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Abstract Mathematical strategy portrays the performance evaluation of computer and communication system
and it deals with the stochastic properties of the multiclass Markovian queueing system with class-dependent and
server-dependent service times. An algorithm is designed where the job transitions are characterized by more than
one closed Markov chain. Generating functions are implemented to derive closed form of solutions and product
form solution with the parameters such as stability, normalizations constant and marginal distributions. For such a
system with N servers and L chains, the solutions are considerably more complicated than those for the systems
with one sub-chain only. In Multi-class queueing network, a job moves from a queue to another queue with some
probability after getting a service. A multiple class of customer could be open or closed where each class has
its own set of queueing parameters. These parameters are obtained by analyzing each station in isolation under
the assumption that the arrival process of each class is a state-dependent Markovian process along with different
service time distributions. An algorithmic approach is implemented from the generating function representation for
the general class of Networks. Based on the algorithmic approach it is proved that how open and closed sub-chain
interact with each other in such system. Specifically, computation techniques are provided for the calculation of the
Markovian model for multiple chains and it is shown that these algorithms converge exponentially fast.

Keywords Transition · Markov chain · Marginal distribution · Closed and open sub chain · Queueing network

1 Introduction

Representation and analysis of multiprocessor Queueing system have drawn more attention in the recent years. By
product-form algorithms the network parameters are computed and approximating solution is also considered in
some cases. The network performance has to be characterized by a Markov chain and its large size of the state
space, time intricacy is a drawback for solving linear systems. The computational methods for basic equilibrium
distribution of jobs with exponential servers and the marginal distribution are also derived in the closed queueing
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network. Finite number of jobs only can pass through the network, new arrivals and departures are not permitted to
enter into the closed queueing network. The product form algorithm is derived in the case of multiple closed sub
chains and computational algorithm is presented for general classes of queueing networks. The routing transition
is characterized by a Markov chain which is decomposable into multiple sub chains. In limited cases, network
with closed sub chain is introduced for choosing an open network. Several aggregate states and their marginal
distributions are discussed in the conclusion.

2 Literature Survey

The Distributed solving of Markov chains for computer network models had been developed by [1]. Chen et al.
[2], has explained the reliable shortest path problems in stochastic time-dependent networks. Bhattacharjee et al.
[3] has envisaged the statistical analysis of network traffic inter-arrival. Ching et al. [4] had explained the Markov
chains models, algorithms and applications. Stability criterion of a general multiserver multiclass queueing system
has elaborated by [5]. Graham et al. [6] had explained the concept of interacting multi-class transmissions in large
Stochastic Networks. Domańska et al. [7] has clearly explained a few investigations of long-range dependence in
network traffic. Smith et al. [8] has enlightened the system capacity and performance modelling of finite buffer
queueing networks. van Woense Frederico et al. [9] had envisaged the optimal routing in general finite multi-server
queueing networks modeling functionality. Tadj et al. [10] had explained optimal design and control of queues.
H.C. Tijms [11] had approached algorithmic procedure on stochastic models. Valakevicius et al. [12] had created an
algorithm forMarkovianmodels of complex systems.Dai et al. [13] has analysed the stability of the shortest queueing
networks andHarchol-Balter et al. [14], has discussed about themulti-server queueing systemswithmultiple priority
classes. Khalid et al. [15] has designed a discrete event simulation model for evaluating the performances of an
M/G/C/C state dependent queuing system. Manitz [16] had made an analysis of assembly/disassembly queueing
networkswith blocking after service andMorozov et al. [17] has analysed about the Stability analysis ofmulti-server
discrete-time queueing systems with renewal-type server interruptions. Nogueira et al. [18] has implemented the
Markovian model for Internet Traffic. Network performance engineering.

Notations

Pir.(i ′r ′) : probability of transition from state (i, r) to state (i ′, r ′)
λl(nl) : independent Poisson arrival streams rate,
Nl : equilibrium means queue size of service center l,
Pr : routing matrix of chain r
Nr : population size of chain r
N1, N2, . . . , NR : population vector
S(r) : service center passes by a chain r
R(l) : set of chains which pass service center
ωr,l : equilibrium mean waiting time
er : R-dimensional unit vector in direction r

2.1 Scrutiny and Delineation

The queueing systems have the following parameters are arrival fashion, service rate dispensation, queue restraint
in channels, routing probabilities, and system composition. The following Fig. 1 shows the general structure of
Markovian closed queueing networks.

