00°
wtc ¢tc Wps
0.06° 36.00° 0.07°
6.15° 35.83° 7.10°
- 12.94° 35.67° 14.90
20.66° 35.52° 23.69°
25.96° 35.45° 29.63°
35.39° 35.39° 40.00°

3. Consistency of the Frictional Plasticity
Model with Rowe’s Stress Dilatancy Rule for
Triaxial Compression

It 1s of interest to determine the relationship
between ¢tc and V. for which the proposed

plasticity model matches the stress diiatancy

rule proposed by Rowé% for the case of triaxial
compression. This stress dilatancy rule may be
vritten in the general form:-

R =KD (18)

vhere, for the case of triaxial compression
(1.2. 02 = 03 and 01 > 02 ),:-

R = — (19)



P P
€ - 233
= 1 - 5 (20)
“1
1 + sin ¢cv
K = (21)
I - sin ¢
cv
vhere ¢., 1s the critical state friction angle.
For the case of triaxial compression, . the

Matsuoka yield function may be used to give an
expression for the stress ratio, R,:-

1 + sin ¢
R S L (22)
tc
The flow rule given in equation (14) may be

used to derive an expression for the dilation
parameter, D. If these expressions for R and D
are substituted into Rowe’s stress dilatancy
rule (equation (18)) then it is possible to
derive the following <condition for the

proposed plasticity model to be consistent with
Rowe’s stress dilatancy rule:-

sin ¢ sin ¢

sin wtc 1 sin ¢ sir ¢

(23)

It 1s of interest that this simple relationship
between triaxial compression, dilation and
friction angles is of the same form as the
relationship obtained by matching Rowe’s stress
dilatancy rule in plane strain using the non-

associated Mohr-Coulomb plasticity modelz.

triaxial

with the
provided that
derived from

Rowe’s stress dilatancy rule for

compression is therefore consistent
proposed plasticity model
the triaxial dilation angle
equation (23).

is

FINITE ELEMENT IMPLEMENTATION

The proposed plasticity model has been

implemented
perfectly frictional finite element
formulation. In this formulation, the strain

rates are decomposed into elastic and plastic
components: -

in

(24)

vhere é?j l1s the elastic component and égj

component, is zero 1if the stress
inside the yield surface and given
equation (6) or equation (14)

j

the plastic
point lies
by either
(depending
the plastic strain rate derivation) when
stress point lies on the yield surface.

the

- rates are derived using equation (6)) is

a plane strain linear elastic-

on vhich approach is being used for
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The stress rate aij is related to the strain

rate by the constitutive equation:-

.0' = (De + ). (25)
ij ijkl 1Jk1 *k1

where D?jkl are the elastic material constants.

The D?. are 2zero unless the
1)kl

stresses lie on the yield surface in which case
they are given by:-

parameters

DS. £ &P D
pP ijmn mn o opkl (26)
1jkl £ e ép
qr qrst st
where: -
3f '
fij = ‘E;j (27)

and the plastic strain rates are derived either
from equation (6) or equation (14).

The solution procedure used in the finite
element formulation is based on the use of the

‘Modified Euler’ procedure proposed by Sloan?
A feature of this solution scheme is that it is

necessary to 1integrate the constitutive
equation over each <calculation increment in
order to update the stresses at the Gauss
points at the end of each stage of the
calculation. This integration 1is performed
numerically using an error control procedure
described by Sloan4. A full description of the
finite implementation of this constitutive
model (for the case where the plastic strain

given
by Burds.

The calculation of the pressure-displacement
response of .a smooth plane strain footing on
veightless frictional soil with a constant
vertical surcharge. applied to the surface is
described below as an example of a typical
application of this finite element formulation.

The mesh used in the finite element
calculation consists of six-noded triangular
elements and is plotted in Fig. 2. The

Poisson’s ratio of the soil is taken to be 0.35
and the plasticity model 1is based on the
parameters ¢tc 26.46° and Y, = 0.6 . (Note

from Table 1 that these plasticity parameters
correspond to a plane strain friction angle of
30°). At the start of the finite element
calculation, the vertical and horizontal
stresses are taken to be constant within the
soil and equal to the surcharge stress. The
footing pressure-displacement response obtained
from the finite element analysis 1s plotted in



Fig. 3 where p represents the footing pressure, mathematical basis for a frictional plasticity

q is the surcharge applied to the soil surface, model but a well established procedure for the
8 is the footing displacement, B is the footing derivation of the plastic strain rates is not
half-width and E is the soil Young’s modulus. yet available. A frictional plasticity model
is described in the paper in which two
108 alternative procedures are proposed to derjive
| the plastic strain rates. The proposed model
has not yet been compared with suitable
¢ experimental data; further work in this area is

needed.

The relationship between the friction and
dilation angles necessary for the proposed
plasticity model to match Rowe’s stress
dilatancy rule in triaxial compression is given

in equation (23). It is of significance that
this relationship is of the same form as that

derived by Rowe2 for the dilatancy rule to
match a plane strain non-associated Mohr-
Coulomb plasticity model. This observation
suggests that the proposed plasticity model is
a logical extension of the plane strain non-

associated Mohr-Coulomb model to the case of
triaxial compression.

The frictional plasticity model described in
this paper is not limited to the case of
perfect plasticity. The model has been
developed to 1include the possibility of the
triaxial friction angle varying according to a
sultable hardening law with the triaxial
dilation angle linked to the other material
parameters by equation (23). Full discussion of

this extended model, however, 1is beyond the
scope of this paper.
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