For K service centers, jobs transitions are ordained from one state to another by a first-order Markov chain M
in R different classes. The transition matrix is K R × K R and its elements Pir.(i ′r ′) is the probability of transition
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Fig. 1 Multistage Markovian of closed queueing networks

Fig. 2 Two stations closed
queueing network

from state (i, r) to state (i ′, r ′) in M , namely, the probability that a job of class r which completes service at the
center i will go to service center i ′ and changes to class r ′.

Then the Markov chain M is decomposable into irreducible multiple sub chains M1, M2, . . . , ML which arrant
it may either open are closed. The sub chains are driven by L independent Poisson arrival streams with rate λl(nl),
where nl is the total number of job in subchain Ml at a given system. An afresh inward jobs out of a stream l will first
join the station i with class identification r whose probability is Pl(ir). A job class of r ′ completing service center
i ′ departs the network with probability P(i ′r ′),l . In a closed sub chain Ml , the number of jobs is held at constant at
nl . This situation is realized by choosing Pl(ir) = P(ir)l = 0 for all (ir) ∈ Ml . The following example has clearly
explained the two station closed queueing network, in which each station has a single server with the two job of
same class circulate in the model. The service rates are clearly mentioned as ψ = μ1

μ2
and showed in the following

Fig. 2.
The system states have been portrayed in triplet form (n, l1, l2) where l1, l2 ∈ {1, 2} denotes the phase of the

job’s service at station 1 and n ∈ {0, 1, 2} denotes the number of job at station 1. A total of 8 states generated and
its infinitesimal generator matrix is given by
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Fig. 3 State block diagram

The stationary probability distribution vector ν is attained by solving νt T = 0; νt e = 1, where e denotes a vector
whose elements are 1 and νt is the transpose of the vector ν. Thus the vector (φ3(φ + 1), φ3(φ + 3), φ(φ + 1)2,
φ(φ + 1), φ2(φ + 1), 2φ2, (φ + 1), (3φ + 1))t satisfies νt T = 0 but not νt e = 1.

The state transition block diagram is depicted in Fig. 3.

2.2 Agglomeration Algorithm

Step 1: Form (Q(n))i j = U (n)Ti j e j , where

U =

⎛
⎜⎜⎜⎜⎝

bt1 0 · · · 0
0 bt2 · · · 0
· · · · · ·
0 · · · btn−1 0
0 0 · · · btn

⎞
⎟⎟⎟⎟⎠

and Ti j e j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
−1
φ+1

1
φ+1 0

0 0 0
0 −1

φ+1
1

φ+1
φ

φ+1
−φ
φ+1 0

φ
φ+1 −1 1

φ+1
0 0 0
0 φ

φ+1
φ

φ+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Step 2: Solve w(n)Q(n) = 0 with w(n)e = 1
Step 3: For k = 1, 2, . . . , n, calculate b(n)

k

(a) Form Q(n)
k use b(n)

l l ≤ k − 1 and b(n)
k l ≥ k − 1

(b) Get (ptk, 1 − ωk) from (ptk, 1 − ωk)Q
(n)
k = 0

(c) Form b(n)
k = 1

ωk
pk

Step 4: Convergence test: if satisfied, stop
else
go to Step (1)

where btk denotes the conditional stationary probabilities of the states of block k, ωk is the probability of being in
one of the states of block k, r is the number of blocks, zi number of states in block i thus

∑r
i=1 zi = z, ei is the

vector of unit length zi with unit elements. The generator matrix Ti j ∈ �zi×z j and the elements of the matrix Q
gives the rate of transition between blocks.
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2.3 Equilibrium State Probabilities

A solution of equilibrium state probabilities must satisfy the balance equations for the system. ∀ states, Si ,∑
all states S j P(Si ) [rate of flow from Si to S j ] = p(Si ) � rate of flow out S j	. Representation of general ser-

vice time distribution in the method of stages is, only one stage can accommodate a job at a given time. In FCFS
discipline, a job waiting at the head of the line is not allowed to enter the first stage until the job currently in service
has completed its last stage and departs from this center. That is the entrance stage is blocked as longs as a job exists
in the same stage. The steady state distribution provides a solution in a product form when it is not blocked. In the
situation of blocking, the solution is complicated for the queueing system. Hence the service center is assumed to
be a queue dependent exponential server in FCFS discipline.

In Processor sharing (PS) queue discipline, the problem of blocking on the exponential server could not exist.
In a multi server queue, there are many servers available than jobs and no waiting line is formed, thus blocking is
non existent. In an infinite server queue, where the service rate is lowered according to the number of jobs in the
center at a given time. In FCFS, when a new job enters, the first stage of the server is provided to it. If a new job
is entered prior which has been served by its own server. If a job is staying at any stage restart the service among
those remaining in the system. When a new job entered the service center without blocking, this leads to provide a
product form solution. In Processor Sharing (PS) and Last Come First Serve (LCFS), the service stages are specified
in the system.

To discuss the solution of a network S, where all service centers are First come First Serve (FCFS) service center
and the service time distributions are exponential. The completion of service rate is common for all classes. The
state of such system is represented by a vector S = [S1, S2, . . . , Si , . . . , SN ], where Si it is a vector of FCFS stack
at center i : Si = [ri (1), ri (2), . . . , ri (ni )], in which ri ( j) is the class of jet job at service center I and ni is the total
number of jobs. Let P[S] denotes the equilibrium probability of state S and Ml be the number of closed sub chain.
The state S([ir ]) which is the same as S except the last entry is missing. Thus a transition of S([ir ]) to state S take
place upon i with a class r .

2.4 Algorithm for Mean Value Analysis of a Closed Multichain Queueing Networks

Consider a closed multi chain queuing networks, which have a product-form solution. Assume R closed routing
chains and K service centers. According to Markov chain, each chain has a finite number of jobs ensue through the
sub service centers. Service Center should take up one of the following methods:

(i) FCFS: Processes are dispatched according to their arrival time on the ready queue. Being a non-preemptive
discipline, once a process has a CPU, it runs to completion.

(ii) PS: Each job receiving an equal share of the service time.
(iii) D: Delayed jobs at the service center.

Algorithm I: Single Server Case

Step 1: ni∗(0) ← 1 for all i = 1, 2, . . . , K
Step 2: for i1 = 0, 1, . . . , N1; l2 = 0, 1, . . . , N2; . . . ; lR = 0, 1, . . . , NR perform step 3 to 5

Step 3: ω∗
r,l =

{
ρr,lδ(ir ) if service centre is (i i i)

ρr,lni∗(i − er ) otherwise
For all r = 1, 2, . . . , K and l ∈ S(r)
Step 4: Little’s equation for chain λr = lr∑

l∈S(r) ω∗
r,l

for all r = 1, 2, . . . , K

Step 5: Little’s equation for service center n∗
i (i) ← 1 + ∑

r∈R(l) λrω
∗
r,l for all l = 1, 2, . . . , L
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Algorithm II: Multi Server Case

Step 1: ni∗(0) ← 1 pl(0, 0) ← 1, pl(1, 0)gets0 for all i = 1, 2, . . . , K , l = 1, 2, . . . , Mi−1

Step 2: ω∗
r,l ← ρr,l

Ml

⎡
⎣ni∗(i − er ) +

Mr−2∑
j=0

(Ml − 1 − j)pl( j, i − er )

⎤
⎦

for r = 1, 2, . . . , R and each multi server FCFS service center l ∈ S(r)
Step 3: Littles equation for chain yields λr as Algorithm I.
Step 4: Littles equation for service center yields n∗

i (i) as Algorithm I.
Step 5: For each multi server FCFS service center l and j = 1, 2, . . . , Mi−1

pl( j, i) ← 1

j

∑
r∈R(l)

λrρr,l pl(y − 1, i − er )ul ←
∑

r∈R(l)

λrρr,l

pl(0, i) ← 1 − 1

Mi

⎡
⎣ul +

Mi−1∑
j=1

(Mi − j)pl( j, i)

⎤
⎦

3 Numerical Calculation

In Multi Server Queueing Network, different classes of customers may be coupled with various classes have
been noticeable by their routing pattern within the network and their mean service demands at various centers.
Decomposition method describes the estimation of throughput of a closed network that receives the input from
various sub-networks. The effectuation of class aggregation technique have reduced the complexity of performance
analysis in isolation and by load dependent service rate has avoids the recursive iteration. The convergence criteria
the result is generalized to a queueing network in which the customer routing transitions are characterized by a
Markov chain decomposable into multiple sub-chains. Networks with closed subchains are introduced as a limiting
case of suitable chosen open network. The several aggregate states and theirmarginal distributions are introduced.An
algorithmic approach is implemented from the generating function representation for the general class of Networks.
Convergence criteria is tested and rate of transition between blocks are obtained. Based on the algorithmic approach
it is proved that how open and closed sub-chain interact with each other in such system.
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4 Graphical Representation

Queue time: Average queue time for each chosen class at each station.

Residence time: Average residence time for each chosen class at each chosen station. (Residence Time = Number
of visits * Response time).
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Utilization: Utilization of a customer class at the selected station.

Throughput: Average throughput for each chosen class at each chosen station.

Throughput for each class at each stations are displayed in Table 1 and the average number of jobs for each class
at each station is depicted in Table 2. Table 3 reflects the total time spent by each job class summed across all visits
to a station and utilization of a job class at the selected station is shown in Table 4. Service demands are displayed
in Table 5. Based on the above graphical representations, the average queue time is reduced by maximizing the
utilization. An algorithm is designed for the efficiency of throughput for each chosen class and stations.
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Table 1 Throughput for each class at each station

Aggregate Class 1 Class 2 Class 3 Class 4 Class 5

Aggregate 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Station 1 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Station 2 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Station 3 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Station 4 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Station 5 1.046828 1.000000 0.027198 0.011007 0.001793 0.006830

Table 2 Average number of jobs for each class at each station

Aggregate Class 1 Class 2 Class 3 Class 4 Class 5

Aggregate 209.986447 129.986447 20.000000 20.000000 20.000000 20.000000

Station 1 122.532916 101.739365 0.080990 0.698459 19.712993 0.301110

Station 2 11.652943 1.415555 2.663514 7.549281 0.019396 0.005197

Station 3 10.765444 8.090300 0.372593 0.002138 0.111893 2.188521

Station 4 0.906351 0.147929 0.029509 0.431160 0.152002 0.145751

Station 5 64.128793 18.593299 16.853394 11.318963 0.003716 17.359421

Table 3 Total time spent by each job class summed across all visits to a station

Aggregate Class 1 Class 2 Class 3 Class 4 Class 5

Aggregate 200.593071 129.986447 735.349582 1817.0273... 11,156.309... 2928.0962

Station 1 117.051620 101.739365 2.977782 63.455911 10,996.212... 44.083886

Station 2 11.131669 1.415555 97.930707 685.862451 10.819649 0.760929

Station 3 10.283871 8.090300 13.699292 0.194221 62.415610 320.409992

Station 4 0.865807 0.147929 1.084981 39.171474 84.788825 21.338631

Station 5 61.260104 18.593299 619.656920 1028.3432... 2.072786 2541.5027...

Table 4 Utilization of a job class at the selected station

Aggregate Class 1 Class 2 Class 3 Class 4 Class 5

Station 1 1.000000 0.823581 0.000655 0.005656 0.167670 0.002438

Station 2 0.979599 0.111876 0.208228 0.657574 0.001529 0.000392

Station 3 0.920261 0.687632 0.030572 0.000182 0.009506 0.192369

Station 4 0.476957 0.077598 0.015372 0.227603 0.079716 0.076667

Station 5 0.999999 0.285485 0.266054 0.173535 0.000057 0.274868

Table 5 Service demands

Class 1 Class 2 Class 3 Class 4 Class 5

Station 1 0.8235810218 0.0240974379 0.5138413289 93.5289230950 0.3568942645

Station 2 0.1118755137 7.6560354436 59.7414818781 0.85307344684 0.0578922897

Station 3 0.6876323418 1.1240468267 0.0165524034 5.30270705330 28.1637318811

Station 4 0.0775979926 0.5652042121 20.6780599301 44.4670136778 11.2244901748

Station 5 0.2854850804 9.7821251641 15.7659119078 0.0318101352 40.2419571295
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5 Conclusion

In this paper an iterative method is implemented for multiple closed chains. In disagglomeration steps involve the
enumeration of all the states underlying Markov process. In Multi-class queueing network the transition behavior
of the Markov chain is analysed and based on that it reveals the fact that a job completing the service at server i will
go next to server j with probability pi j . The performance measures are evaluated by the computational algorithm.
Convergence criteria are tested and rate of transition between blocks is obtained. Based on the algorithmic approach
it is proved that how open and closed sub-chain interact with each other in such system.

Applications The proposed scheme can be implemented in multiple-tier Internet service systems. Self-Similarity
in High-Speed Packet Traffic be analyzed and Ethernet Traffic Measurements can be modeled for the Performance
analysis for future high speed networks.
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